1
|
Zecca PA, Reguzzoni M, Borgese M, Protasoni M, Filibian M, Raspanti M. Investigating the interfaces of the epiphyseal plate: An integrated approach of histochemistry, microtomography and SEM. J Anat 2023; 243:870-877. [PMID: 37391907 PMCID: PMC10557393 DOI: 10.1111/joa.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
We investigated the interfaces of the epiphyseal plate with over- and underlying bone segments using an integrated approach of histochemistry, microtomography and scanning electron microscopy (SEM) to overcome the inherent limitations of sections-based techniques. Microtomography was able to provide an unobstructed, frontal view of large expanses of the two bone surfaces facing the growth plate, while SEM observation after removal of the soft matrix granted an equally unhindered access with a higher resolution. The two interfaces appeared widely dissimilar. On the diaphyseal side the hypertrophic chondrocytes were arranged in tall columns packed in a sort of compact palisade; the interposed extracellular matrix was actively calcifying into a thick mineralized crust growing towards the epiphysis. Behind the mineralization front, histochemical data revealed a number of surviving cartilage islets which were being slowly remodelled into bone. In contrast, the epiphyseal side of the cartilage consisted of a relatively quiescent reserve zone whose mineralization was marginal in amount and discontinuous in extension; the epiphyseal bone consisted of a loose trabecular meshwork, with ample vascular spaces opening directly into the non-mineralized cartilage. On both sides the calcification process took place through the formation of spheroidal bodies 1-2 μm wide which gradually grew by apposition and coalesced into a solid mass, in a way distinctly different from that of bone and other calcified tissues.
Collapse
Affiliation(s)
| | | | - Marina Borgese
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| | | | - Marta Filibian
- Centro Grandi StrumentiUniversity of PaviaPaviaItaly
- Istituto Nazionale di Fisica Nucleare, Pavia UnitPaviaItaly
| | - Mario Raspanti
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| |
Collapse
|
2
|
Zecca PA, Reguzzoni M, Protasoni M, Raspanti M. The chondro-osseous junction of articular cartilage. Tissue Cell 2023; 80:101993. [PMID: 36516570 DOI: 10.1016/j.tice.2022.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
In the synovial joints the transition between the soft articular cartilage and the subchondral bone is mediated by a layer of calcified cartilage of structural and mechanical characteristics closer to those of bone. This layer, buried in the depth of articular cartilage, is not directly accessible and is mostly visualized in histological sections of decalcified tissue, where it appears as a darker strip in contact with the subchondral bone. In this study conventional histology and scanning electron microscopy (SEM) with secondary electron imaging (SE) or backscattered electron imaging (BSE) were used to discriminate the calcified and the uncalcified cartilage in high resolution on native, untreated tissue as well as in deproteinated or demineralized tissue. This approach evidenced a high heterogeneity of the calcified layer of articular cartilage. High resolution pictures revealed that the mineralization process originates by progressive accretion and confluence of individual, small mineral clusters, in a very different way from other hard tissues such as bone, dentin and mineralized tendons. Finally, selective removal of the soft matrix by thermal treatment allowed for the first time a face-on, unrestricted 3D view of the mineralization front.
Collapse
Affiliation(s)
| | | | - Marina Protasoni
- Department of Medicine & Surgery, Insubria University, Varese, Italy
| | - Mario Raspanti
- Department of Medicine & Surgery, Insubria University, Varese, Italy.
| |
Collapse
|
3
|
Iannucci LE, Boys AJ, McCorry MC, Estroff LA, Bonassar LJ. Cellular and Chemical Gradients to Engineer the Meniscus-to-Bone Insertion. Adv Healthc Mater 2019; 8:e1800806. [PMID: 30536862 PMCID: PMC6458090 DOI: 10.1002/adhm.201800806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Tissue-engineered menisci hold promise as an alternative to allograft procedures but require a means of robust fixation to the native bone. The insertion of the meniscus into bone is critical for meniscal function and inclusion of a soft tissue-to-bone interface in a tissue engineered implant can aid in the fixation process. The native insertion is characterized by gradients in composition, tissue architecture, and cellular phenotype, which are all difficult to replicate. In this study, a soft tissue-to-bone interface is tissue engineered with a cellular gradient of fibrochondrocytes and mesenchymal stem cells and subjected to a biochemical gradient through a custom media diffusion bioreactor. These constructs, consisting of interpenetrating collagen and boney regions, display improved mechanical performance and collagen organization compared to controls without a cellular or chemical gradient. Media gradient exposure produces morphological features in the constructs that appear similar to the native tissue. Collectively, these data show that cellular and biochemical gradients improve integration between collagen and bone in a tissue engineered soft tissue-to-bone construct.
Collapse
Affiliation(s)
| | - Alexander J. Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
4
|
Frisbie DD, McCarthy HE, Archer CW, Barrett MF, McIlwraith CW. Evaluation of articular cartilage progenitor cells for the repair of articular defects in an equine model. J Bone Joint Surg Am 2015; 97:484-93. [PMID: 25788305 DOI: 10.2106/jbjs.n.00404] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We sought to determine the effectiveness of chondroprogenitor cells derived from autologous and allogenic articular cartilage for the repair of cartilage defects in an equine model. METHODS Cartilage defects (15 mm) were created on the medial trochlear ridge of the femur. The following experimental treatments were compared with empty-defect controls: fibrin only, autologous chondroprogenitor cells plus fibrin, and allogenic chondroprogenitor cells plus fibrin (n = 4 or 12 per treatment). Horses underwent strenuous exercise throughout the twelve-month study, and evaluations included lameness (pain) and arthroscopic, radiographic, gross, histologic, and immunohistochemical analyses. RESULTS Arthroscopy and microscopy indicated that defects in the autologous cell group had significantly better repair tissue compared with defects in the fibrin-only and control groups. Repair tissue quality in the allogenic cell group was not superior to that in the fibrin-only group with the exception of the percentage of type-II collagen, which was greater. Radiographic changes in the allogenic cell group were poorer on average than those in the autologous cell group. Autologous cells significantly reduced central osteophyte formation compared with fibrin alone. CONCLUSIONS On the basis of the arthroscopic, radiographic, and histologic scores, autologous cells in fibrin yielded better results than the other treatments; allogenic cells cannot be recommended at this time.
Collapse
Affiliation(s)
- David D Frisbie
- Orthopaedic Research Center, Department of Clinical Sciences (D.D.F. and C.W.M.), and Department of Radiological and Health Sciences (M.F.B.), College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523. E-mail address for D.D. Frisbie:
| | - Helen E McCarthy
- Division of Pathophysiology and Repair, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Charles W Archer
- Institute of Life Sciences, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Myra F Barrett
- Orthopaedic Research Center, Department of Clinical Sciences (D.D.F. and C.W.M.), and Department of Radiological and Health Sciences (M.F.B.), College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523. E-mail address for D.D. Frisbie:
| | - C Wayne McIlwraith
- Orthopaedic Research Center, Department of Clinical Sciences (D.D.F. and C.W.M.), and Department of Radiological and Health Sciences (M.F.B.), College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523. E-mail address for D.D. Frisbie:
| |
Collapse
|
5
|
Francuski J, Radovanović A, Andrić N, Krstić V, Bogdanović D, Hadžić V, Todorović V, Macanović ML, Petit SS, Beck-Cormier S, Guicheux J, Gauthier O, Filipović MK. Age-related Changes in the Articular Cartilage of the Stifle Joint in Non-working and Working German Shepherd Dogs. J Comp Pathol 2014; 151:363-74. [DOI: 10.1016/j.jcpa.2014.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/22/2014] [Accepted: 09/18/2014] [Indexed: 11/28/2022]
|
6
|
Rosa RG, Joazeiro PP, Bianco J, Kunz M, Weber JF, Waldman SD. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs. PLoS One 2014; 9:e105170. [PMID: 25126941 PMCID: PMC4134285 DOI: 10.1371/journal.pone.0105170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022] Open
Abstract
The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.
Collapse
Affiliation(s)
- Renata G. Rosa
- Human Mobility Research Centre, Kingston General Hospital and Queen's University, Kingston, Canada
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo P. Joazeiro
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juares Bianco
- Human Mobility Research Centre, Kingston General Hospital and Queen's University, Kingston, Canada
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Manuela Kunz
- Human Mobility Research Centre, Kingston General Hospital and Queen's University, Kingston, Canada
- School of Computing, Queen's University, Kingston, Canada
| | - Joanna F. Weber
- Human Mobility Research Centre, Kingston General Hospital and Queen's University, Kingston, Canada
- Department of Mechanical & Materials Engineering, Queen's University, Kingston, Canada
| | - Stephen D. Waldman
- Human Mobility Research Centre, Kingston General Hospital and Queen's University, Kingston, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- * E-mail:
| |
Collapse
|
7
|
Giardini-Rosa R, Joazeiro PP, Thomas K, Collavino K, Weber J, Waldman SD. Development of scaffold-free elastic cartilaginous constructs with structural similarities to auricular cartilage. Tissue Eng Part A 2014; 20:1012-26. [PMID: 24124666 DOI: 10.1089/ten.tea.2013.0159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm(2)) directly from a small population of donor cells (20,000-40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model.
Collapse
Affiliation(s)
- Renata Giardini-Rosa
- 1 Human Mobility Research Centre, Kingston General Hospital and Queen's University , Kingston, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Peffers M, Liu X, Clegg P. Transcriptomic signatures in cartilage ageing. Arthritis Res Ther 2013; 15:R98. [PMID: 23971731 PMCID: PMC3978620 DOI: 10.1186/ar4278] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/23/2013] [Indexed: 12/29/2022] Open
Abstract
Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P < 0.05, expression ratios ± 1.4 log2 fold-change). Ingenuity pathway analysis enabled networks, functional analyses and canonical pathways from differentially expressed genes to be determined. Results In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (± 1.4 log2 fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome.
Collapse
|
9
|
Shintani N, Siebenrock KA, Hunziker EB. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS One 2013; 8:e53086. [PMID: 23301025 PMCID: PMC3536810 DOI: 10.1371/journal.pone.0053086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/23/2012] [Indexed: 01/13/2023] Open
Abstract
Background Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. Methodology/Principal Findings Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. Conclusions/Significance TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.
Collapse
Affiliation(s)
- Nahoko Shintani
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
| | - Klaus A. Siebenrock
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
| | - Ernst B. Hunziker
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Zhang Y, Wang F, Tan H, Chen G, Guo L, Yang L. Analysis of the mineral composition of the human calcified cartilage zone. Int J Med Sci 2012; 9:353-60. [PMID: 22811609 PMCID: PMC3399215 DOI: 10.7150/ijms.4276] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/28/2012] [Indexed: 11/26/2022] Open
Abstract
As the connecting tissue between the hyaline articular cartilage and the subchondral bone, calcified cartilage zone (CCZ) plays a great role in the force transmission and materials diffusion. However, the questions that remain to be resolved are its mineral composition and organization. In this study, 40 healthy human knee specimens were harvested; first the CCZ was dissected and observed by Safranin O/fast green staining, then CCZ chemical characteristics were measured by using amino acid assay and X-ray diffraction. The percentage of dry weight of type II collagen as an organic compound of CCZ was 20.16% ± 0.96%, lower than that of the hyaline cartilage layer (61.39% ± 0.38%); the percentage of dry weight of hydroxyapatite as an inorganic compound was 65.09% ± 2.31%, less than that of subchondral bone (85.78% ± 3.42%). Our study provides the accurate data for the reconstruction of the CCZ in vitro and the elucidation of CCZ structure and function.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
11
|
Chiang H, Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, Jiang CC. Differences Between Chondrocytes and Bone Marrow-Derived Chondrogenic Cells. Tissue Eng Part A 2011; 17:2919-29. [DOI: 10.1089/ten.tea.2010.0732] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | - Yun-Han Lin
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiming Lin
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
12
|
Garvican ER, Vaughan-Thomas A, Redmond C, Clegg PD. Chondrocytes harvested from osteochondritis dissecans cartilage are able to undergo limited in vitro chondrogenesis despite having perturbations of cell phenotype in vivo. J Orthop Res 2008; 26:1133-40. [PMID: 18327793 DOI: 10.1002/jor.20602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our objective was to characterize the variation in gene expression for key genes associated with chondrogenic phenotype of osteochondrosis (OC)-affected and normal chondrocytes, and to identify whether OC chondrocytes can redifferentiate and regain a phenotype similar to normal chondrocytes if appropriate chondrogenic signals are given. Equine articular cartilage removed at surgery to treat clinically significant OC lesions was collected (n = 10), and the gene expression evaluated and compared to aged-matched normal samples (n = 10). Cartilage was harvested from normal (n = 4) and OC (n = 3) joints from horses at necropsy. Chondrogenic pellet cultures were established following monolayer proliferation. After 14 days in culture, the pellets were assessed by histochemical and pellet weight analysis, assay of glycosaminoglycan (GAG) content, and gene expression. Chondrocytes from OC cartilage expressed significantly more Coll-I, -II, -III, and -X than chondrocytes from normal cartilage (all p < 0.0001). Furthermore, OC chondrocytes expressed significantly more MMP-13, ADAMTS-4 (both p < 0.0001), and TIMP-1 (p < 0.001) and significantly less TIMP-2 and TIMP-3. Pellets created from OC chondrocytes contained significantly less GAG (p = 0.0069) and expressed significantly less Sox9 and significantly more superficial zone protein (SZP) (p = 0.0105) than pellets created from normal cartilage. The results suggest that chondrocytes from OC cartilage at the time of surgical treatment have perturbations in phenotype compared to cells from normal cartilage. Despite these differences, following monolayer expansion and pellet culture under chondrogenic conditions, chondrocytes derived from OC cartilage retain some ability to undergo chondrogenic differentiation and synthesize an appropriate cartilage-like matrix. However, this chondrogenic differentiation potential is inferior to that seen in aged-matched normal chondrocytes.
Collapse
Affiliation(s)
- E R Garvican
- Musculoskeletal Research Group, The University of Liverpool Veterinary Teaching Hospital, Leahurst, Neston, Wirral, United Kingdom.
| | | | | | | |
Collapse
|
13
|
Galectin-1 in cartilage: expression, influence on chondrocyte growth and interaction with ECM components. Matrix Biol 2008; 27:513-25. [PMID: 18558481 DOI: 10.1016/j.matbio.2008.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 12/25/2022]
Abstract
Galectin-1 is a 14 kDa beta-galactoside binding protein, capable of forming lattice-like structures with glycans of cellular glycoconjugates and inducing intracellular signaling. The expression of Galectin-1 in porcine cartilage is described in this work for the first time. Immunocytochemical methods revealed distinct distribution patterns for both articular and growth plate cartilage. In articular cartilage, the highest reactivity for Galectin-1 was found in all chondrocytes at the superficial zone and in most of those at the lower layer of the middle zone. In the growth plate, marked reactivity was seen in chondrocytes at the proliferative zone and reached a maximum level for the column-forming cells at the hypertrophic zone. In addition, different Galectin-1 distribution patterns were observed at the subcellular level. With regards to the metabolic effects of Galectin-1, the results in vitro seem to indicate an inhibitory effect of Galectin-1 on articular chondrocyte anabolism (i.e. inhibition of cell proliferation and anabolic gene expression) and a stimulation of catabolic processes (i.e. induction of matrix degradation and hypertrophy marker expression). These data represent a starting point for the understanding the molecular mechanisms underlining ECM-Galectin-1 interaction and the subsequent signaling-cell transduction processes involving cartilage formation and maturation.
Collapse
|
14
|
Waldman SD, Usmani Y, Tse MY, Pang SC. Differential Effects of Natriuretic Peptide Stimulation on Tissue-Engineered Cartilage. Tissue Eng Part A 2008; 14:441-8. [DOI: 10.1089/tea.2007.0035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Stephen D. Waldman
- Department of Chemical Engineering and Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Yasmine Usmani
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | - M. Yat Tse
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | - Stephen C. Pang
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Burdan F, Szumilo J, Marzec B, Klepacz R, Dudka J. Skeletal developmental effects of selective and nonselective cyclooxygenase-2 inhibitors administered through organogenesis and fetogenesis in Wistar CRL:(WI)WUBR rats. Toxicology 2005; 216:204-23. [PMID: 16182428 DOI: 10.1016/j.tox.2005.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 12/31/2022]
Abstract
Cyclooxygenase (COX) inhibitors are the most commonly ingested drugs. The aim of the study was to evaluate the prenatal skeletal effect of selective (DFU) and nonselective (tolmetin, ibuprofen, piroxicam) COX-2 inhibitors. All the tested compounds were administered intragastrically to pregnant Wistar rats from 7 to 21 gestation day. The initial dose was set at 8.5mg/kg/dose for tolmetin and ibuprofen, 0.3 and 0.2mg/kg/dose for piroxicam and DFU. The middle dose was increased 10-times. The highest dose, except for ibuprofen, was elevated 100-times. The highest dose for ibuprofen was set at 200mg/kg/dose. Tolmetin and ibuprofen were administered three times a day. Piroxicam and DFU were dosed once daily. After routine teratological examinations, extremities of randomly selected 21-day-old fetuses were taken for histological, immunohistochemical and molecular studies. The proximal femoral epiphyses were separated and their ultrastructure evaluated. The expression of genes coding cytokines (IL-1alpha, IL-1beta, IL-6, TNF-alpha, TNF-beta) and proteins (COX-1, COX-2, cathepsin K, collagen types I, II and X; osteocalcin, osteopontin) was evaluated in femoral epiphyses by RNase Protection Assay and/or immunohistochemically. The articulate development was checked histologically and found undisturbed in any of the experimental groups. The epiphysis of the 21-day-old fetuses, presented physiological expression of COX-1 and COX-2, as well as cathepsin K, collagen types I, II and X; osteopontin, osteocalcin and TNF-alpha. Increased developmental skeletal variation was noted in groups exposed to the highest dose of nonselective drugs. Unlike the increased number of skeletal variations observed in fetuses exposed to highest doses of nonselective compounds, both groups of COX inhibitors did not disturb joint formation and morphology of femoral epiphyses when administered even in high maternal toxic doses.
Collapse
|
16
|
Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res 2005; 8:11-7. [PMID: 15667640 DOI: 10.1111/j.1601-6343.2004.00308.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED AUTHOR: Shen G Objective -This review was compiled to explore the role of type X collagen in growth, development and remodeling of articular cartilage by elucidating the linkage between the synthesis of this protein and the phenotypic changes in chondrogenesis and the onset of endochondral ossification. DESIGN The current studies closely dedicated to elucidating the role of type X collagen incorporating into chondrogenesis and endochondral ossification of articular cartilage were assessed and analyzed to allow for obtaining the mainstream consensus on the bio-molecular mechanism with which type X collagen functions in articular cartilage. RESULTS There are spatial and temporal correlations between synthesis of type X collagen and occurrence of endochondral ossification. The expression of type X collagen is confined within hypertrophic condrocytes and precedes the embark of endochondral bone formation. Type X collagen facilitates endochondral ossification by regulating matrix mineralization and compartmentalizing matrix components. CONCLUSION Type X collagen is a reliable marker for new bone formation in articular cartilage. The future clinical application of this collagen in inducing or mediating endochondral ossification is perceived, e.g. the fracture healing of synovial joints and adaptive remodeling of madibular condyle.
Collapse
Affiliation(s)
- G Shen
- Discipline of Orthodontics, Faculty of Dentistry, The University of Sydney, Chalmers Street, Surry Hill, NSW 2010, Australia.
| |
Collapse
|
17
|
Kuroki K, Cook JL, Stoker AM, Turnquist SE, Kreeger JM, Tomlinson JL. Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression. Osteoarthritis Cartilage 2005; 13:225-34. [PMID: 15727889 DOI: 10.1016/j.joca.2004.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2003] [Accepted: 11/10/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To address possible roles of matrix metalloproteinases (MMPs) and mechanical stress in the pathogenesis of osteochondrosis (OC). METHODS Naturally-occurring canine OC lesions (n=50) were immunohistochemically analyzed for MMP-1, -3, and -13, and normal canine articular cartilage explants (n=6) cultured under 0-, 2-, or 4-MPa compressive loads (0.1 Hz, 20 min every 8 h up to 12 days) were compared to OC samples (n=4) biochemically and molecularly. RESULTS MMP-1 and -3 immunoreactivities were readily detected in both OC samples and control tissues obtained from age-matched dogs (n=11) whereas MMP-13 was only detectable in OC samples. MMP-13 gene expression as determined by real-time reverse transcription polymerase chain reaction was elevated in OC samples and cartilage explants cultured without mechanical stimuli (0 MPa groups) compared to normal cartilage (day 0 controls). Glycosaminoglycan content (per weight) in cartilage explants cultured under no load was significantly (P<0.05) lower on day 12 than in the day 0 controls. Gene expression levels of aggrecan and type II collagen in OC samples were lower than those in the day 0 controls. High levels of aggrecan and collagen II expression were seen in the 2 MPa groups. CONCLUSIONS These findings imply that impaired biochemical characteristics in OC-affected cartilage may be attributable to decreased extracellular matrix production that may stem from disruption of normal weight bearing forces.
Collapse
Affiliation(s)
- K Kuroki
- Comparative Orthopaedic Laboratory, University of Missouri, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Fibrocartilage is an avascular tissue that is best documented in menisci, intervertebral discs, tendons, ligaments, and the temporomandibular joint. Several of these sites are of particular interest to those in the emerging field of tissue engineering. Fibrocartilage cells frequently resemble chondrocytes in having prominent rough endoplasmic reticulum, many glycogen granules, and lipid droplets, and intermediate filaments together with and actin stress fibers that help to determine cell organization in the intervertebral disc. Fibrocartilage cells can synthesize a variety of matrix molecules including collagens, proteoglycans, and noncollagenous proteins. All the fibrillar collagens (types I, II, III, V, and XI) have been reported, together with FACIT (types IX and XII) and network-forming collagens (types VI and X). The proteoglycans include large, aggregating types (aggrecan and versican) and small, leucine-rich types (decorin, biglycan, lumican, and fibromodulin). Less attention has been paid to noncollagenous proteins, although tenascin-C expression may be modulated by mechanical strain. As in hyaline cartilage, matrix metalloproteinases are important in matrix turnover and fibrocartilage cells are capable of apoptosis.
Collapse
Affiliation(s)
- M Benjamin
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | | |
Collapse
|