1
|
Panahipour L, Abbasabadi AO, Wagner A, Kratochwill K, Pichler M, Gruber R. Bone Allograft Acid Lysates Change the Genetic Signature of Gingival Fibroblasts. Int J Mol Sci 2023; 24:16181. [PMID: 38003371 PMCID: PMC10671348 DOI: 10.3390/ijms242216181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bone allografts are widely used as osteoconductive support to guide bone regrowth. Bone allografts are more than a scaffold for the immigrating cells as they maintain some bioactivity of the original bone matrix. Yet, it remains unclear how immigrating cells respond to bone allografts. To this end, we have evaluated the response of mesenchymal cells exposed to acid lysates of bone allografts (ALBA). RNAseq revealed that ALBA has a strong impact on the genetic signature of gingival fibroblasts, indicated by the increased expression of IL11, AREG, C11orf96, STC1, and GK-as confirmed by RT-PCR, and for IL11 and STC1 by immunoassays. Considering that transforming growth factor-β (TGF-β) is stored in the bone matrix and may have caused the expression changes, we performed a proteomics analysis, TGF-β immunoassay, and smad2/3 nuclear translocation. ALBA neither showed detectable TGF-β nor was the lysate able to induce smad2/3 translocation. Nevertheless, the TGF-β receptor type I kinase inhibitor SB431542 significantly decreased the expression of IL11, AREG, and C11orf96, suggesting that other agonists than TGF-β are responsible for the robust cell response. The findings suggest that IL11, AREG, and C11orf96 expression in mesenchymal cells can serve as a bioassay reflecting the bioactivity of the bone allografts.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Yan Z, Wang G, Shi X. Advances in the Progression and Prognosis Biomarkers of Chronic Kidney Disease. Front Pharmacol 2022; 12:785375. [PMID: 34992536 PMCID: PMC8724575 DOI: 10.3389/fphar.2021.785375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is one of the increasingly serious public health concerns worldwide; the global burden of CKD is increasingly due to high morbidity and mortality. At present, there are three key problems in the clinical treatment and management of CKD. First, the current diagnostic indicators, such as proteinuria and serum creatinine, are greatly interfered by the physiological conditions of patients, and the changes in the indicator level are not synchronized with renal damage. Second, the established diagnosis of suspected CKD still depends on biopsy, which is not suitable for contraindication patients, is also traumatic, and is not sensitive to early progression. Finally, the prognosis of CKD is affected by many factors; hence, it is ineviatble to develop effective biomarkers to predict CKD prognosis and improve the prognosis through early intervention. Accurate progression monitoring and prognosis improvement of CKD are extremely significant for improving the clinical treatment and management of CKD and reducing the social burden. Therefore, biomarkers reported in recent years, which could play important roles in accurate progression monitoring and prognosis improvement of CKD, were concluded and highlighted in this review article that aims to provide a reference for both the construction of CKD precision therapy system and the pharmaceutical research and development.
Collapse
Affiliation(s)
- Zhonghong Yan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanran Wang
- Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingyang Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Zheng RJ, Song JL, Wu XH, Watts DC. Evaluation of bone formation in neonatal mouse calvariae using micro-CT and histomorphometry: an in vitro study. Acta Histochem 2020; 122:151614. [PMID: 33066836 DOI: 10.1016/j.acthis.2020.151614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 11/17/2022]
Abstract
Neonatal calvarial bone has been widely used for investigating the biological behaviour of intramembranous bones. This work evaluated the bone formation of neonatal calvarial bone by microcomputed tomography (micro-CT) and histomorphometry. Moreover, the viability of neonatal calvarial bone and the effect of micro-CT radiation exposure on neonatal calvarial bone viability were investigated. The calvarial bones of 4-day-old CD-1 mice were cultured in Dulbecco's modified Eagle's medium (DMEM) or osteogenic medium (OM) for 23 days. Micro-CT scanning and histological analysis were performed on days 2, 9, 16 and 23. An "OM-control" group was scanned only on days 2 and 23 to evaluate the effect of a single micro-CT radiation dose on calvarial bones. Histomorphometric measurements revealed that the number of osteoblasts per unit bone surface area (N. Ob/BS, /mm2) (days 9, 16 and 23) and the number of osteoclasts per unit bone surface area (N. Oc/BS, /mm2) (days 9 and 16) were higher and lower, respectively, in the OM group than in the DMEM group. Moreover, the calvarial bone survived for at least 16 days in vitro, as indicated by tartrate-resistant acid phosphatase (TRAP)-positive staining. Micro-CT assessment revealed that the bone surface (BS), bone volume (BV), bone surface density (BS/TV(Tissue volume)) and percent bone volume (BV/TV) were greater in the OM group than in the DMEM group except at baseline on day 2. All bone parameters of calvariae cultured in OM and OM-control conditions were not significantly different on days 2 and 23. Thus, the radiation dose from micro-CT in our study design had no perceptible effect on the formation of mouse calvarial bone in vitro.
Collapse
Affiliation(s)
- Ren-Jian Zheng
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jin-Lin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiao-Hong Wu
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, Manchester M13 9PL, UK; Institute of Material Science and Technology, Friedrich-Schiller-University, Jena, Löbdergraben 32, 07743, Germany.
| |
Collapse
|
4
|
Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers
. Clin Nephrol 2019; 91:222-230. [PMID: 30862350 PMCID: PMC6595397 DOI: 10.5414/cn109650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction: Renal osteodystrophy (ROD) develops early in chronic kidney disease (CKD) and progresses with loss of kidney function. While intact parathyroid hormone (PTH), 1,25-dihydroxyvitamin D3 (1,25D), and fibroblast growth factor-23 (FGF-23) levels are usually considered the primary abnormalities in ROD development, the role of serum activin A elevations in CKD and its relationships to ROD have not been explored. The aims of this study were to evaluate serum activin A at different CKD stages, and to establish the relationships between activin A, bone biomarkers, and bone histomorphometric parameters. Materials and methods: 104 patients with CKD stages 2 – 5D underwent bone biopsies. We measured in the serum activin A, BSAP, DKK1, FGF-23, α-Klotho, intact PTH, sclerostin, TRAP-5b, and 1,25D. Biochemical results were compared across CKD stages and with 19 age-matched controls with normal kidney function. Results: Median activin A levels were increased in all stages of CKD compared to controls from 544 pg/mL in CKD 2 (431 – 628) to 1,135 pg/mL in CKD 5D (816 – 1,456), compared to 369 pg/mL in controls (316 – 453, p < 0.01). The increase of activin A in CKD 2 (p = 0.016) occurred before changes in the other measured biomarkers. Activin A correlated with intact PTH and FGF-23 (r = 0.65 and 0.61; p < 0.01) and with histomorphometric parameters of bone turnover (BFR/BS, Acf, ObS/BS and OcS/BS; r = 0.47 – 0.52; p < 0.01). These correlations were comparable to those found with intact PTH and FGF-23. Conclusion: Serum activin A levels increase starting at CKD 2 before elevations in intact PTH and FGF-23. Activin A correlates with bone turnover similar to intact PTH and FGF-23. These findings suggest a role for activin A in early development of ROD.
Collapse
|
5
|
Abstract
The ex vivo organ culture of bone provides many of the advantages of both the whole organism and isolated cell strategies and can deliver valuable insight into the network of processes and activities that are fundamental to bone and cartilage biology. Through maintaining the bone and/or cartilage cells in their native environment, this model system provides the investigator with a powerful experimental protocol to address specific facets of skeletal growth and development. In this chapter, we outline the basic protocols and possible readouts of organ culture models to replicate; (a) linear bone growth (murine metatarsal culture model), (b) bone and cartilage metabolism (murine femoral head culture model), (c) bone response to mechanical stimulation (bovine trabecular core culture model), and (d) bone resorption and formation (murine calvaria culture model).
Collapse
|
6
|
Marino S, Staines KA, Brown G, Howard-Jones RA, Adamczyk M. Models of ex vivo explant cultures: applications in bone research. BONEKEY REPORTS 2016; 5:818. [PMID: 27408711 PMCID: PMC4926536 DOI: 10.1038/bonekey.2016.49] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
Ex vivo explant culture models are powerful tools in bone research. They allow investigation of bone and cartilage responses to specific stimuli in a controlled manner that closely mimics the in vivo processes. Because of limitations in obtaining healthy human bone samples the explant growth of animal tissue serves as a platform to study the complex physico-chemical properties of the bone. Moreover, these models enable preserving important cell-cell and cell-matrix interactions in order to better understand the behaviour of cells in their natural three-dimensional environment. Thus, the use of bone ex vivo explant cultures can frequently be of more physiological relevance than the use of two-dimensional primary cells grown in vitro. Here, we describe isolation and ex vivo growth of different animal bone explant models including metatarsals, femoral heads, calvaria, mandibular slices and trabecular cores. We also describe how these explants are utilised to study bone development, cartilage and bone metabolism, cancer-induced bone diseases, stem cell-driven bone repair and mechanoadaptation. These techniques can be directly used to understand mechanisms linked with bone physiology or bone-associated diseases.
Collapse
Affiliation(s)
- Silvia Marino
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
| | | | - Genevieve Brown
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Rachel Anne Howard-Jones
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Magdalena Adamczyk
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Lowery JW, Intini G, Gamer L, Lotinun S, Salazar VS, Ote S, Cox K, Baron R, Rosen V. Loss of BMPR2 leads to high bone mass due to increased osteoblast activity. J Cell Sci 2015; 128:1308-15. [PMID: 25663702 DOI: 10.1242/jcs.156737] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Imbalances in the ratio of bone morphogenetic protein (BMP) versus activin and TGFβ signaling are increasingly associated with human diseases yet the mechanisms mediating this relationship remain unclear. The type 2 receptors ACVR2A and ACVR2B bind BMPs and activins but the type 2 receptor BMPR2 only binds BMPs, suggesting that type 2 receptor utilization might play a role in mediating the interaction of these pathways. We tested this hypothesis in the mouse skeleton, where bone mass is reciprocally regulated by BMP signaling and activin and TGFβ signaling. We found that deleting Bmpr2 in mouse skeletal progenitor cells (Bmpr2-cKO mice) selectively impaired activin signaling but had no effect on BMP signaling, resulting in an increased bone formation rate and high bone mass. Additionally, activin sequestration had no effect on bone mass in Bmpr2-cKO mice but increased bone mass in wild-type mice. Our findings suggest a novel model whereby BMPR2 availability alleviates receptor-level competition between BMPs and activins and where utilization of ACVR2A and ACVR2B by BMPs comes at the expense of activins. As BMP and activin pathway modulation are of current therapeutic interest, our findings provide important mechanistic insight into the relationship between these pathways in human health.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Department of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, USA Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Giuseppe Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Laura Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sutada Lotinun
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Satoshi Ote
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Karen Cox
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Roland Baron
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
8
|
Wu X, Wang L, Deng F, Watts DC. Mouse calvarial defect Model: An approach for the micro-tomographic evaluation of polymer scaffolds. Microsc Res Tech 2014; 77:1037-43. [PMID: 25233951 DOI: 10.1002/jemt.22433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/20/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohong Wu
- Department of Prosthodontics, the Affiliated Hospital of Stomatology; Chongqing Medical University; Yubei district Chongqing 401147 China
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing 401147 China
| | - Lu Wang
- Department of Prosthodontics, the Affiliated Hospital of Stomatology; Chongqing Medical University; Yubei district Chongqing 401147 China
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing 401147 China
| | - Feng Deng
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing 401147 China
- Department of Orthodontics, the Affiliated Hospital of Stomatology; Chongqing Medical University; Yubei district Chongqing 401147 China
| | - David C. Watts
- School of Dentistry and Photon Science Institute; The University of Manchester; Higher Cambridge Street Manchester M15 6FH United Kingdom
- Institute of Material Science and Technology; Friedrich-Schiller-University; Jena Löbdergraben 32 07743 Germany
| |
Collapse
|
9
|
Winter MC, Wilson C, Syddall SP, Cross SS, Evans A, Ingram CE, Jolley IJ, Hatton MQ, Freeman JV, Mori S, Holen I, Coleman RE. Neoadjuvant Chemotherapy with or without Zoledronic Acid in Early Breast Cancer—A Randomized Biomarker Pilot Study. Clin Cancer Res 2013; 19:2755-65. [DOI: 10.1158/1078-0432.ccr-12-3235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Wu X, Deng F, Wang L, Watts DC. Microtomographic evaluation of the bone-cell interactions with a silorane-based composite. Microsc Res Tech 2012; 75:1176-84. [PMID: 22488804 DOI: 10.1002/jemt.22046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/02/2012] [Indexed: 11/10/2022]
Abstract
The low-shrink Silorane-based composite could bond effectively to bone and showed the potential be used as a bone cement. Bone organ culture maintains the anatomical order, natural cell-to-cell and cell-to-matrix relationship. The purpose of this study was to evaluate the responses of bone cells to a Silorane-based composite which was compared with a representative polymethyl methacrylate (PMMA) bone cement. The critical size defects were created through the parietal bones from one litter of mice. The paired bones were divided into two groups: Silorane-based composite group and PMMA group. The prepared two groups of disks were put into the defects. The cultures were grown in vitro for 38 days and analyzed with microcomputed-tomography, dissecting-microscope, phase- contrast-microscope, scanning-electron-microscopy, and energy- dispersive-X-ray. At the 10th day, the Silorane disk was almost fully covered by a sheet of cells but the cells hardly attached to the disk surface. The edge of the PMMA disk was covered by a sheet of cells and the migrated individual cells attached to the whole surface of the disk. At the 38th day, some cells attached to the exposed disk area of the Silorane disk while the formed tissues covered the whole surface of the PMMA disk. The collagen fibers, globular deposits and bone formation were visible in both groups. The Silorane-based composite showed promise as a potential bone cement when compared with PMMA which is used in clinical orthopedics. However, the cell attachment to PMMA was evidently better than to Silorane-based composite.
Collapse
Affiliation(s)
- Xiaohong Wu
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | | | | | | |
Collapse
|
11
|
Wilson C, Holen I, Coleman RE. Seed, soil and secreted hormones: potential interactions of breast cancer cells with their endocrine/paracrine microenvironment and implications for treatment with bisphosphonates. Cancer Treat Rev 2012; 38:877-89. [PMID: 22398187 DOI: 10.1016/j.ctrv.2012.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 01/18/2012] [Accepted: 02/10/2012] [Indexed: 11/26/2022]
Abstract
The process of formation of metastasis is undoubtedly inefficient, with the majority of disseminated tumour cells perishing in their metastatic environment. Their ability to survive is determined by their intrinsic abilities, with emerging evidence of the importance of cancer stem cells possessing self propagating potential, but also the interaction with the premetastatic niche, which may either help or hinder their formation into micrometastasis, thus influencing recurrence and survival in breast cancer patients. Use of the bone targeted agents bisphosphonates in the adjuvant setting has been extensively studied in large clinical trials, and demonstrated an interesting interplay with the endocrine microenvironment, with postmenopausal women or premenopausal women receiving ovarian suppression therapy gaining a survival advantage compared to pre/perimenopausal women. The interaction between the endocrine hormones and the paracrine TGFβ growth factors may provide an explanation for the differences seen according to ovarian function in the response to bisphosphonates. In this review the evidence of interplay between ovarian endocrine hormones, TGFβ paracrine growth factors and bisphosphonates will be presented, and subsequent influence on breast cancer cells in the bone pre-metastatic niche hypothesised.
Collapse
Affiliation(s)
- C Wilson
- Academic Unit of Clinical Oncology, Cancer Clinical Trials Centre, Weston Park Hospital, Sheffield, UK.
| | | | | |
Collapse
|
12
|
|
13
|
Nicks KM, Perrien DS, Akel NS, Suva LJ, Gaddy D. Regulation of osteoblastogenesis and osteoclastogenesis by the other reproductive hormones, Activin and Inhibin. Mol Cell Endocrinol 2009; 310:11-20. [PMID: 19615428 PMCID: PMC2951729 DOI: 10.1016/j.mce.2009.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 01/30/2023]
Abstract
There is both cellular and physiological evidence demonstrating that both Activins and Inhibins regulate osteoblastogenesis and osteoclastogenesis, and regulate bone mass in vivo. Although Activins and Inhibins were initially isolated from the gonad, Activins are also produced and stored in bone, whereas Inhibins exert their regulation on bone cell differentiation and metabolism via endocrine effects. The accumulating data provide evidence that reproductive hormones, distinct from classical sex steroids, are important regulators of bone mass and bone strength. Given the well described dominant antagonism of Inhibin over Activin, as well as over BMPs and TGFbeta, the gonadally derived Inhibins are important regulators of locally produced osteotrophic factors. Thus, the cycling Inhibins in females and diurnal changes in Inhibin B in males elicit temporal shifts in Inhibin levels (tone) that de-repress the pituitary. This fundamental action has the potential to de-repress locally stimulated changes in osteoblastogenesis and osteoclastogenesis, thereby altering bone metabolism.
Collapse
Affiliation(s)
- Kristy M. Nicks
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Daniel S. Perrien
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Bone Biology and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nisreen S. Akel
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Larry J Suva
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Dana Gaddy
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Corresponding Author: Departments of Physiology and Biophysics and Orthopaedic Surgery, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 505, Little Rock, AR 72205, 501-686-5918, 501-686-8167 FAX,
| |
Collapse
|
14
|
Perrien DS, Akel NS, Edwards PK, Carver AA, Bendre MS, Swain FL, Skinner RA, Hogue WR, Nicks KM, Pierson TM, Suva LJ, Gaddy D. Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology 2007; 148:1654-65. [PMID: 17194739 DOI: 10.1210/en.2006-0848] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadal function plays a major role in bone homeostasis. It is widely held that the skeletal consequences of hypogonadism are solely due to a loss of sex steroids; however, increases in bone turnover begin during perimenopause before decreases in serum estradiol levels. These data and our demonstration that inhibins acutely regulate bone cell differentiation in vitro led us to test whether inhibin A (InhA) regulates bone mass in vivo. Using a transgenic model of inducible human InhA expression, InhA increased total body bone mineral density, increased bone volume, and improved biomechanical properties at the proximal tibia in intact mice and also prevented the loss of BMD and bone volume and strength associated with gonadectomy at both the spine and proximal tibia. In addition, InhA increased mineral apposition rate, double-labeled surface, and serum osteocalcin levels in vivo and osteoblastogenesis ex vivo without affecting osteoclast number or activity. Together these results demonstrate novel stimulatory effects of InhA on the skeleton in vivo. These studies provide in vivo evidence demonstrating that gonadal factors other than sex steroids play an important role in regulating bone mass and strength and, combined with our previous clinical data, suggest that gonadal InhA may be a component of the normal endocrine repertoire that regulates bone quality in both the axial and appendicular skeleton.
Collapse
Affiliation(s)
- Daniel S Perrien
- Department of Physiology and Biophysics, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 505, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leto G, Incorvaia L, Badalamenti G, Tumminello FM, Gebbia N, Flandina C, Crescimanno M, Rini G. Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clin Exp Metastasis 2006; 23:117-22. [PMID: 16841234 DOI: 10.1007/s10585-006-9010-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Recent studies have highlighted that Activin A, a member of the transforming growth factor-beta (TGF-beta) superfamily, may be involved in the regulation of osteoblastic activity and in osteoclast differentiation. Therefore, we have investigated the clinical significance of its circulating levels in patients with bone metastasis. Activin A serum concentrations were determined, by a commercially available enzyme-linked immunosorbent assay kit, in 72 patients with breast cancer (BC) or prostatic cancer (PC) with (BM+) or without (BM-) bone metastases, in 15 female patients with age-related osteoporosis (OP), in 20 patients with benign prostatic hypertrophy (BPH) and in 48 registered healthy blood donors (HS) of both sex (25 female and 23 male). Activin A serum concentrations were significantly increased in BC or PC patients as compared to OP (P < 0.0001) or BPH (P = 0.045), respectively, or to sex matched HS (P < 0.0001). Additionally, these levels resulted more elevated in PC patients as compared to BC patients (P = 0.032). Interestingly, Activin A was significantly higher in BM+ patients than in BM- patients (BC, P = 0.047; PC, P = 0.016). In BC patients, a significant correlation was observed only between Activin A and number of bone metastases (P = 0.0065) while, in PC patients, Activin A levels were strongly correlated with the Gleason score (P = 0.011) or PSA levels (P = 0.0001) and, to a lessen extent, with the number of bone metastases (P = 0.056). Receiver operating characteristic curve (ROC) analysis showed a fair diagnostic accuracy of Activin A to discriminate between BM+ and BM- patients (BC: AUC = 0.71 +/- 0.09, P = 0.03; PC: AUC = 0.73 +/- 0.081, P = 0.005). These findings indicate that Activin A may be implicated in the pathogenesis of bone metastasis. Therefore, this cytokine may be considered a novel potential target for a more selective therapeutic approach in the treatment of skeletal metastasis and may be also useful as additional biochemical marker of metastatic bone disease.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Chemotherapy, Department of Surgery and Oncology, Policlinico Universitario P Giaccone, Via del Vespro 129, 90127, Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vural F, Vural B, Yucesoy I, Badur S. Ovarian aging and bone metabolism in menstruating women aged 35–50 years. Maturitas 2005; 52:147-53. [PMID: 16186077 DOI: 10.1016/j.maturitas.2005.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/12/2005] [Accepted: 01/21/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the relationships between the levels of gonadotrophins, estradiol, inhibin-b and bone mass and turn-over in regularly menstruating women aged 35-50 years. METHODS The study group included 87 healthy volunteers from the community aged 35-50 years. Bone mineral density of lumbar vertebras, wards triangle, throchanter, femur neck, bone resorption and formation markers were studied as well as the serum levels of gonadotrophins, estradiol and inhibin-b on the day 3 of menstrual cycle. RESULTS The gonadotrophin levels showed significant positive relation with age, whereas inhibin-b and estradiol levels showed significant negative correlation with age. The gonadotrophins and estradiol levels had no significant association with bone mass and bone formation markers. Increased gonadotrophin (p < 0.001) levels and decreased inhibin-b (p < 0.01) levels independent from age were correlated with increased bone resorption. Gonadotrophins, estradiol, age, inhibin-b, body mass index (BMI) were the confounding factors for bone resorption (p = 0.015, R(2) = 0.190) and lumbar bone mass (p = 0.041, R(2) = 0.148). Multivariate analysis showed an independent contribution of inhibin-b and BMI in the prediction of lumbar bone mass. CONCLUSION This findings suggested that estradiol was not the only factor responsible for bone loss and decrease in reproductive function because increased gonadotrophins and decreased inhibin-b levels might trigger some changes in bone metabolism prior to the menopause.
Collapse
Affiliation(s)
- Fisun Vural
- Department of Gynecology and Obstetrics, Kocaeli University School of Medicine, Derince, Gölcük, Turkey.
| | | | | | | |
Collapse
|
17
|
Matthews JM, Liotta F, Hageman W, Rivero RA, Westover L, Yang M, Xu J, Demarest K. Discovery of a dihydropyrimidine series of molecules that selectively mimic the biological actions of calcitonin. Bioorg Med Chem Lett 2004; 14:1155-9. [PMID: 14980655 DOI: 10.1016/j.bmcl.2003.12.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 12/12/2003] [Accepted: 12/18/2003] [Indexed: 11/28/2022]
Abstract
The use of a multiplex mimetic assay led us to identify 1,4-dihydropyrimidines with potent and selective calcitonin receptor mimetic activity. Subsequent modification of the dihydropyrimidine scaffold led to a series of molecules that were efficacious in a neonatal mouse calvaria in vitro model. Dihydropyrimidine 5h, in particular, was identified as a calcitonin mimetic (EC(50)=6 microM), active in-vivo in the Weanling rat model when administered subcutaneously.
Collapse
Affiliation(s)
- Jay M Matthews
- Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA 19477-0776, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood) 2002; 227:724-52. [PMID: 12324653 DOI: 10.1177/153537020222700905] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been 70 years since the name inhibin was used to describe a gonadal factor that negatively regulated pituitary hormone secretion. The majority of this period was required to achieve purification and definitive characterization of inhibin, an event closely followed by identification and characterization of activin and follistatin (FS). In contrast, the last 15-20 years saw a virtual explosion of information regarding the biochemistry, physiology, and biosynthesis of these proteins, as well as identification of activin receptors, and a unique mechanism for FS action-the nearly irreversible binding and neutralization of activin. Many of these discoveries have been previously summarized; therefore, this review will cover the period from the mid 1990s to present, with particular emphasis on emerging themes and recent advances. As the field has matured, recent efforts have focused more on human studies, so the endocrinology of inhibin, activin, and FS in the human is summarized first. Another area receiving significant recent attention is local actions of activin and its regulation by both FS and inhibin. Because activin and FS are produced in many tissues, we chose to focus on a few particular examples with the most extensive experimental support, the pituitary and the developing follicle, although nonreproductive actions of activin and FS are also discussed. At the cellular level, it now seems that activin acts largely as an autocrine and/or paracrine growth factor, similar to other members of the transforming growh factor beta superfamily. As we discuss in the next section, its actions are regulated extracellularly by both inhibin and FS. In the final section, intracellular mediators and modulators of activin signaling are reviewed in detail. Many of these are shared with other transforming growh factor beta superfamily members as well as unrelated molecules, and in a number of cases, their physiological relevance to activin signal propagation remains to be elucidated. Nevertheless, taken together, recent findings suggest that it may be more appropriate to consider a new paradigm for inhibin, activin, and FS in which activin signaling is regulated extracellularly by both inhibin and FS whereas a number of intracellular proteins act to modulate cellular responses to these activin signals. It is therefore the balance between activin and all of its modulators, rather than the actions of any one component, that determines the final biological outcome. As technology and model systems become more sophisticated in the next few years, it should become possible to test this concept directly to more clearly define the role of activin, inhibin, and FS in reproductive physiology.
Collapse
Affiliation(s)
- Corrine Welt
- Reproductive Endocrine Unit and Endocrine Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
19
|
Ren W, Wu B, Mayton L, Wooley PH. Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal calvaria in vitro organ system. J Orthop Res 2002; 20:1031-7. [PMID: 12382970 DOI: 10.1016/s0736-0266(02)00019-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is considerable evidence that orthopaedic wear debris plays a crucial role in the pathology of aseptic loosening of joint prostheses. This study examined the effect of inflammatory membranes stimulated with methyl methacrylate and polyethylene on bone resorption, using the murine air pouch model. The capacity of RAW 264.7 mouse macrophages exposed to polymer particles to produce factors affecting bone metabolism was also studied. Neonatal calvaria bones were co-cultured with either pouch membranes or conditioned media from activated macrophages. Bone resorption was measured by the release of calcium from cultured bones, and the activity of tartrate-resistant acid phosphatase in both bone sections and culture medium was also assayed. Results showed that inflammatory pouch membrane activated by methyl methacrylate and polyethylene enhanced osteoclastic bone resorption. Conditioned media from particles stimulated mouse macrophages also stimulated bone resorption, although this effect was weaker than resorption induced by inflammatory pouch membranes. The addition of the particles directly into the medium of cultured calvaria bones had little effect on bone resorption. Our observations indicate that both inflammatory tissue and macrophages provoked by particles can stimulate bone resorption in cultured mouse neonatal calvaria bones. This simple in vitro bone resorption system allows us to investigate the fundamental cellular and molecular mechanism of wear debris induced bone resorption and to screen potential therapeutic approaches for aseptic loosening.
Collapse
Affiliation(s)
- Weiping Ren
- Department of Orthopaedic Surgery, Wayne State University School of Medicine, John D. Dingle VAMC, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Osteogenic activities of activin, a member of TGF-beta superfamily, have been shown in both in vivo and in vitro studies. Local injection of activin promoted fracture healing in rat fibula fracture models. Since both activin and its receptor are expressed during fracture healing, activin would be involved in the healing process via autocrine and/or paracrine mode of action. Activin was abundantly stored also in normal bone matrix, presumably produced by osteoblasts in the process of normal bone formation. It was observed that activin was released in the culture of neonatal mouse calvaria, and the release was strongly coupled with bone resorption. Thus, activin could be involved in the regulation of bone remodeling as one of coupling factors, as was suggested for TGF-ss. Systemic administration of activin in aged ovariectomized rats, in which bone mass decreases due to uncoupling between bone resorption and formation, increased both bone mass and mechanical strength of vertebral bodies. These findings suggest physiological roles of activin in the regulation of bone formation, and further, its possible usefulness for the therapy of fracture and osteoporosis.
Collapse
Affiliation(s)
- R Sakai
- Central Research Laboratories, Ajinomoto Co., 1-1, Suzuki-cho, 210-8681, Kawasaki, Japan
| | | |
Collapse
|
21
|
Sakai R, Fujita S, Horie T, Ohyama T, Miwa K, Maki T, Okimoto N, Nakamura T, Eto Y. Activin increases bone mass and mechanical strength of lumbar vertebrae in aged ovariectomized rats. Bone 2000; 27:91-6. [PMID: 10865214 DOI: 10.1016/s8756-3282(00)00307-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activin is a member of the transforming growth factor-beta superfamily and is thought to be involved in the regulation of bone formation due to its presence in bone tissue and its osteogenic activity both in vitro and in vivo. We recently found that systemic administration of activin increased both tibial bone mass and mechanical strength in young growing rats. The present study investigated the effects of activin in aged ovariectomized (ovx) rats. Twelve-month-old Fischer rats were ovariectomized and maintained for 10 months. Recombinant human activin A (activin) or human parathyroid hormone 1-34 (PTH) was administered intramuscularly three times a week for 12 weeks. Activin (1 and 5 microg/kg) markedly increased lumbar vertebral bone mineral content and bone mineral density. Activin also increased the mechanical strength of the vertebral body, which was highly correlated to the bone mineral density of the vertebral body. The maximal response in bone mass and strength was observed at 1 microg/kg of activin, which was approximately equal to that induced by PTH at 40 microg/kg. Peripheral quantitative computed tomography revealed that activin enlarged the cross-sectional size of the vertebrae without changing the foramen area, indicating its effects on cortical shells. Histomorphometric analysis of cancellous bone of vertebral body in similar experiment showed that activin (3 microg/kg) increased bone volume and the mineralizing surface, although its effects were less than PTH. The present results indicate that low doses of activin are effective against vertebral bone loss in aged ovx rats.
Collapse
Affiliation(s)
- R Sakai
- Central Research Laboratories, Ajinomoto Co., Inc., Kawasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|