1
|
Rong G, Liu J, Yang Y, Wang S, Cao W. Skullcapflavone II induces G2/M phase arrest in hepatic stellate cells and suppresses hepatic fibrosis. Eur J Pharmacol 2025; 998:177522. [PMID: 40113067 DOI: 10.1016/j.ejphar.2025.177522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
RESEARCH PURPOSE This investigation explored the therapeutic effects and mechanisms of Skullcapflavone II in hepatic fibrosis (HF). MATERIALS AND METHODS The optimal concentration of Skullcapflavone II for LX2 hepatic stellate cells was determined using the CCK8 assay. EdU staining and flow cytometry were utilised to assess cell proliferation and G2/M phase arrest. Mice with carbon tetrachloride-triggered HF were administered Skullcapflavone II at low (15 mg/day), medium (30 mg/day), and high (60 mg/day) doses. Subsequently, hepatic damage and fibrosis were assessed via body weight, liver index, biochemical markers, and histopathological staining. Immunohistochemistry for Collagen I and α-SMA were utilised to examine hepatic stellate cell (HSC) activation. RNA sequencing was utilised to ascertain differentially expressed genes. Molecular docking simulated interactions among Skullcapflavone II and target proteins as well as outcomes were validated by implementing western blotting, immunohistochemistry, and RT-qPCR. RESULTS Skullcapflavone II inhibited LX2 cell proliferation and triggered G2/M phase arrest. Its optimal intervention concentration was 160 μM. In vivo, it ameliorated hepatic function, diminished serum indicators of fibrosis, and suppressed HSC activation. Diminished collagen sediment was validated utilising histopathological examination, whereas immunohistochemistry indicated decreased expression of Collagen I and α-SMA. Additionally, molecular docking showed strong binding of Skullcapflavone II to DNA replication-related proteins. Western blotting and RT-qPCR implied that Skullcapflavone II disrupted DNA replication, which triggered G2/M arrest and hindered HSCs activation and proliferation. CONCLUSION The abovementioned mechanisms of action of Skullcapflavone II substantiate its prospective clinical application against HF.
Collapse
Affiliation(s)
- Guoyi Rong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; Department of Rehabilitation Medicine of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing, 401151, China
| | - Yunheng Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Shang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Wenfu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Zheng X, Tian S, Li T, Zhang S, Zhou X, Liu Y, Su R, Zhang M, Li B, Qi C, Guo G, Ma S, Sun K, Yang F, Hu Y, Yang C, Cui L, Shang Y, Guo C, Jin B, Guan L, Wang J, Ning W, Han Y. Host FSTL1 defines the impact of stem cell therapy on liver fibrosis by potentiating the early recruitment of inflammatory macrophages. Signal Transduct Target Ther 2025; 10:81. [PMID: 40050288 PMCID: PMC11885662 DOI: 10.1038/s41392-025-02162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/30/2024] [Accepted: 02/01/2025] [Indexed: 03/09/2025] Open
Abstract
Adult stem cell therapy holds great promise for treating decompensated liver cirrhosis on the basis of animal studies, despite uncertainty about its clinical therapeutic efficacy and unclear underlying mechanisms. Here, we investigated the role of follistatin-like 1 (FSTL1), a profibrotic and proinflammatory matricellular protein, in inflammation-related heterogeneity in stem cell therapy. Our results showed that a high level of circulating FSTL1 is significantly correlated with therapeutic response in patients with cirrhosis. FSTL1 facilitated MSC-mediated early recruitment of Ly6C+ inflammatory macrophages within 24 h postinfusion, which was essential for the empowerment of MSCs and subsequent Ly6C-CX3CR1+ macrophage remodelling at 48 h postinfusion. Fstl1 deficiency abrogated early macrophage recruitment and effective Ly6C-CX3CR1+ macrophage accumulation, resulting in the poor antifibrotic effect of MSCs in mice. Whereas, recombinant FSTL1 protein restored the therapeutic efficacy of MSCs in CCl4-injured Fstl1+/- mice. Mechanistically, host FSTL1 enhanced rapid recycling of CCR2 to the membrane via activation of the CD14/TLR4/NF-κB/ATP6V1G2 axis, leading to early recruitment of Ly6C+ monocytes /macrophages. Taken together, our findings revealed that FSTL1 is a critical regulator of the fibrotic immune microenvironment and facilitates subsequent stem cell therapy. These data suggest that FSTL1 could serve as a predictive biomarker of stem cell therapy response in patients with liver cirrhosis.
Collapse
Grants
- 82270551 National Natural Science Foundation of China (National Science Foundation of China)
- 81900570 National Natural Science Foundation of China (National Science Foundation of China)
- 82303155 National Natural Science Foundation of China (National Science Foundation of China)
- 82372882 National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by the National Key R&D Program of China, 2020YFA0710803 (to J.W.), 2017YFA0105704 (to Y. H.), 2021YFC2500700 and 2024YFA1108500 (to W.N.) National Natural Science Foundation of China (NSFC) grants 81900570, 82470638 (to X.Z.), 82270551 (to Y. H.), 82270616 (to J.W.), 81900502 (to G.G.), 82303155 (T.L.), 82372882 (L.G.) and 82030001 (to W.N.) Key Research and Development Program of Shaanxi province, China No. 2021ZDLSF02-07 (to Y. H.)
- the National Key R&D Program of China, 2020YFA0710803
Collapse
Affiliation(s)
- Xiaohong Zheng
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Siyuan Tian
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Ting Li
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Si Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xia Zhou
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yansheng Liu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Rui Su
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Miao Zhang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Bo Li
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guanya Guo
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Shuoyi Ma
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Keshuai Sun
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Fangfang Yang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Chunmei Yang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Lina Cui
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yulong Shang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Changcun Guo
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lei Guan
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China.
- Science and Technology Innovation Research Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Ying Han
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Cheng Z, Li F, Qie Y, Sun J, Wang Y, Zhao Y, Nie G. Hepatic Stellate Cell Membrane-Camouflaged Nanoparticles for Targeted Delivery of an Antifibrotic Agent to Hepatic Stellate Cells with Enhanced Antifibrosis Efficacy. NANO LETTERS 2024; 24:15827-15836. [PMID: 39585320 DOI: 10.1021/acs.nanolett.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix proteins primarily produced by activated hepatic stellate cells (HSCs). The activation of HSCs plays a pivotal role in driving the progression of liver fibrosis. Achieving specific targeted delivery of antifibrotic agents toward activated HSCs remains a formidable challenge. Here, we developed an HSC membrane-camouflaged nanosystem, named HSC-PLGA-BAY, for the precise delivery of the antifibrosis agent BAY 11-7082 to activated HSCs in the treatment of liver fibrosis. The designed HSC-PLGA-BAY nanosystem exhibited selective targeting toward activated HSCs, with internalization mediated by homologous cell adhesion molecules from the HSC membrane, namely integrins and N-cadherin. Furthermore, our findings demonstrate that treatment with HSC-PGA-BAY significantly increased apoptosis of activated HSCs and ameliorated liver fibrosis progression in a bile duct ligation (BDL)-induced fibrotic mice model. Collectively, the HSCs-targeted therapeutic platform holds promising potential as an effective strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zhaoxia Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jingyi Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yazhou Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
4
|
Yuan K, Lai K, Miao G, Zhang J, Zhao X, Tan G, Wang X, Wang X. Cholinized-Polymer Functionalized Lipid-Based Drug Carriers Facilitate Liver Fibrosis Therapy via Ultrafast Liver-Targeting Delivery. Biomacromolecules 2024; 25:6526-6538. [PMID: 39213520 DOI: 10.1021/acs.biomac.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we report novel cholinized-polymer functionalized lipid-based nanoparticles (CP-LNPs) for rapid and highly effective delivery of drugs to the liver, achieving targeting within 10 min and nearly 100% efficiency. In this study, CP-LNPs loaded with a promising antifibrotic agent curcumin (CP-LNPs/Cur) significantly improved the stability of curcumin under physiological conditions and its distribution in the liver. In vitro experiments demonstrated that CP-LNPs/Cur effectively suppressed the proliferation and migration of activated hepatic stellate cells (aHSCs), as evidenced by the decreased expression of α-SMA. Moreover, CP-LNPs/Cur attenuated oxidative stress levels in hepatocytes while improving mitochondrial physiological activity. In vivo antifibrosis studies have shown that CP-LNPs/Cur only require a low dose to significantly alleviate liver injury and collagen deposition, thereby preventing the progression of liver fibrosis. These findings indicated that CP-LNPs exhibit great potential in liver fibrosis therapy benefiting from the novel targeting strategy.
Collapse
Affiliation(s)
- Kun Yuan
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Keren Lai
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Jibin Zhang
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaoxi Zhao
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| |
Collapse
|
5
|
Dai H, Zhu C, Huai Q, Xu W, Zhu J, Zhang X, Zhang X, Sun B, Xu H, Zheng M, Li X, Wang H. Chimeric antigen receptor-modified macrophages ameliorate liver fibrosis in preclinical models. J Hepatol 2024; 80:913-927. [PMID: 38340812 DOI: 10.1016/j.jhep.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Treatments directly targeting fibrosis remain limited. Given the unique intrinsic features of macrophages and their capacity to engraft in the liver, we genetically engineered bone marrow-derived macrophages with a chimeric antigen receptor (CAR) to direct their phagocytic activity against hepatic stellate cells (HSCs) in multiple mouse models. This study aimed to demonstrate the therapeutic efficacy of CAR macrophages (CAR-Ms) in mouse models of fibrosis and cirrhosis and to elucidate the underlying mechanisms. METHODS uPAR expression was studied in patients with fibrosis/cirrhosis and in murine models of liver fibrosis, including mice treated with carbon tetrachloride, a 5-diethoxycarbonyl-1, 4-dihydrocollidine diet, or a high-fat/cholesterol/fructose diet. The safety and efficacy of CAR-Ms were evaluated in vitro and in vivo. RESULTS Adoptive transfer of CAR-Ms resulted in a significant reduction in liver fibrosis and the restoration of function in murine models of liver fibrosis. CAR-Ms modulated the hepatic immune microenvironment to recruit and modify the activation of endogenous immune cells to drive fibrosis regression. These CAR-Ms were able to recruit and present antigens to T cells and mount specific antifibrotic T-cell responses to reduce fibroblasts and liver fibrosis in mice. CONCLUSION Collectively, our findings demonstrate the potential of using macrophages as a platform for CAR technology to provide an effective treatment option for liver fibrosis. CAR-Ms might be developed for treatment of patients with liver fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis is an incurable condition that afflicts millions of people globally. Despite the clear clinical need, therapies for liver fibrosis are limited. Our findings provide the first preclinical evidence that chimeric antigen receptor (CAR)-macrophages (CAR-Ms) targeting uPAR can attenuate liver fibrosis and cirrhosis. We show that macrophages expressing this uPAR CAR exert a direct antifibrotic effect and elicit a specific T-cell response that augments the immune response against liver fibrosis. These findings demonstrate the potential of using CAR-Ms as an effective cell-based therapy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wentao Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jiejie Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honghai Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China; Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Li F, Zhao Y, Nie G. Nanotechnology-based combinational strategies toward the regulation of myofibroblasts and diseased microenvironment in liver fibrosis and hepatic carcinoma. NANO RESEARCH 2023; 16:13042-13055. [DOI: 10.1007/s12274-023-5809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 01/03/2025]
|
7
|
Xiang SY, Deng KL, Yang DX, Yang P, Zhou YP. Function of macrophage-derived exosomes in chronic liver disease: From pathogenesis to treatment. World J Hepatol 2023; 15:1196-1209. [DOI: 10.4254/wjh.v15.i11.1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic liver disease (CLD) imposes a heavy burden on millions of people worldwide. Despite substantial research on the pathogenesis of CLD disorders, no optimal treatment is currently available for some diseases, such as liver cancer. Exosomes, which are extracellular vesicles, are composed of various cellular components. Exosomes have unique functions in maintaining cellular homeostasis and regulating cell communication, which are associated with the occurrence of disease. Furthermore, they have application potential in diagnosis and treatment by carrying diverse curative payloads. Hepatic macrophages, which are key innate immune cells, show extraordinary heterogeneity and polarization. Hence, macrophage-derived exosomes may play a pivotal role in the initiation and progression of various liver diseases. This review focuses on the effects of macrophage-derived exosomes on liver disease etiology and their therapeutic potential, which will provide new insights into alleviating the global pressure of CLD.
Collapse
Affiliation(s)
- Shi-Yi Xiang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Kai-Li Deng
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Ping Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
8
|
Lapa Neto CJC, de Melo IMF, Alpiovezza PKBM, de Albuquerque YML, Francisco Soares A, Teixeira ÁAC, Wanderley-Teixeira V. Melatonin associated with a high-fat diet during pregnancy and lactation prevents liver changes in the offspring. Gen Comp Endocrinol 2023; 343:114357. [PMID: 37586542 DOI: 10.1016/j.ygcen.2023.114357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
In the present study, we set out to determine whether melatonin combined with a high-fat diet during pregnancy and lactation can prevent liver disorders in offspring. Forty rats were divided into four groups: DC - pregnant rats submitted to the standard diet; DC + Mel - pregnant rats submitted to the standard diet combined with melatonin; HFD - pregnant rats submitted to a high-fat diet; HFD + Mel - pregnant rats submitted to a high-fat diet combined with melatonin. Morphophysiological and biochemical parameters were analyzed. Melatonin (5 mg/kg) was administered intraperitoneally. The HFD group offspring showed an increase in AST, ALT, alkaline phosphatase, cholesterol, triglycerides, LDL and glucose levels, and a reduction in HDL and lipase levels. In the liver obseved steatosis, hepatocellular ballooning, increased lobular parenchyma and reduced non-lobular parenchyma, beside reduced liver glycogen and fibrosis. These changes were not observed in the HFD + Mel group. In conclusion, melatonin combined with a high-fat diet preserves the liver architecture and function in the offspring.
Collapse
Affiliation(s)
- Clovis J C Lapa Neto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Ismaela M F de Melo
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Paloma K B M Alpiovezza
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Yuri M L de Albuquerque
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Anísio Francisco Soares
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Álvaro A C Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Valéria Wanderley-Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
9
|
Li F, Zhao Y, Cheng Z, Wang Y, Yue Y, Cheng X, Sun J, Atabakhshi-Kashi M, Yao J, Dou J, Yu J, Zhang X, Qi Y, Li X, Qi X, Nie G. Restoration of Sinusoid Fenestrae Followed by Targeted Nanoassembly Delivery of an Anti-Fibrotic Agent Improves Treatment Efficacy in Liver Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212206. [PMID: 36862807 DOI: 10.1002/adma.202212206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Indexed: 05/17/2023]
Abstract
During the onset of liver fibrosis, capillarized liver sinusoidal endothelial cells (LSECs) limit substance exchange between the blood and the Disse space, further accelerating hepatic stellate cell (HSCs) activation and fibrosis progression. Limited accessibility of therapeutics to the Disse space is often overlooked and remains a major bottleneck for HSCs-targeted therapy in liver fibrosis. Here, an integrated systemic strategy for liver fibrosis treatment is reported, utilizing pretreatment with the soluble guanylate cyclase stimulator, riociguat, followed by insulin growth factor 2 receptor-mediated targeted delivery of the anti-fibrosis agent, JQ1, via peptide-nanoparticles (IGNP-JQ1). The riociguat reversed the liver sinusoid capillarization to maintain a relatively normal LSECs porosity, thus facilitating the transport of IGNP-JQ1 through the liver sinusoid endothelium wall and enhancing the accumulation of IGNP-JQ1 in the Disse space. IGNP-JQ1 is then selectively taken up by activated HSCs, inhibiting their proliferation and decreasing collagen deposition in the liver. The combined strategy results in significant fibrosis resolution in carbon tetrachloride-induced fibrotic mice as well as methionine-choline-deficient-diet-induced nonalcoholic steatohepatitis (NASH) mice. The work highlights the key role of LSECs in therapeutics transport through the liver sinusoid. The strategy of restoring LSECs fenestrae by riociguat represents a promising approach for liver fibrosis treatment.
Collapse
Affiliation(s)
- Fenfen Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Henan Institute of Advanced Technology, Henan, 450003, P. R. China
| | - Ying Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoxia Cheng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yazhou Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yale Yue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Henan Institute of Advanced Technology, Henan, 450003, P. R. China
| | - Xiaoyu Cheng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingyi Sun
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mona Atabakhshi-Kashi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jundong Yao
- Department of Interventional Ultrasound, 301 Hospital, 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Jianping Dou
- Department of Interventional Ultrasound, 301 Hospital, 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Jie Yu
- Department of Interventional Ultrasound, 301 Hospital, 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Xiuping Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Faculty of Hepato-Biliary-Pancreatic Surgery, 301 Hospital, Beijing, 100853, P. R. China
- Institute of Hepatobiliary Surgery, 301 Hospital, Beijing, 100853, P. R. China
- Key Laboratory of Digital Hepatobiliary Surgery, 301 Hospital, Beijing, 100853, P. R. China
| | - Yingqiu Qi
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Guangjun Nie
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Henan Institute of Advanced Technology, Henan, 450003, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, P. R. China
| |
Collapse
|
10
|
Lv K, Wang Y, Lou P, Liu S, Zhou P, Yang L, Lu Y, Cheng J, Liu J. Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: Current progress and future perspectives. Front Immunol 2022; 13:1042983. [PMCID: PMC9630482 DOI: 10.3389/fimmu.2022.1042983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Organ fibrosis is a serious health challenge worldwide, and its global incidence and medical burden are increasing dramatically each year. Fibrosis can occur in nearly all major organs and ultimately lead to organ dysfunction. However, current clinical treatments cannot slow or reverse the progression of fibrosis to end-stage organ failure, and thus advanced anti-fibrotic therapeutics are urgently needed. As a type of naturally derived nanovesicle, native extracellular vesicles (EVs) from multiple cell types (e.g., stem cells, immune cells, and tissue cells) have been shown to alleviate organ fibrosis in many preclinical models through multiple effective mechanisms, such as anti-inflammation, pro-angiogenesis, inactivation of myofibroblasts, and fibrinolysis of ECM components. Moreover, the therapeutic potency of native EVs can be further enhanced by multiple engineering strategies, such as genetic modifications, preconditionings, therapeutic reagent-loadings, and combination with functional biomaterials. In this review, we briefly introduce the pathology and current clinical treatments of organ fibrosis, discuss EV biology and production strategies, and particularly focus on important studies using native or engineered EVs as interventions to attenuate tissue fibrosis. This review provides insights into the development and translation of EV-based nanotherapies into clinical applications in the future.
Collapse
Affiliation(s)
- Ke Lv
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jingping Liu,
| |
Collapse
|
11
|
Wu B, Feng J, Guo J, Wang J, Xiu G, Xu J, Ning K, Ling B, Fu Q, Xu J. ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Res Ther 2022; 13:494. [PMID: 36195966 PMCID: PMC9531400 DOI: 10.1186/s13287-022-03049-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hepatic fibrosis is a common pathologic stage in chronic liver disease development, which might ultimately lead to liver cirrhosis. Accumulating evidence suggests that adipose-derived stromal cells (ADSCs)-based therapies show excellent therapeutic potential in liver injury disease owing to its superior properties, including tissue repair ability and immunomodulation effect. However, cell-based therapy still limits to several problems, such as engraftment efficiency and immunoreaction, which impede the ADSCs-based therapeutics development. So, ADSCs-derived extracellular vesicles (EVs), especially for exosomes (ADSC-EXO), emerge as a promise cell-free therapeutics to ameliorate liver fibrosis. The effect and underlying mechanisms of ADSC-EXO in liver fibrosis remains blurred. Methods Hepatic fibrosis murine model was established by intraperitoneal sequential injecting the diethylnitrosamine (DEN) for two weeks and then carbon tetrachloride (CCl4) for six weeks. Subsequently, hepatic fibrosis mice were administrated with ADSC-EXO (10 μg/g) or PBS through tail vein infusion for three times in two weeks. To evaluate the anti-fibrotic capacity of ADSC-EXO, we detected liver morphology by histopathological examination, ECM deposition by serology test and Sirius Red staining, profibrogenic markers by qRT-PCR assay. LX-2 cells treated with TGF-β (10 ng/ml) for 12 h were conducted for evaluating ADSC-EXO effect on activated hepatic stellate cells (HSCs). RNA-seq was performed for further analysis of the underlying regulatory mechanisms of ADSC-EXO in liver fibrosis. Results In this study, we obtained isolated ADSCs, collected and separated ADSCs-derived exosomes. We found that ADSC-EXO treatment could efficiently ameliorate DEN/CCl4-induced hepatic fibrosis by improving mice liver function and lessening hepatic ECM deposition. Moreover, ADSC-EXO intervention could reverse profibrogenic phenotypes both in vivo and in vitro, including HSCs activation depressed and profibrogenic markers inhibition. Additionally, RNA-seq analysis further determined that decreased glutamine synthetase (Glul) of perivenous hepatocytes in hepatic fibrosis mice could be dramatically up-regulated by ADSC-EXO treatment; meanwhile, glutamine and ammonia metabolism-associated key enzyme OAT was up-regulated and GLS2 was down-regulated by ADSC-EXO treatment in mice liver. In addition, glutamine synthetase inhibitor would erase ADSC-EXO therapeutic effect on hepatic fibrosis. Conclusions These findings demonstrated that ADSC-derived exosomes could efficiently alleviate hepatic fibrosis by suppressing HSCs activation and remodeling glutamine and ammonia metabolism mediated by hepatocellular glutamine synthetase, which might be a novel and promising anti-fibrotic therapeutics for hepatic fibrosis disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03049-x.
Collapse
Affiliation(s)
- Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jiuxing Feng
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China
| | - Jiaqi Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China.
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
12
|
Zheng X, Zhou X, Ma G, Yu J, Zhang M, Yang C, Hu Y, Ma S, Han Z, Ning W, Jin B, Zhou X, Wang J, Han Y. Endogenous Follistatin-like 1 guarantees the immunomodulatory properties of mesenchymal stem cells during liver fibrotic therapy. Stem Cell Res Ther 2022; 13:403. [PMID: 35932064 PMCID: PMC9356430 DOI: 10.1186/s13287-022-03042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cell (MSC) therapy has been shown to be a promising option for liver fibrosis treatment. However, critical factors affecting the efficacy of MSC therapy for liver fibrosis remain unknown. Follistatin-like 1 (FSTL1), a TGF-β-induced matricellular protein, is documented as an intrinsic regulator of proliferation and differentiation in MSCs. In the present study, we characterized the potential role of FSTL1 in MSC-based anti-fibrotic therapy and further elucidated the mechanisms underlying its action. Methods Human umbilical cord-derived MSCs were characterized by flow cytometry. FSTL1low MSCs were achieved by FSTL1 siRNA. Migration capacity was evaluated by wound-healing and transwell assay. A murine liver fibrotic model was created by carbon tetrachloride (CCl4) injection, while control MSCs or FSTL1low MSC were transplanted via intravenous injection 12 weeks post CCl4 injection. Histopathology, liver function, fibrosis degree, and inflammation were analysed thereafter. Inflammatory cell infiltration was evaluated by flow cytometry after hepatic nonparenchymal cell isolation. An MSC-macrophage co-culture system was constructed to further confirm the role of FSTL1 in the immunosuppressive capacity of MSCs. RNA sequencing was used to screen target genes of FSTL1. Results FSTL1low MSCs had comparable gene expression for surface markers to wildtype but limited differentiation and migration capacity. FSTL1low MSCs failed to alleviate CCl4-induced hepatic fibrosis in a mouse model. Our data indicated that FSTL1 is essential for the immunosuppressive action of MSCs on inflammatory macrophages during liver fibrotic therapy. FSTL1 silencing attenuated this capacity by inhibiting the downstream JAK/STAT1/IDO pathway. Conclusions Our data suggest that FSTL1 facilitates the immunosuppression of MSCs on macrophages and that guarantee the anti-fibrotic effect of MSCs in liver fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03042-4.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.,Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Gang Ma
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Jiahao Yu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Chunmei Yang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Zheyi Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
13
|
Chung BK, Øgaard J, Reims HM, Karlsen TH, Melum E. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. Hepatol Commun 2022; 6:2538-2550. [PMID: 35726350 PMCID: PMC9426406 DOI: 10.1002/hep4.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Liver fibrosis and cirrhosis have limited therapeutic options and represent a serious unmet patient need. Recent use of single‐cell RNA sequencing (scRNAseq) has identified enriched cell types infiltrating cirrhotic livers but without defining the microanatomical location of these lineages thoroughly. To assess whether fibrotic liver regions specifically harbor enriched cell types, we explored whether whole‐tissue spatial transcriptomics combined with scRNAseq and gene deconvolution analysis could be used to localize cell types in cirrhotic explants of patients with end‐stage liver disease (total n = 8; primary sclerosing cholangitis, n = 4; primary biliary cholangitis, n = 2, alcohol‐related liver disease, n = 2). Spatial transcriptomics clearly identified tissue areas of distinct gene expression that strongly correlated with the total area (Spearman r = 0.97, p = 0.0004) and precise location (parenchyma, 87.9% mean congruency; range, 73.1%–97.1%; fibrosis, 68.5% mean congruency; range, 41.0%–91.7%) of liver regions classified as parenchymal or fibrotic by conventional histology. Deconvolution and enumeration of parenchymal and fibrotic gene content as measured by spatial transcriptomics into distinct cell states revealed significantly higher frequencies of ACTA2+ FABP4+ and COL3A1+ mesenchymal cells, IL17RA+ S100A8+ and FCER1G+ tissue monocytes, VCAM1+ SDC3+ Kupffer cells, CCL4+ CCL5+ KLRB1+ and GZMA+ IL17RA+ T cells and HLA‐DR+, CD37+ CXCR4+ and IGHM+ IGHG+ B cells in fibrotic liver regions compared with parenchymal areas of cirrhotic explants. Conclusion: Our findings indicate that spatial transcriptomes of parenchymal and fibrotic liver regions express unique gene content within cirrhotic liver and demonstrate proof of concept that spatial transcriptomes combined with additional RNA sequencing methodologies can refine the localization of gene content and cell lineages in the search for antifibrotic targets.
Collapse
Affiliation(s)
- Brian K Chung
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jonas Øgaard
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Henrik Mikael Reims
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging. Diagnostics (Basel) 2022; 12:diagnostics12020550. [PMID: 35204639 PMCID: PMC8870954 DOI: 10.3390/diagnostics12020550] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The exact focus of computed tomography (CT)-based artificial intelligence techniques when staging liver fibrosis is still not exactly known. This study aimed to determine both the added value of splenic information to hepatic information, and the correlation between important radiomic features and information exploited by deep learning models for liver fibrosis staging by CT-based radiomics. Methods: The study design is retrospective. Radiomic features were extracted from both liver and spleen on portal venous phase CT images of 252 consecutive patients with histologically proven liver fibrosis stages between 2006 and 2018. The radiomics analyses for liver fibrosis staging were done by hepatic and hepatic–splenic features, respectively. The most predictive radiomic features were automatically selected by machine learning models. Results: When using splenic–hepatic features in the CT-based radiomics analysis, the average accuracy rates for significant fibrosis, advanced fibrosis, and cirrhosis were 88%, 82%, and 86%, and area under the receiver operating characteristic curves (AUCs) were 0.92, 0.81, and 0.85. The AUC of hepatic–splenic-based radiomics analysis with the ensemble classifier was 7% larger than that of hepatic-based analysis (p < 0.05). The most important features selected by machine learning models included both hepatic and splenic features, and they were consistent with the location maps indicating the focus of deep learning when predicting liver fibrosis stage. Conclusions: Adding CT-based splenic radiomic features to hepatic radiomic features increases radiomics analysis performance for liver fibrosis staging. The most important features of the radiomics analysis were consistent with the information exploited by deep learning.
Collapse
|
15
|
Guedes PLR, Carvalho CPF, Carbonel AAF, Simões MJ, Icimoto MY, Aguiar JAK, Kouyoumdjian M, Gazarini ML, Nagaoka MR. Chondroitin Sulfate Protects the Liver in an Experimental Model of Extra-Hepatic Cholestasis Induced by Common Bile Duct Ligation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030654. [PMID: 35163920 PMCID: PMC8839946 DOI: 10.3390/molecules27030654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
During liver fibrogenesis, there is an imbalance between regeneration and wound healing. The current treatment is the withdrawal of the causing agent; thus, investigation of new and effective treatments is important. Studies have highlighted the action of chondroitin sulfate (CS) in different cells; thus, our aim was to analyze its effect on an experimental model of bile duct ligation (BDL). Adult Wistar rats were subjected to BDL and treated with CS for 7, 14, 21, or 28 days intraperitoneally. We performed histomorphometric analyses on Picrosirius-stained liver sections. Cell death was analyzed according to caspase-3 and cathepsin B activity and using a TUNEL assay. Regeneration was evaluated using PCNA immunohistochemistry. BDL led to increased collagen content with corresponding decreased liver parenchyma. CS treatment reduced total collagen and increased parenchyma content after 21 and 28 days. The treatment also promoted changes in the hepatic collagen type III/I ratio. Furthermore, it was observed that CS treatment reduced caspase-3 activity and the percentage of TUNEL-positive cells after 14 days and cathepsin B activity only after 28 days. The regeneration increased after 14, 21, and 28 days of CS treatment. In conclusion, our study showed a promising hepatoprotective action of CS in fibrogenesis induced by BDL.
Collapse
Affiliation(s)
- Pedro L. R. Guedes
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Carolina P. F. Carvalho
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
| | - Adriana A. F. Carbonel
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-001, Brazil;
| | - Manuel J. Simões
- Department of Morphology and Genetic, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
| | - Marcelo Y. Icimoto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil;
| | - Jair A. K. Aguiar
- Department of Biochemistry, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Maria Kouyoumdjian
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Marcos L. Gazarini
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
| | - Marcia R. Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (C.P.F.C.); (M.L.G.)
- Correspondence:
| |
Collapse
|
16
|
Niu X, Wang X, Niu B, Wang Y, He H, Li G. New IMB16-4 Nanoparticles Improved Oral Bioavailability and Enhanced Anti-Hepatic Fibrosis on Rats. Pharmaceuticals (Basel) 2022; 15:ph15010085. [PMID: 35056142 PMCID: PMC8781400 DOI: 10.3390/ph15010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Liver fibrosis is challenging to treat because of the lack of effective agents worldwide. Recently, we have developed a novel compound, N-(3,4,5-trichlorophenyl)-2(3-nitrobenzenesulfonamido) benzamide referred to as IMB16-4. However, its poor aqueous solubility and poor oral bioavailability obstruct the drug discovery programs. To increase the dissolution, improve the oral bioavailability and enhance the antifibrotic activity of IMB16-4, PVPK30 was selected to establish the IMB16-4 nanoparticles. Drug release behavior, oral bioavailability, and anti-hepatic fibrosis effects of IMB16-4 nanoparticles were evaluated. The results showed that IMB16-4 nanoparticles greatly increased the dissolution rate of IMB16-4. The oral bioavailability of IMB16-4 nanoparticles was improved 26-fold compared with that of pure IMB16-4. In bile duct ligation rats, IMB16-4 nanoparticles significantly repressed hepatic fibrogenesis and improved the liver function. These findings indicate that IMB16-4 nanoparticles will provide information to expand a novel anti-hepatic fibrosis agent.
Collapse
Affiliation(s)
| | | | | | | | - Hongwei He
- Correspondence: (H.H.); (G.L.); Tel.: +86-10-67022156 (G.L.)
| | - Guiling Li
- Correspondence: (H.H.); (G.L.); Tel.: +86-10-67022156 (G.L.)
| |
Collapse
|
17
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
18
|
Xiao S, Deng Y, Shen N, Sun Y, Tang H, Hu P, Ren H, Peng M. Curc-mPEG454, a PEGylated curcumin derivative, as a multi-target anti-fibrotic prodrug. Int Immunopharmacol 2021; 101:108166. [PMID: 34628270 DOI: 10.1016/j.intimp.2021.108166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Our previous studies demonstrated that Curc-mPEG454, a curcumin derivative modified with short-chain polyethylene glycol (PEG), not only increased the blood concentration of curcumin, but also retained its anti-inflammatory activity. Here, we aimed to evaluate the anti-fibrotic effect of Curc-mPEG454 on a rat liver fibrosis model induced by carbon tetrachloride (CCl4), and to explore the underlying mechanisms by integrating our total liver RNA sequencing (RNA-seq) data with recent liver single-cell sequencing (scRNA-seq) studies. 50 mg/kg and 100 mg/kg Curc-mPEG454 treatment significantly reduced the elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) induced by CCl4, and the incidence of liver cirrhosis decreased from 75% to 37% and 35%, respectively. RNA-seq analysis revealed that Curc-mPEG454 significantly upregulated aldehyde oxidase 1 (AOX1) while downregulated cytochrome p450 26A1 (CYP26A1) and cytochrome p450 26B1 (CYP26B1) resulting in restoring liver retinoic acid (RA) level, increased glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) expression to synthesize hepatic glutathione (GSH), and inhibited liver inflammation via down-regulating the Prostaglandin E Synthase 2 (PTGES2)/prostacyclin E2 (PGE2) signaling. Integrating scRNA-seq data revealed that Curc-mPEG454 effectively inhibited the expansion of scar-associated macrophage subpopulation and scar-producing myofibroblasts in the damaged liver, and remodeled the fibrotic niche via regulation of ligand-receptor interactions including platelet-derived growth factor-B (PDGF-B)/platelet-derived growth factor receptor-α (PDGFR-α) signaling. As a multi-target prodrug, PEGylated curcumin deserves further attention and research.
Collapse
Affiliation(s)
- Shuang Xiao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yanhong Deng
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - Neng Shen
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yong Sun
- Department of Endocrinology and Metabolism, Dazhou Central Hospital, Dazhou 635000, Sichuan, China
| | - Huadong Tang
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
19
|
Costunolide Loaded in pH-Responsive Mesoporous Silica Nanoparticles for Increased Stability and an Enhanced Anti-Fibrotic Effect. Pharmaceuticals (Basel) 2021; 14:ph14100951. [PMID: 34681175 PMCID: PMC8539632 DOI: 10.3390/ph14100951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis remains a significant public health problem. However, few drugs have yet been validated. Costunolide (COS), as a monomeric component of the traditional Chinese medicinal herb Saussurea Lappa, has shown excellent anti-fibrotic efficacy. However, COS displays very poor aqueous solubility and poor stability in gastric juice, which greatly limits its application via an oral administration. To increase the stability, improve the dissolution rate and enhance the anti-liver fibrosis of COS, pH-responsive mesoporous silica nanoparticles (MSNs) were selected as a drug carrier. Methacrylic acid copolymer (MAC) as a pH-sensitive material was used to coat the surface of MSNs. The drug release behavior and anti-liver fibrosis effects of MSNs-COS-MAC were evaluated. The results showed that MSNs-COS-MAC prevented a release in the gastric fluid and enhanced the dissolution rate of COS in the intestinal juice. At half the dose of COS, MSNs-COS-MAC still effectively ameliorated parenchymal necrosis, bile duct proliferation and excessive collagen. MSNs-COS-MAC significantly repressed hepatic fibrogenesis by decreasing the expression of hepatic fibrogenic markers in LX-2 cells and liver tissue. These results suggest that MSNs-COS-MAC shows great promise for anti-liver fibrosis treatment.
Collapse
|
20
|
Cui HX, Luo Y, Mao YY, Yuan K, Jin SH, Zhu XT, Zhong BW. Purified anthocyanins from Zea mays L. cob ameliorates chronic liver injury in mice via modulating of oxidative stress and apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4672-4680. [PMID: 33491773 DOI: 10.1002/jsfa.11112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Purple corn (Zea mays L.) is one of the main economic crops in China and has been used in the treatment of cystitis, urinary infections and obesity. However, purple corncobs, the by-product remaining after processing and having an intense purple-black color, are normally disposed of as waste or used as animal feed. Therefore, to further expand the medicinal value of purple corncob, its content was analyzed and, after purification, the effect and mechanism of purified purple corncob anthocyanins (PPCCA) on CCl4 -induced chronic liver injury in mice were investigated. RESULTS It was observed that the total anthocyanin content (TAC) from PPCCA (317.51 ± 9.30 mg cyanidin 3-O-glucoside (C-3-G) g-1 dry weight) was significantly higher than that from the purified purple corn seed anthocyanin (266.73 ± 3.67 mg C-3-G g-1 dry weight), of which C-3-G accounted for 90.6% and 90.4% of the TAC, respectively. Furthermore, compared with the CCl4 group, PPCCA treatment significantly reduced liver index, serum total bilirubin, alanine transaminase, aspartate transaminase and liver malondialdehyde levels, but increased liver superoxide dismutase activity. The pathological changes were also improved, such as more regular arrangement of hepatocytes, less swelling, and fewer vacuoles and apoptotic cells. Additionally, mechanistic studies showed that PPCCA downregulated the expression of Caspase-3, Bax and cytochrome P450 2E1 proteins in the liver and upregulated the expression of Bcl-2. CONCLUSION These results demonstrated that PPCCA could ameliorate CCl4 -induced chronic liver injury by regulating oxidative stress and hepatocyte apoptosis pathways. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Xin Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease by Henan & Education Ministry of PR China, Zhengzhou, China
| | - Yang Luo
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Yue-Yue Mao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ke Yuan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Song-Heng Jin
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Xiang-Tao Zhu
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Bing-Wei Zhong
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| |
Collapse
|
21
|
He ZB, Niu WB, Peng C, Gao C, Gao HJ, Niu J. The relationship between integrin avß6 and HBV infection in patients with liver cirrhosis and hepatocellular carcinoma: a preliminary report. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 112:462-466. [PMID: 32450701 DOI: 10.17235/reed.2020.6607/2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE the aim of this study was to investigate the expression of integrin αvβ6 in normal, hepatitis B, HBV-associated cirrhosis and HBV-associated HCC liver tissues. METHODS immunohistochemistry and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to study the expression of integrin αvβ6 in HBV-associated cirrhosis (n = 88), chronic hepatitis B ( n= 11), HBV-associated HCC (n = 84) and normal (n = 10) human liver tissues. RESULTS the expression of integrin αvβ6 was significantly upregulated in HBV-associated liver cirrhosis and the expression increased with an increase in severity of cirrhosis. Furthermore, it was moderately or weakly expressed in chronic hepatitis B and HBV-associated HCC liver tissues when compared to normal liver tissue. CONCLUSION integrin αvβ6 could be a predictive marker for the progression of liver cirrhosis associated with HBV infection. Further studies are needed to determine the association between the expression of integrin αvβ6 in hepatitis B and HBV-associated HCC liver tissues.
Collapse
Affiliation(s)
- Zhao-Bin He
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Wei-Bo Niu
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Cheng Peng
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Chao Gao
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Hui-Jie Gao
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Jun Niu
- Hepatobiliary Medicine, Qilu Hospital. Shandong University, China
| |
Collapse
|
22
|
Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021; 81:419-443. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.
Collapse
Affiliation(s)
- Daniel Sepulveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| | - Isidoro Martinez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
23
|
Astragaloside IV Synergizes with Ferulic Acid to Alleviate Hepatic Fibrosis in Bile Duct-Ligated Cirrhotic Rats. Dig Dis Sci 2020; 65:2925-2936. [PMID: 31900718 DOI: 10.1007/s10620-019-06017-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Due to the multi-factorial etiology of hepatic fibrosis, multi-target therapeutics based on combinatory drugs is known to be a promising strategy for the disease. AIMS The present study attempted to test the hypothesis that astragaloside IV combined with ferulic acid synergistically inhibits activation of hepatic stellate cells in vivo. METHODS Bile duct-ligated rats were treated with astragaloside IV or/and ferulic acid for 28 days. Liver fibrosis was measured by histological examination. The oxidative stress-related biomarkers were measured with spectrophotometry. Expressions of mRNA and protein were measured by real-time PCR and Western blotting. RESULTS Bile duct-ligated rat treatment with astragaloside IV and ferulic acid in combination resulted in synergistic alleviation of hepatic fibrosis. Simultaneously, activation of hepatic stellate cells was significantly inhibited by the combination therapy when compared with astragaloside IV or ferulic acid alone. Interestingly, astragaloside IV, but not ferulic acid, induced accumulation of Nrf2 in the nucleus, synthesized antioxidant enzymes through negative regulation of glycogen synthase kinase-3β, scavenged reactive oxygen species, and, in turn, suppressed hepatic stellate cells activation in bile duct-ligated rats. Conversely, ferulic acid, but not astragaloside IV, suppressed TGF-β1 and its receptors expression, which resulted in downregulation of Smad3 and Smad4. CONCLUSIONS These findings suggest that the combination of astragaloside IV and ferulic acid synergistically induces deactivation of hepatic stellate cells through inhibition of the TGF-β pathway and activation of the Nrf2 pathway, and suggest that combination of astragaloside IV and ferulic acid is a promising candidate for the treatment of hepatic fibrosis.
Collapse
|
24
|
Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson NC. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol 2020; 17:457-472. [PMID: 32483353 DOI: 10.1038/s41575-020-0304-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Liver disease is a major global health-care problem, affecting an estimated 844 million people worldwide. Despite this substantial burden, therapeutic options for liver disease remain limited, in part owing to a paucity of detailed analyses defining the cellular and molecular mechanisms that drive these conditions in humans. Single-cell transcriptomic technologies are transforming our understanding of cellular diversity and function in health and disease. In this Review, we discuss how these technologies have been applied in hepatology, advancing our understanding of cellular heterogeneity and providing novel insights into fundamental liver biology such as the metabolic zonation of hepatocytes, endothelial cells and hepatic stellate cells, and the cellular mechanisms underpinning liver regeneration. Application of these methodologies is also uncovering critical pathophysiological changes driving disease states such as hepatic fibrosis, where distinct populations of macrophages, endothelial cells and mesenchymal cells reside within a spatially distinct fibrotic niche and interact to promote scar formation. In addition, single-cell approaches are starting to dissect key cellular and molecular functions in liver cancer. In the near future, new techniques such as spatial transcriptomics and multiomic approaches will further deepen our understanding of disease pathogenesis, enabling the identification of novel therapeutic targets for patients across the spectrum of liver diseases.
Collapse
Affiliation(s)
- Prakash Ramachandran
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - John R Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK. .,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Abd Elmaaboud M, Khattab H, Shalaby S. Hepatoprotective effect of linagliptin against liver fibrosis induced by carbon tetrachloride in mice. Can J Physiol Pharmacol 2020; 99:294-302. [PMID: 32726558 DOI: 10.1139/cjpp-2020-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current study aimed to investigate linagliptin for its potential role in the prevention of liver fibrosis progression. Balb-C mice were randomly allocated into five groups (10 each): (i) control; (ii) mice were injected intraperitoneally with 50 μL carbon tetrachloride (CCl4) in corn oil in a dose of 0.6 μL/g three times per week for four weeks; (iii) linagliptin was administered orally in a daily dose of 10 mg/kg simultaneously with CCl4; (iv) silymarin was administered orally in a daily dose of 200 mg/kg concomitantly with CCl4; and (v) only linagliptin was administered. Hepatic injury was manifested in the CCl4 group by elevation of biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP)), and hepatic fibrosis was evident histopathologically by increased METAVIR score and immunostaining expression of alpha-smooth muscle actin (α-SMA), as well as increased liver tissue oxidative stress parameters, transforming growth factor-β1 (TGF-β1), and mammalian target of rapamycin (mTOR). Linagliptin was able to stop the progression of liver fibrosis, evident histopathologically with reduced METAVIR score and α-SMA expression. The possible mechanism may be via suppression of oxidative stress, TGF-β1, and mTOR, which was associated with improvement of serum biochemical parameters ALT and AST. In conclusion, linagliptin might help to protect the liver against persistent injury-related consequences.
Collapse
Affiliation(s)
- Maaly Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shahinaz Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Design of a Gene Panel to Expose the Versatile Role of Hepatic Stellate Cells in Human Liver Fibrosis. Pharmaceutics 2020; 12:pharmaceutics12030278. [PMID: 32244897 PMCID: PMC7151042 DOI: 10.3390/pharmaceutics12030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
The pivotal cell involved in the pathogenesis of liver fibrosis, i.e., the activated hepatic stellate cell (HSC), has a wide range of activities during the initiation, progression and even regression of the disease. These HSC-related activities encompass cellular activation, matrix synthesis and degradation, proliferation, contraction, chemotaxis and inflammatory signaling. When determining the in vitro and in vivo effectivity of novel antifibrotic therapies, the readout is currently mainly based on gene and protein levels of α-smooth muscle actin (α-SMA) and the fibrillar collagens (type I and III). We advocate for a more comprehensive approach in addition to these markers when screening potential antifibrotic drugs that interfere with HSCs. Therefore, we aimed to develop a gene panel for human in vitro and ex vivo drug screening models, addressing each of the HSC-activities with at least one gene, comprising, in total, 16 genes. We determined the gene expression in various human stellate cells, ranging from primary cells to cell lines with an HSC-origin, and human liver slices and stimulated them with two key profibrotic factors, i.e., transforming growth factor β (TGFβ) or platelet-derived growth factor BB (PDGF-BB). We demonstrated that freshly isolated HSCs showed the strongest and highest variety of responses to these profibrotic stimuli, in particular following PDGF-BB stimulation, while cell lines were limited in their responses. Moreover, we verified these gene expression profiles in human precision-cut liver slices and showed similarities with the TGFβ- and PDGF-BB-related fibrotic responses, as observed in the primary HSCs. With this study, we encourage researchers to get off the beaten track when testing antifibrotic compounds by including more HSC-related markers in their future work. This way, potential compounds will be screened more extensively, which might increase the likelihood of developing effective antifibrotic drugs.
Collapse
|
27
|
Abstract
Hepatic fibrosis is a reparative response of diffuse over-deposition and abnormal distribution of extracellular matrix (collagen, glycoprotein and proteoglycans) after exposure to various kinds of liver injuries, and is a key step in the developmental process of various chronic liver diseases leading to cirrhosis. Recently, many advances in our understanding of hepatic fibrosis have been obtained through basic and clinical research. Therefore, this consensus summarizes and offers 15 evidence-based recommendations on the diagnosis and evaluation of hepatic fibrosis, its treatment, drug development and applications.
Collapse
|
28
|
Jarman EJ, Boulter L. Targeting the Wnt signaling pathway: the challenge of reducing scarring without affecting repair. Expert Opin Investig Drugs 2020; 29:179-190. [DOI: 10.1080/13543784.2020.1718105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward J. Jarman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| |
Collapse
|
29
|
Huh J, Ham SJ, Cho YC, Park B, Kim B, Woo CW, Choi Y, Woo DC, Kim KW. Gadoxetate-enhanced dynamic contrast-enhanced MRI for evaluation of liver function and liver fibrosis in preclinical trials. BMC Med Imaging 2019; 19:89. [PMID: 31729971 PMCID: PMC6858707 DOI: 10.1186/s12880-019-0378-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background To facilitate translational drug development for liver fibrosis, preclinical trials need to be run in parallel with clinical research. Liver function estimation by gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI) is being established in clinical research, but still rarely used in preclinical trials. We aimed to evaluate feasibility of DCE-MRI indices as translatable biomarkers in a liver fibrosis animal model. Methods Liver fibrosis was induced in Sprague-Dawley rats by thioacetamide (200 mg, 150 mg, and saline for the high-dose, low-dose, and control groups, respectively). Subsequently, DCE-MRI was performed to measure: relative liver enhancement at 3-min (RLE-3), RLE-15, initial area-under-the-curve until 3-min (iAUC-3), iAUC-15, and maximum-enhancement (Emax). The correlation coefficients between these MRI indices and the histologic collagen area, indocyanine green retention at 15-min (ICG-R15), and shear wave elastography (SWE) were calculated. Diagnostic performance to diagnose liver fibrosis was also evaluated by receiver-operating-characteristic (ROC) analysis. Results Animal model was successful in that the collagen area of the liver was the largest in the high-dose group, followed by the low-dose group and control group. The correlation between the DCE-MRI indices and collagen area was high for iAUC-15, Emax, iAUC-3, and RLE-3 but moderate for RLE-15 (r, − 0.81, − 0.81, − 0.78, − 0.80, and − 0.51, respectively). The DCE-MRI indices showed moderate correlation with ICG-R15: the highest for iAUC-15, followed by iAUC-3, RLE-3, Emax, and RLE-15 (r, − 0.65, − 0.63, − 0.62, − 0.58, and − 0.56, respectively). The correlation coefficients between DCE-MRI indices and SWE ranged from − 0.59 to − 0.28. The diagnostic accuracy of RLE-3, iAUC-3, iAUC-15, and Emax was 100% (AUROC 1.000), whereas those of RLE-15 and SWE were relatively low (AUROC 0.777, 0.848, respectively). Conclusion Among the gadoxetate-enhanced DCE-MRI indices, iAUC-15 and iAUC-3 might be bidirectional translatable biomarkers between preclinical and clinical research for evaluating histopathologic liver fibrosis and physiologic liver functions in a non-invasive manner.
Collapse
Affiliation(s)
- Jimi Huh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Department of Radiology, Ajou University School of Medicine and Graduate School of Medicine, Ajou University Hospital, Yeongtong-gu, Suwon, 16499, Korea
| | - Su Jung Ham
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Young Chul Cho
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Bumwoo Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University School of Medicine and Graduate School of Medicine, Ajou University Hospital, Yeongtong-gu, Suwon, 16499, Korea
| | - Chul-Woong Woo
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Yoonseok Choi
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Dong-Cheol Woo
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea. .,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
30
|
Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, Portman JR, Wallenborg K, Picelli S, Zagorska A, Pendem SV, Hudson TE, Wu MM, Budas GR, Breckenridge DG, Harrison EM, Mole DJ, Wigmore SJ, Ramachandran P, Ponting CP, Teichmann SA, Marioni JC, Henderson NC. Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis. Cell Rep 2019; 29:1832-1847.e8. [PMID: 31722201 PMCID: PMC6856722 DOI: 10.1016/j.celrep.2019.10.024] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Iterative liver injury results in progressive fibrosis disrupting hepatic architecture, regeneration potential, and liver function. Hepatic stellate cells (HSCs) are a major source of pathological matrix during fibrosis and are thought to be a functionally homogeneous population. Here, we use single-cell RNA sequencing to deconvolve the hepatic mesenchyme in healthy and fibrotic mouse liver, revealing spatial zonation of HSCs across the hepatic lobule. Furthermore, we show that HSCs partition into topographically diametric lobule regions, designated portal vein-associated HSCs (PaHSCs) and central vein-associated HSCs (CaHSCs). Importantly we uncover functional zonation, identifying CaHSCs as the dominant pathogenic collagen-producing cells in a mouse model of centrilobular fibrosis. Finally, we identify LPAR1 as a therapeutic target on collagen-producing CaHSCs, demonstrating that blockade of LPAR1 inhibits liver fibrosis in a rodent NASH model. Taken together, our work illustrates the power of single-cell transcriptomics to resolve the key collagen-producing cells driving liver fibrosis with high precision.
Collapse
Affiliation(s)
- Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John R Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - James R Smith
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jordan R Portman
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Karolina Wallenborg
- Karolinska Institutet (KI), Science for Life Laboratory, Tomtebodavägen 23, Solna 171 65, Sweden
| | - Simone Picelli
- Karolinska Institutet (KI), Science for Life Laboratory, Tomtebodavägen 23, Solna 171 65, Sweden
| | | | | | | | | | | | | | - Ewen M Harrison
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Damian J Mole
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK; Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Stephen J Wigmore
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK; Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh EH4 2XU, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, UK; Theory of Condensed Matter Group, The Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
31
|
Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman JR, Matchett KP, Brice M, Marwick JA, Taylor RS, Efremova M, Vento-Tormo R, Carragher NO, Kendall TJ, Fallowfield JA, Harrison EM, Mole DJ, Wigmore SJ, Newsome PN, Weston CJ, Iredale JP, Tacke F, Pollard JW, Ponting CP, Marioni JC, Teichmann SA, Henderson NC. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575:512-518. [PMID: 31597160 PMCID: PMC6876711 DOI: 10.1038/s41586-019-1631-3] [Citation(s) in RCA: 1048] [Impact Index Per Article: 174.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver. We identify a scar-associated TREM2+CD9+ subpopulation of macrophages, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define ACKR1+ and PLVAP+ endothelial cells that expand in cirrhosis, are topographically restricted to the fibrotic niche and enhance the transmigration of leucocytes. Multi-lineage modelling of ligand and receptor interactions between the scar-associated macrophages, endothelial cells and PDGFRα+ collagen-producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides a conceptual framework for the discovery of rational therapeutic targets in liver cirrhosis.
Collapse
Affiliation(s)
- P Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK.
| | - R Dobie
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - J R Wilson-Kanamori
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - E F Dora
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - B E P Henderson
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - N T Luu
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - J R Portman
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - K P Matchett
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - M Brice
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - J A Marwick
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - R S Taylor
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - M Efremova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - R Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - N O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - T J Kendall
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
- Division of Pathology, University of Edinburgh, Edinburgh, UK
| | - J A Fallowfield
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - E M Harrison
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - D J Mole
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - S J Wigmore
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - P N Newsome
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - C J Weston
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - J P Iredale
- Office of the Vice Chancellor, Beacon House and National Institute for Health Research, Biomedical Research Centre, Bristol, UK
| | - F Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Berlin, Germany
| | - J W Pollard
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - C P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - J C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - S A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
- Theory of Condensed Matter Group, The Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - N C Henderson
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK.
| |
Collapse
|
32
|
Dobie R, Henderson NC. Unravelling fibrosis using single-cell transcriptomics. Curr Opin Pharmacol 2019; 49:71-75. [PMID: 31670054 DOI: 10.1016/j.coph.2019.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Fibrosis, the excessive accumulation of extracellular matrix, is a major global healthcare burden. Despite major advances in our understanding of the mechanisms regulating fibrosis, treatment options for patients with fibrosis remain very limited. However, recent developments in the rapidly evolving field of single-cell transcriptomics are enabling the interrogation of individual pathogenic cell populations in the context of fibrosis at unprecedented resolution. In this review, we will discuss how single-cell transcriptomics is driving this step change in our understanding of fibrotic disease pathogenesis, and how these cutting-edge approaches should accelerate the precise identification of novel, relevant and potentially druggable therapeutic targets to treat patients with fibrosis.
Collapse
Affiliation(s)
- Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2018; 65:37-55. [PMID: 30213667 DOI: 10.1016/j.mam.2018.09.002] [Citation(s) in RCA: 746] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
The progression of chronic liver diseases (CLD), irrespective of etiology, involves chronic parenchymal injury, persistent activation of inflammatory response as well as sustained activation of liver fibrogenesis and wound healing response. Liver fibrogenesis, is a dynamic, highly integrated molecular, cellular and tissue process responsible for driving the excess accumulation of extracellular matrix (ECM) components (i.e., liver fibrosis) sustained by an eterogeneous population of hepatic myofibroblasts (MFs). The process of liver fibrogenesis recognizes a number of common and etiology-independent mechanisms and events but it is also significantly influenced by the specific etiology, as also reflected by peculiar morphological patterns of liver fibrosis development. In this review we will analyze the most relevant established and/or emerging pathophysiological issues underlying CLD progression with a focus on the role of critical hepatic cell populations, mechanisms and signaling pathways involved, as they represent potential therapeutic targets, to finally analyze selected and relevant clinical issues.
Collapse
|
34
|
Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Rep 2018; 21:3317-3328. [PMID: 29241556 DOI: 10.1016/j.celrep.2017.11.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.
Collapse
|
35
|
Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence. J Control Release 2018; 283:32-44. [PMID: 29792888 DOI: 10.1016/j.jconrel.2018.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
So far, liver fibrosis still has no clinically-approved treatment. The loss of stored vitamin-A (VA) in hepatic stellate cells (HSCs), the main regulators to hepatic fibrosis, can be applied as a mechanism for their targeting. Valsartan is a good candidate for this approach; it is a marketed oral-therapy with inverse- and partial-agonistic activity to the over-expressed angiotensin-II type1 receptor (AT1R) and depleted nuclear peroxisome proliferator-activated receptor-gamma (PPAR-γ), respectively, in activated HSCs. However, efficacy on AT1R and PPAR-γ necessitates high drug permeability which is lacking in valsartan. In the current study, liposomes were used as nanocarriers for valsartan to improve its permeability and hence efficacy. They were coupled to VA and characterized for HSCs-targeting. Tracing of orally-administered fluorescently-labeled VA-coupled liposomes in normal rats and their fluorescence intensity quantification in different organs convincingly demonstrated their intestinal entrapment. On the other hands, their administration to rats with induced fibrosis revealed preferential hepatic, and less intestinal, accumulation which lasted up to six days. This indicated their uptake by intestinal stellate cells that acted as a depot for their release over time. Confocal microscopical examination of immunofluorescently-stained HSCs in liver sections, with considerable formula accumulation, confirmed HSCs-targeting and nuclear uptake. Consequently, VA-coupled valsartan-loaded liposomes (VLC)-therapy resulted in profound re-expression of hepatic Mas-receptor and PPAR-γ, potent reduction of fibrogenic mediators' level and nearly normal liver function tests. Therefore, VLC epitomizes a promising antifibrotic therapy with exceptional extended action and additional PPAR-γ agonistic activity.
Collapse
|
36
|
Patten DA, Shetty S. Chronic liver disease: scavenger hunt for novel therapies. Lancet 2018; 391:104-105. [PMID: 29353605 DOI: 10.1016/s0140-6736(17)32671-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel A Patten
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Shishir Shetty
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK.
| |
Collapse
|