1
|
Bandi R, Jain V, Lingappa L, Sharma R, Kannoth S, Konanki R. Challenges in Management of Febrile Infection-Related Epilepsy Syndrome: Real-World Experience From a Large Cohort of Pediatric Patients. Pediatr Neurol 2025; 165:9-15. [PMID: 39908710 DOI: 10.1016/j.pediatrneurol.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/14/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Febrile infection-related epilepsy syndrome (FIRES) is a catastrophic neuroinflammatory disorder with refractory status epilepticus. The disease management continues to pose significant challenges. METHODS A retrospective observational study of patients with FIRES managed at tertiary care centers in India. The follow-up outcome was assessed using the Clinical Assessment Scale in Autoimmune Encephalitis (CASE). RESULTS Forty-one children (27 males) were eligible. The mean presentation age was 7.2 years (range, 2-14). A median of 7 (range, 2-12) antiseizure medications (ASMs) were tried before pharmacologic coma, which was subsequently required in all patients. The pharmacologic coma was induced for a median duration of 11 days (range, 1-125), with midazolam (41) being the most common medication, followed by ketamine (33), thiopentone (18), and isoflurane (13). Only a minority had seizure resolution on pharmacologic coma (ketamine 21%, midazolam 17%, and thiopentone 16.6%). Ninety-seven percent children also concurrently received methylprednisolone (40), 63% intravenous immunoglobulin (26), 32% rituximab (13), 32% cyclophosphamide (13), and 56% ketogenic diet (23). At a median follow-up of 37 months (range, 9-96), 34% (14) children had died. Of the remaining 27, epilepsy was poorly controlled in the majority (18 children, 67%). Also, 14 patients had a CASE score of ≤5 (good outcome) and 13 had a score of >5 (poor outcome). In both groups, there was no statistically significant difference in outcomes with the ketogenic diet, pharmacologic coma, or immunomodulatory therapies. CONCLUSIONS The management of FIRES in children is challenging, with limited effectiveness of most currently practiced anesthetic agents and conventional immunomodulatory therapies in seizure control and in altering the outcome in FIRES.
Collapse
Affiliation(s)
- Ramya Bandi
- Department of Neurology, Rainbow Children's Hospital, Hyderabad, India
| | - Vivek Jain
- Department of Neurology, Neo Clinic Children's Hospital, Jaipur, India
| | - Lokesh Lingappa
- Department of Neurology, Rainbow Children's Hospital, Hyderabad, India
| | - Ravi Sharma
- Department of Intensive Care, Santokba Durlabhji Hospital, Jaipur, India
| | - Sudheeran Kannoth
- Department of Neuro Immunology, Amrita Institute of medical sciences, Kochi, India
| | - Ramesh Konanki
- Department of Neurology, Rainbow Children's Hospital, Hyderabad, India.
| |
Collapse
|
2
|
Čižmáriková R, Habala L, Valentová J. General Anesthetics: Aspects of Chirality, Pharmacodynamics, and Pharmacokinetics. Pharmaceuticals (Basel) 2025; 18:250. [PMID: 40006063 PMCID: PMC11860141 DOI: 10.3390/ph18020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The introduction of general anesthetics in the mid-19th century is considered one of the greatest contributions to medical practice. It was the first time that complicated surgical interventions became feasible, without putting an excessive strain on the patient. The first general anesthetics-diethyl ether, chloroform, and nitrous oxide-were limited by often severe adverse reactions and a narrow therapeutic window. They were later succeeded by modern anesthetics, with high anesthetic effect along with diminished toxicity. As with other medical drugs, many anesthetic compounds contain chiral centers in their molecules. Although currently used as racemates, the pharmacological activity of the respective enantiomerically pure antipodes can vary considerably, as can their adverse effects. Herein, we report on the available studies into the differences in bioactivity and toxicity between the enantiomers of chiral anesthetic agents. Both inhalational and intravenous anesthetics are discussed. Aspects of pharmacodynamics and pharmacokinetics are surveyed as well. The results could stimulate further research into the potential application of single-enantiomer anesthetics in clinical practice.
Collapse
Affiliation(s)
| | - Ladislav Habala
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-833232 Bratislava, Slovakia; (R.Č.); (J.V.)
| | | |
Collapse
|
3
|
Darwish D, Kumar P, Urs K, Dave S. Inhaled Anesthetics: Beyond the Operating Room. J Clin Med 2024; 13:7513. [PMID: 39768435 PMCID: PMC11679802 DOI: 10.3390/jcm13247513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The development of inhaled anesthetics (IAs) has a rich history dating back many centuries. In modern times they have played a pivotal role in anesthesia and critical care by allowing deep sedation during periods of critical illness and surgery. In addition to their sedating effects, they have many systemic effects allowing for therapy beyond surgical anesthesia. In this narrative review we chronicle the evolution of IAs, from early volatile agents such as ether to the contemporary use of halogenated hydrocarbons. This is followed by a discussion of the mechanisms of action of these agents which primarily involve the modulation of lipid membrane properties and ion channel activity. IAs' systemic effects are also examined, including their effects on the cardiovascular, respiratory, hepatic, renal and nervous systems. We discuss of the role of IAs in treating systemic disease processes including ischemic stroke, delayed cerebral ischemia, status epilepticus, status asthmaticus, myocardial ischemia, and intensive care sedation. We conclude with a review of the practical and logistical challenges of utilizing IAs outside the operating room as well as directions for future research. This review highlights the expanding clinical utility of IAs and their evolving role in the management of a diverse range of disease processes, offering new avenues for therapeutic exploration beyond anesthesia.
Collapse
Affiliation(s)
- Dana Darwish
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pooja Kumar
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khushi Urs
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siddharth Dave
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Reise K, Macartney J, La R, Jerath A, Slessarev M, Cuthbertson BH, Ganesan SL, McKinnon NK. Volatile gas scavenging in the paediatric intensive care unit: Occupational health and safety assessment. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2024; 60:95-102. [PMID: 38903540 PMCID: PMC11189165 DOI: 10.29390/001c.118513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Introduction The use of volatile anesthetic agents in the paediatric intensive care unit (PICU) is experiencing increased interest since the availability of the miniature vapourizing device. However, the effectiveness of scavenging systems in the presence of humidifiers in the ventilator circuit is unknown. Approach Methods We performed a bench study to evaluate the effectiveness of the Deltasorb® scavenging system in the presence of isoflurane and active humidity by simulating both infant and child ventilator test settings. A total of four ventilators were set to ventilate test lungs, all with active humidity and a Deltasorb scavenging canister collecting exhaled ventilation gas. Two ventilators also had isoflurane delivered using the Anesthesia Conserving Device- small (ACD®-S) on the inspiratory limb (also called alternative ventilator configuration). We performed instantaneous measurements of isoflurane and continuous sampling with passive badges to measure average environmental exposure over a test period of 6.5 hours. Scavenging canisters were returned to the company, where desorption analysis showed the volume of water and isoflurane captured in each canister. Findings Both instantaneous point sampling and diffusive sampling results were below the occupational exposure limit confirming safety. The canisters collected both isoflurane and a portion of the water vapour delivered; the percentage of captured water and isoflurane collected in infants was higher than the child ventilator test settings. Practice implications Conclusion The tested scavenging configuration was effective in maintaining a safe working environment with active humidity and inspiratory limb (alternative) ventilator configuration of the the miniature vapourizing device.
Collapse
Affiliation(s)
| | | | - Richard La
- Occupational Health and SafetyThe Hospital for Sick Children
| | - Angela Jerath
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of MedicineUniversity of Toronto
- Schulich Heart ProgramSunnybrook Research Institute
- ICESSunnybrook Health Science Centre
| | - Marat Slessarev
- Department of Critical Care MedicineSchulich School of Medicine and Dentistry, Western University
| | - Brian H. Cuthbertson
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of MedicineUniversity of Toronto
- Department of Critical Care MedicineSunnybrook Health Sciences Centre
| | - Saptharishi Lalgudi Ganesan
- Department of Paediatrics & Department of Clinical Neurological SciencesSchulich School of Medicine and Dentistry, Western University
| | - Nicole K. McKinnon
- Department of Neuroscience and Mental HealthSickkids Research Institute
- Department of Paediatrics, and Department of Physiology, Temerty Faculty of MedicineUniversity of Toronto
| |
Collapse
|
5
|
Wieruszewski ED, ElSaban M, Wieruszewski PM, Smischney NJ. Inhaled volatile anesthetics in the intensive care unit. World J Crit Care Med 2024; 13:90746. [PMID: 38633473 PMCID: PMC11019627 DOI: 10.5492/wjccm.v13.i1.90746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
The discovery and utilization of volatile anesthetics has significantly transformed surgical practices since their inception in the mid-19th century. Recently, a paradigm shift is observed as volatile anesthetics extend beyond traditional confines of the operating theatres, finding diverse applications in intensive care settings. In the dynamic landscape of intensive care, volatile anesthetics emerge as a promising avenue for addressing complex sedation requirements, managing refractory lung pathologies including acute respiratory distress syndrome and status asthmaticus, conditions of high sedative requirements including burns, high opioid or alcohol use and neurological conditions such as status epilepticus. Volatile anesthetics can be administered through either inhaled route via anesthetic machines/devices or through extracorporeal membrane oxygenation circuitry, providing intensivists with multiple options to tailor therapy. Furthermore, their unique pharmacokinetic profiles render them titratable and empower clinicians to individualize management with heightened accuracy, mitigating risks associated with conventional sedation modalities. Despite the amounting enthusiasm for the use of these therapies, barriers to widespread utilization include expanding equipment availability, staff familiarity and training of safe use. This article delves into the realm of applying inhaled volatile anesthetics in the intensive care unit through discussing their pharmacology, administration considerations in intensive care settings, complication considerations, and listing indications and evidence of the use of volatile anesthetics in the critically ill patient population.
Collapse
Affiliation(s)
| | - Mariam ElSaban
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Nathan J Smischney
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
6
|
Sarpekidou E, Polyzois G, Papageorgiou V, Savvas I, Polizopoulou Z, Kazakos G. Isoflurane treatment for refractory and super-refractory status epilepticus in dogs. Front Vet Sci 2024; 11:1338894. [PMID: 38523714 PMCID: PMC10957526 DOI: 10.3389/fvets.2024.1338894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Resistant epileptic episodes, such as refractory status epilepticus (RSE) and super-refractory status epilepticus (SRSE), are neurological emergencies that require immediate medical treatment. Although inhalational anesthetics, such as isoflurane (ISO), have been proposed as a means of seizure control in dogs, there is currently a lack of both experimental and clinical studies on this subject. Study design This is a retrospective clinical study. Methods Records of dogs that received ISO for the management of RSE and SRSE during their intensive care unit (ICU) hospitalization at the Companion Animal Clinic of the Aristotle University of Thessaloniki were included in the present study. The study period spanned from February 2013 to March 2023. Dogs were identified as responders (R) when RSE/SRSE ceased after ISO administration, and the dogs were successfully discharged from the ICU after ISO discontinuation. Dogs were identified as non-responders (NR) when RSE/SRSE ceased after ISO administration, but RSE/SRSE reoccurred after ISO discontinuation. Additional data about the number and time of ISO cycles, the time of ICU hospitalization, the side effects of ISO administration, and an additional administration of antiepileptic drugs (AEDs) and anesthetic drugs were also recorded. Results A total of 20 dogs with 26 recorded RSE/SRSE episodes and 26 anesthetic cycles with ISO were included in the present study. The clinical termination of seizure activity was achieved 100% (26/26) in all episodes. In 73.1% (19/26) of the episodes, ISO administration resulted in successful RSE/SRSE treatment. Poor outcome was recorded in 26.9% (7/26) of the episodes because RSE/SRSE reoccurred after ISO discontinuation, and the dogs were euthanatized or died due to cardiac arrest. Inspiratory ISO ranged between 0.5 and 4.0%. The median time of the anesthetic cycles with ISO was 12.67 h (4.00-62.00). The median duration of the ICU hospitalization was 48.00 h (24.00-120.00). At least one ISO-related side effect was recorded in 23 out of 26 (88.5%) episodes. Conclusion To the authors' knowledge, this is the first clinical study that addresses the administration of ISO for RSE/SRSE treatment in dogs. The use of ISO may be beneficial in terminating RSE/SRSE; however, further prospective studies are necessary to confirm this observation.
Collapse
Affiliation(s)
- Eirini Sarpekidou
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
7
|
García-Montoto F, Paz-Martín D, Pestaña D, Soro M, Marcos Vidal JM, Badenes R, Suárez de la Rica A, Bardi T, Pérez-Carbonell A, García C, Cervantes JA, Martínez MP, Guerrero JL, Lorente JV, Veganzones J, Murcia M, Belda FJ. Guidelines for inhaled sedation in the ICU. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:90-111. [PMID: 38309642 DOI: 10.1016/j.redare.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 02/05/2024]
Abstract
INTRODUCTION AND OBJECTIVES Sedation is used in intensive care units (ICU) to improve comfort and tolerance during mechanical ventilation, invasive interventions, and nursing care. In recent years, the use of inhalation anaesthetics for this purpose has increased. Our objective was to obtain and summarise the best evidence on inhaled sedation in adult patients in the ICU, and use this to help physicians choose the most appropriate approach in terms of the impact of sedation on clinical outcomes and the risk-benefit of the chosen strategy. METHODOLOGY Given the overall lack of literature and scientific evidence on various aspects of inhaled sedation in the ICU, we decided to use a Delphi method to achieve consensus among a group of 17 expert panellists. The processes was conducted over a 12-month period between 2022 and 2023, and followed the recommendations of the CREDES guidelines. RESULTS The results of the Delphi survey form the basis of these 39 recommendations - 23 with a strong consensus and 15 with a weak consensus. CONCLUSION The use of inhaled sedation in the ICU is a reliable and appropriate option in a wide variety of clinical scenarios. However, there are numerous aspects of the technique that require further study.
Collapse
Affiliation(s)
- F García-Montoto
- UCI de Anestesia, Servicio de Anestesiología y Reanimación, Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain.
| | - D Paz-Martín
- UCI, Departamento de Anestesia y Cuidados Intensivos, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - D Pestaña
- UCI de Anestesia, Servicio de Anestesiología y Reanimación, Hospital Universitario Ramon y Cajal, Madrid, Spain; Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain
| | - M Soro
- UCI, Servicio de Anestesiología y Cuidados Intensivos, Hospital IMED, Valencia, Spain
| | - J M Marcos Vidal
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Complejo Asistencial Universitario de León, León, Spain
| | - R Badenes
- Departamento Cirugía, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; UCI de Anestesia, Servicio de Anestesiología, Reanimación y Terapéutica del Dolor, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - A Suárez de la Rica
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario de La Princesa, Madrid, Spain
| | - T Bardi
- UCI de Anestesia, Servicio de Anestesiología y Reanimación, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - A Pérez-Carbonell
- UCI Quirúrgica, Servicio de Anestesiología, UCI Quirúrgica y Unidad del Dolor, Hospital General Universitario de Elche, Elche, Alicante, Spain
| | - C García
- UCI Quirúrgica, Servicio de Anestesiología y Reanimación, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - J A Cervantes
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario Torrecárdenas, Almería, Spain
| | - M P Martínez
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - J L Guerrero
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Universidad de Málaga, Málaga, Spain; Instituto Biomédico de Málaga, Málaga, Spain
| | - J V Lorente
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Juan Ramón Jiménez, Huelva, Spain
| | - J Veganzones
- Unidad de Reanimación, Servicio de Anestesiología y Reanimación, Hospital Universitario La Paz, Madrid, Spain
| | - M Murcia
- UCI, Servicio de Anestesiología y Cuidados Intensivos, Hospital IMED, Valencia, Spain
| | - F J Belda
- Departamento Cirugía, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
8
|
Becker LL, Gratopp A, Prager C, Elger CE, Kaindl AM. Treatment of pediatric convulsive status epilepticus. Front Neurol 2023; 14:1175370. [PMID: 37456627 PMCID: PMC10343462 DOI: 10.3389/fneur.2023.1175370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Status epilepticus is one of the most common life-threatening neurological emergencies in childhood with the highest incidence in the first 5 years of life and high mortality and morbidity rates. Although it is known that a delayed treatment and a prolonged seizure can cause permanent brain damage, there is evidence that current treatments may be delayed and the medication doses administered are insufficient. Here, we summarize current knowledge on treatment of convulsive status epilepticus in childhood and propose a treatment algorithm. We performed a structured literature search via PubMed and ClinicalTrails.org and identified 35 prospective and retrospective studies on children <18 years comparing two and more treatment options for status epilepticus. The studies were divided into the commonly used treatment phases. As a first-line treatment, benzodiazepines buccal/rectal/intramuscular/intravenous are recommended. For status epilepticus treated with benzodiazepine refractory, no superiority of fosphenytoin, levetirazetam, or phenobarbital was identified. There is limited data on third-line treatments for refractory status epilepticus lasting >30 min. Our proposed treatment algorithm, especially for children with SE, is for in and out-of-hospital onset aids to promote the establishment and distribution of guidelines to address the treatment delay aggressively and to reduce putative permanent neuronal damage. Further studies are needed to evaluate if these algorithms decrease long-term damage and how to treat refractory status epilepticus lasting >30 min.
Collapse
Affiliation(s)
- Lena-Luise Becker
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Gratopp
- Department of Pediatric Pneumonology, Immunology and Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Prager
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian E. Elger
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Beta Clinic, Bonn, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Reindl C, Madžar D, Hamer HM. [Status epilepticus-Detection and treatment in the intensive care unit]. DER NERVENARZT 2023; 94:120-128. [PMID: 36534176 DOI: 10.1007/s00115-022-01418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Status epilepticus is characterized by persistent or repetitive seizures which, without successful treatment, can lead to neuronal damage, neurological deficits and death of the patient.While status epilepticus with motor symptoms can usually be clinically diagnosed, nonconvulsive status epilepticus is often clinically overlooked due to its ambiguous semiology, so that electroencephalography (EEG) recording is necessary. The treatment of status epilepticus is performed in four treatment steps, whereby a difficult to treat status epilepticus is present from the third step at the latest and intensive medical care of the patient is necessary. Timely initiation of treatment and sufficient dosage of anticonvulsive medication are decisive for the success of treatment. There is little evidence for the "late" stages of treatment. Intensive medical measures pose the risk of complications that worsen the prognosis. Especially in nonconvulsive status epilepticus, the use of anesthetics must be weighed against possible complications of mechanical ventilation.
Collapse
Affiliation(s)
- Caroline Reindl
- Neurologische Klinik, Epilepsiezentrum, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Deutschland.
| | - Dominik Madžar
- Neurologische Klinik, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Deutschland
| | - Hajo M Hamer
- Neurologische Klinik, Epilepsiezentrum, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Deutschland
| |
Collapse
|
10
|
Osman GM, Hocker SE. Status Epilepticus in Older Adults: Diagnostic and Treatment Considerations. Drugs Aging 2023; 40:91-103. [PMID: 36745320 DOI: 10.1007/s40266-022-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/07/2023]
Abstract
Status epilepticus (SE) is one of the leading life-threatening neurological emergencies in the elderly population, with significant morbidity and mortality. SE presents unique diagnostic and therapeutic challenges in the older population given overlap with other causes of encephalopathy, complicating diagnosis, and the common occurrence of multiple comorbid diseases complicates treatment. First-line therapy involves the use of rescue benzodiazepine in the form of intravenous lorazepam or diazepam, intramuscular or intranasal midazolam and rectal diazepam. Second-line therapies include parenteral levetiracetam, fosphenytoin, valproate and lacosamide, and underlying comorbidities guide the choice of appropriate medication, while third-line therapies may be influenced by the patient's code status as well as the cause and type of SE. The standard of care for convulsive SE is treatment with an intravenous anesthetic, including midazolam, propofol, ketamine and pentobarbital. There is currently limited evidence guiding appropriate therapy in patients failing third-line therapies. Adjunctive strategies may include immunomodulatory treatments, non-pharmacological strategies such as ketogenic diet, neuromodulation therapies and surgery in select cases. Surrogate decision makers should be updated early and often in refractory episodes of SE and informed of the high morbidity and mortality associated with the disease as well as the high probability of subsequent epilepsy among survivors.
Collapse
Affiliation(s)
- Gamaleldin M Osman
- Department of Neurology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA
| | - Sara E Hocker
- Department of Neurology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Status Epilepticus. Crit Care Clin 2023; 39:87-102. [DOI: 10.1016/j.ccc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Malignant Hyperthermia in PICU—From Diagnosis to Treatment in the Light of Up-to-Date Knowledge. CHILDREN 2022; 9:children9111692. [DOI: 10.3390/children9111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Malignant Hyperthermia (MH) is a rare, hereditary, life-threatening disease triggered by volatile anesthetics and succinylcholine. Rarely, MH can occur after non-pharmacological triggers too. MH was detected more often in children and young adults, which makes this topic very important for every pediatric specialist, both anesthesiologists and intensivists. MH crisis is a life-threatening severe hypermetabolic whole-body reaction. Triggers of MH are used in pediatric intensive care unit (PICU) as well, volatile anesthetics in difficult sedation, status asthmaticus or epilepticus, and succinylcholine still sometimes in airway management. Recrudescence or delayed onset of MH crisis hours after anesthesia was previously described. MH can also be a cause of rhabdomyolysis and hyperpyrexia in the PICU. In addition, patients with neuromuscular diseases are often admitted to PICU and they might be at risk for MH. The most typical symptoms of MH are hypercapnia, tachycardia, hyperthermia, and muscle rigidity. Thinking of the MH as the possible cause of deterioration of a patient’s clinical condition is the key to early diagnosis and treatment. The sooner the correct treatment is commenced, the better patient´s outcome. This narrative review article aims to summarize current knowledge and guidelines about recognition, treatment, and further management of MH in PICU.
Collapse
|
13
|
Gorsky K, Cuninghame S, Chen J, Jayaraj K, Withington D, Francoeur C, Slessarev M, Jerath A. Use of inhalational anaesthetic agents in paediatric and adult patients for status asthmaticus, status epilepticus and difficult sedation scenarios: a protocol for a systematic review. BMJ Open 2021; 11:e051745. [PMID: 34758996 PMCID: PMC8587357 DOI: 10.1136/bmjopen-2021-051745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Inhaled volatile anaesthetics have a long tradition of use as hypnotic agents in operating rooms and are gaining traction as sedatives in intensive care units (ICUs). However, uptake is impeded by low familiarity with volatiles, unique equipment and education needs. Inhaled anaesthetics are often reserved in ICUs as therapies for refractory and life threatening status asthmaticus, status epilepticus, high and difficult sedation need scenarios given they possess unique pharmacological properties to manage these medical conditions while providing sedation to acutely ill patients. The objective of this systematic review is to collate evidence regarding the efficacy, safety and feasibility of volatile anaesthetics in adult and paediatric ICU patients for these three emergency conditions. METHODS AND ANALYSIS We will conduct a systematic review of the primary studies in adult and paediatric ICU patients with status asthmaticus, status epilepticus and high/difficult sedation needs. We will include observational and interventional studies published from 1970 to 2021 in English or French investigating patients who have received a volatile inhalational agent for the above indications. We will evaluate the efficacy, safety, feasibility and implementation barriers for the volatile anaesthetics for each of three specified indications. Included studies will not be limited by necessity of a comparator arm. We will also evaluate clinical characteristics, patient demographics and provider attitudes towards volatile anaesthetic administration in defined critical care scenarios. Data will be extracted and analysed across these domains. The databases MEDLINE, EMBASE, the Science Citation Index as well as the Cochrane Central Controlled Trials Register will be queried with our search strategy.Descriptive and statistical analysis will be employed where appropriate. Data extraction and quality assessment will be performed in duplicate using a standardised tool. A narrative approach and statistical analyses will be used to describe patient characteristics, volatile efficacy, safety concerns, technical administration, attitudes towards administration and other implementation barriers. ETHICS AND DISSEMINATION No ethics board approval will be necessary for this systematic review. This research is independently funded. Results will be disseminated in a peer-reviewed journal and conference presentation. PROSPERO NUMBER CRD42021233083.
Collapse
Affiliation(s)
- Kevin Gorsky
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Cuninghame
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jennifer Chen
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Kesikan Jayaraj
- University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Davinia Withington
- Department of Anesthesiology, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Conall Francoeur
- Department of Pediatrics, Laval University Faculty of Medicine, Quebec, Canada
| | - Marat Slessarev
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- The Brain Institute, Western University, London, Ontario, Canada
| | - Angela Jerath
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
14
|
L'Erario M, Roperto RM, Rosati A. Sevoflurane as bridge therapy for plasma exchange and Anakinra in febrile infection-related epilepsy syndrome. Epilepsia Open 2021; 6:788-792. [PMID: 34596364 PMCID: PMC8633474 DOI: 10.1002/epi4.12545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023] Open
Abstract
Febrile infection–related epilepsy syndrome (FIRES) is a devastating immune inflammatory–mediated epileptic encephalopathy. Herein, we discuss a previously healthy 8‐year‐old boy with FIRES in whom high dosages of conventional and nonconventional anesthetics were ineffective in treating SE, as were ketogenic diet, intravenous corticosteroids, and immunoglobulins. After 29 days of prolonged SRSE, the patient was successfully treated with sevoflurane paired with plasma exchange, for a total of five days, thus obtaining a stable EEG suppression burst pattern with no adverse events. Anakinra at the dosage of 100 mg b.i.d. was started seven days after sevoflurane and plasma exchange had been discontinued and was effective in ensuring non‐recurrence of SE. Sevoflurane as bridge therapy for immunosuppressive treatment could be considered an early, safe, and effective option in treating convulsive SE in which an autoimmune‐inflammatory etiology can reasonably be hypothesized.
Collapse
Affiliation(s)
| | - Rosa Maria Roperto
- Nephrology Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Anna Rosati
- Paediatric Neurology Unit, Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Stetefeld HR, Schaal A, Scheibe F, Nichtweiß J, Lehmann F, Müller M, Gerner ST, Huttner HB, Luger S, Fuhrer H, Bösel J, Schönenberger S, Dimitriadis K, Neumann B, Fuchs K, Fink GR, Malter MP. Isoflurane in (Super-) Refractory Status Epilepticus: A Multicenter Evaluation. Neurocrit Care 2021; 35:631-639. [PMID: 34286464 PMCID: PMC8692280 DOI: 10.1007/s12028-021-01250-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/07/2021] [Indexed: 11/26/2022]
Abstract
Background We aimed to determine the association between seizure termination and side effects of isoflurane for the treatment of refractory status epilepticus (RSE) and super-refractory status epilepticus (SRSE) in neurointensive care units (neuro-ICUs). Methods This was a multicenter retrospective study of patients with RSE/SRSE treated with isoflurane for status epilepticus termination admitted to the neuro-ICUs of nine German university centers during 2011–2018. Results We identified 45 patients who received isoflurane for the treatment of RSE/SRSE. During isoflurane treatment, electroencephalograms showed no epileptiform discharges in 33 of 41 (80%) patients, and burst suppression pattern was achieved in 29 of 41 patients (71%). RSE/SRSE was finally terminated after treatment with isoflurane in 23 of 45 patients (51%) for the entire group and in 13 of 45 patients (29%) without additional therapy. Lengths of stay in the hospital and in the neuro-ICU were significantly extended in cases of ongoing status epilepticus under isoflurane treatment (p = 0.01 for length of stay in the hospital, p = 0.049 for length in the neuro-ICU). During isoflurane treatment, side effects were reported in 40 of 45 patients (89%) and mainly included hypotension (n = 40, 89%) and/or infection (n = 20, 44%). Whether side effects occurred did not affect the outcome at discharge. Of 22 patients with follow-up magnetic resonance imaging, 2 patients (9%) showed progressive magnetic resonance imaging alterations that were considered to be potentially associated with RSE/SRSE itself or with isoflurane therapy. Conclusions Isoflurane was associated with a good effect in stopping RSE/SRSE. Nevertheless, establishing remission remained difficult. Side effects were common but without effect on the outcome at discharge. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01250-z.
Collapse
Affiliation(s)
- Henning R Stetefeld
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Alexander Schaal
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Franziska Scheibe
- Department of Neurology, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
- NeuroCure Clinical Research Center, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | - Julia Nichtweiß
- Department of Neurology, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | - Felix Lehmann
- Department of Anesthesiology and Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Marcus Müller
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Hagen B Huttner
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Luger
- Center of Neurology and Neurosurgery, Department of Neurology, Goethe-University Hospital Frankfurt, Frankfurt, Germany
| | - Hannah Fuhrer
- Department of Neurology, University of Freiburg, Freiburg, Germany
| | - Julian Bösel
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurology, Klinikum Kassel, Kassel, Germany
| | | | | | - Bernhard Neumann
- Department of Neurology, University Medical Center Regensburg, Regensburg, Germany
| | - Kornelius Fuchs
- Department of Neurology, University Medical Center Regensburg, Regensburg, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Michael P Malter
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| |
Collapse
|
16
|
Saitov G, Müller A, Bastian B, Michalski D. [Pharmacotherapy and intensive care aspects of status epilepticus: update 2020/2021]. Anaesthesist 2021; 70:874-887. [PMID: 34212230 PMCID: PMC8492596 DOI: 10.1007/s00101-021-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
Die gezielte Therapie epileptischer Ereignisse und im Speziellen des Status epilepticus (SE) setzt das sichere Erkennen der Krankheitsbilder voraus, wofür gerade bei Formen mit vorwiegend nichtmotorischen Symptomen klinische und elektroenzephalographische Expertise notwendig ist. Die im Jahr 2020 erfolgte Fortschreibung der deutschen Leitlinie zur Behandlung des SE hält an der streng stufengerechten Therapie fest, die eskalierend die Anwendung von Benzodiazepinen, spezifischen Antiepileptika und Anästhetika vorsieht. Bisher ist die Eingrenzung eines in den allermeisten Fällen wirksamen sowie zugleich sicheren und interaktionsfreien Antiepileptikums nicht gelungen. Individuelle Vorerkrankungen und aktuelle Begleitumstände gehen daher genauso wie Erfahrungen des Behandlerteams in die differenzierte Behandlung des SE ein. Insbesondere bei therapierefraktären Formen des SE erweist sich die Therapie als durchaus kompliziert und hat regelhaft intensivmedizinische Implikationen. Mithin ergeben sich im Zuge der modernen SE-Behandlung zahlreiche interdisziplinäre Schnittstellen. Zukünftige wissenschaftliche Fragstellungen werden sich u. a. mit der optimalen Therapie des nonkonvulsiven SE und hier v. a. dem Ausmaß und dem Zeitpunkt von adäquaten Therapieschritten sowie mit assoziierten ethischen Fragen einer Therapieeskalation beschäftigen.
Collapse
Affiliation(s)
- Gabrielė Saitov
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | - Annekatrin Müller
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Börge Bastian
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Dominik Michalski
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| |
Collapse
|
17
|
Schultz B, Krauß T, Schmidt M, Schultz M, Schneider A, Wiesner O, Schmidt JJ, Stahl K, David S, Hoeper MM, Busch M. High Incidence of Epileptiform Potentials During Continuous EEG Monitoring in Critically Ill COVID-19 Patients. Front Med (Lausanne) 2021; 8:613951. [PMID: 33842496 PMCID: PMC8032936 DOI: 10.3389/fmed.2021.613951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To analyze continuous 1- or 2-channel electroencephalograms (EEGs) of mechanically ventilated patients with coronavirus disease 2019 (COVID-19) with regard to occurrence of epileptiform potentials. Design: Single-center retrospective analysis. Setting: Intensive care unit of Hannover Medical School, Hannover, Germany. Patients: Critically ill COVID-19 patients who underwent continuous routine EEG monitoring (EEG monitor: Narcotrend-Compact M) during sedation. Measurements and Main Results: Data from 15 COVID-19 patients (11 men, four women; age: 19-75 years) were evaluated. Epileptiform potentials occurred in 10 of 15 patients (66.7%). Conclusions: The results of the evaluation regarding the occurrence of epileptiform potentials show that there is an unusually high percentage of cerebral involvement in patients with severe COVID-19. EEG monitoring can be used in COVID-19 patients to detect epileptiform potentials.
Collapse
Affiliation(s)
- Barbara Schultz
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Terence Krauß
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Maren Schmidt
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | | | - Andrea Schneider
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Olaf Wiesner
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Julius J Schmidt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Marius M Hoeper
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Markus Busch
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
[S2k guidelines: status epilepticus in adulthood : Guidelines of the German Society for Neurology]. DER NERVENARZT 2021; 92:1002-1030. [PMID: 33751150 PMCID: PMC8484257 DOI: 10.1007/s00115-020-01036-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/16/2023]
Abstract
This S2k guideline on diagnosis and treatment of status epilepticus (SE) in adults is based on the last published version from 2021. New definitions and evidence were included in the guideline and the clinical pathway. A seizures lasting longer than 5 minutes (or ≥ 2 seizures over more than 5 mins without intermittend recovery to the preictal neurological state. Initial diagnosis should include a cCT or, if possible, an MRI. The EEG is highly relevant for diagnosis and treatment-monitoring of non-convulsive SE and for the exclusion or diagnosis of psychogenic non-epileptic seizures. As the increasing evidence supports the relevance of inflammatory comorbidities (e.g. pneumonia) related clinical chemistry should be obtained and repeated over the course of a SE treatment, and antibiotic therapy initiated if indicated.Treatment is applied on four levels: 1. Initial SE: An adequate dose of benzodiazepine is given i.v., i.m., or i.n.; 2. Benzodiazepine-refractory SE: I.v. drugs of 1st choice are levetiracetam or valproate; 3. Refractory SE (RSE) or 4. Super-refractory SE (SRSE): I.v. propofol or midazolam alone or in combination or thiopental in anaesthetic doses are given. In focal non-convulsive RSE the induction of a therapeutic coma depends on the circumstances and is not mandatory. In SRSE the ketogenic diet should be given. I.v. ketamine or inhalative isoflorane can be considered. In selected cased electroconvulsive therapy or, if a resectable epileptogenic zone can be defined epilepsy surgery can be applied. I.v. allopregnanolone or systemic hypothermia should not be used.
Collapse
|
19
|
Ochoa JG, Dougherty M, Papanastassiou A, Gidal B, Mohamed I, Vossler DG. Treatment of Super-Refractory Status Epilepticus: A Review. Epilepsy Curr 2021; 21:1535759721999670. [PMID: 33719651 PMCID: PMC8652329 DOI: 10.1177/1535759721999670] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Super-refractory status epilepticus (SRSE) presents management challenges due to the absence of randomized controlled trials and a plethora of potential medical therapies. The literature on treatment options for SRSE reports variable success and quality of evidence. This review is a sequel to the 2020 American Epilepsy Society (AES) comprehensive review of the treatment of convulsive refractory status epilepticus (RSE). METHODS We sought to determine the effectiveness of treatment options for SRSE. We performed a structured literature search (MEDLINE, Embase, CENTRAL, CINAHL) for studies on reported treatments of SRSE. We excluded antiseizure medications (ASMs) covered in the 2016 AES guideline on the treatment of established SE and the convulsive RSE comprehensive review of the 2020 AES. Literature was reviewed on the effectiveness of vagus nerve stimulation, ketogenic diet (KD), lidocaine, inhalation anesthetics, brain surgery, therapeutic hypothermia, perampanel, pregabalin (PGB), and topiramate in the treatment of SRSE. Two authors reviewed each therapeutic intervention. We graded the level of the evidence according to the 2017 classification scheme of the American Academy of Neurology. RESULTS For SRSE (level U; 39 class IV studies total), insufficient evidence exists to support that perampanel, PGB, lidocaine, or acute vagus nerve stimulation (VNS) is effective. For children and adults with SRSE, insufficient evidence exists to support that the KD is effective (level U; 5 class IV studies). For adults with SRSE, insufficient evidence exists that brain surgery is effective (level U, 7 class IV studies). For adults with SRSE insufficient, evidence exists that therapeutic hypothermia is effective (level C, 1 class II and 4 class IV studies). For neonates with hypoxic-ischemic encephalopathy, insufficient evidence exists that therapeutic hypothermia reduces seizure burden (level U; 1 class IV study). For adults with SRSE, insufficient evidence exists that inhalation anesthetics are effective (level U, 1 class IV study) and that there is a potential risk of neurotoxicity. CONCLUSION For patients with SRSE insufficient, evidence exists that any of the ASMs reviewed, inhalational anesthetics, ketogenic diet, acute VNS, brain surgery, and therapeutic hypothermia are effective treatments. Data supporting the use of these treatments for SRSE are scarce and limited mainly to small case series and case reports and are confounded by differences in patients' population, and comedications, among other factors.
Collapse
Affiliation(s)
| | | | | | | | - Ismail Mohamed
- Department of Pediatrics, University of Alabama, Birmingham, USA
| | - David G. Vossler
- University of Washington, Seattle, WA, USA
- Treatments Committee, American Epilepsy Society, Chicago, IL, USA
| |
Collapse
|
20
|
Abstract
For various reasons, status epilepticus in children is different than in adults. Pediatric specificities include status epilepticus epidemiology, underlying etiologies, pathophysiological mechanisms, and treatment options. Relevant data from the literature are presented for each of them, and questions remaining open for future studies on status epilepticus in childhood are listed.
Collapse
|
21
|
Yamagata K, Hirose Y, Tanaka K, Yoshida M, Ohnuki T, Sendo R, Niwa H, Sugimura M. Anesthetic Management of a Patient With a Vagal Nerve Stimulator. Anesth Prog 2020; 67:16-22. [PMID: 32191509 DOI: 10.2344/anpr-66-03-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vagal nerve stimulation (VNS) is an established adjunctive treatment for patients with refractory epilepsy. VNS is effective in many cases, but few patients achieve complete elimination of seizures. Furthermore, VNS can cause respiratory complications, such as obstructive sleep apnea. This report describes the successful anesthetic management of a 28-year-old woman with a VNS device who underwent dental treatment under general anesthesia. She was morbidly obese and had undergone placement of a VNS device secondary to drug-resistant epilepsy 2 years prior but continued to experience daily epileptic seizures. Because of concerns about the risk of perioperative epileptic seizures and apneic events, use of the dedicated VNS device magnet was planned if such complications occurred. Total intravenous anesthesia was induced with propofol and remifentanil and a bispectral index sensor was used to help monitor brain wave activity for evidence of seizures along with the depth of anesthesia. Postoperatively, the patient received positional therapy and supplemental oxygen while being closely monitored in recovery. The anesthetic course was completed uneventfully without need of the VNS magnet. A thorough understanding of the mechanics of a VNS device, including proper use of the VNS magnet, is critical for an anesthesiologist during the perioperative period.
Collapse
Affiliation(s)
- Kazuaki Yamagata
- Sakai Special Needs Dental Clinic, Sakai, Japan.,Department of Dental Anesthesiology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | - Tomotaka Ohnuki
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ryozo Sendo
- Department of Dental Anesthesiology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
22
|
Abstract
Convulsive status epilepticus (CSE) is one of the most common pediatric neurological emergencies. Ongoing seizure activity is a dynamic process and may be associated with progressive impairment of gamma-aminobutyric acid (GABA)-mediated inhibition due to rapid internalization of GABAA receptors. Further hyperexcitability may be caused by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartic acid) receptors moving from subsynaptic sites to the synaptic membrane. Receptor trafficking during prolonged seizures may contribute to difficulties treating seizures of longer duration and may provide some of the pathophysiological underpinnings of established and refractory SE (RSE). Simultaneously, a practice change toward more rapid initiation of first-line benzodiazepine (BZD) treatment and faster escalation to second-line non-BZD treatment for established SE is in progress. Early administration of the recommended BZD dose is suggested. For second-line treatment, non-BZD anti-seizure medications (ASMs) include valproate, fosphenytoin, or levetiracetam, among others, and at this point there is no clear evidence that any one of these options is better than the others. If seizures continue after second-line ASMs, RSE is manifested. RSE treatment consists of bolus doses and titration of continuous infusions under continuous electro-encephalography (EEG) guidance until electrographic seizure cessation or burst-suppression. Ultimately, etiological workup and related treatment of CSE, including broad spectrum immunotherapies as clinically indicated, is crucial. A potential therapeutic approach for future studies may entail consideration of interventions that may accelerate diagnosis and treatment of SE, as well as rational and early polytherapy based on synergism between ASMs by utilizing medications targeting different mechanisms of epileptogenesis and epileptogenicity.
Collapse
|
23
|
Erbguth F. [Management of refractory and super-refractory status epilepticus]. Med Klin Intensivmed Notfmed 2019; 114:628-634. [PMID: 31463678 DOI: 10.1007/s00063-019-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Abstract
If status epilepticus continues despite the use of intravenous antiepileptic drugs or narcotics, it is called "refractory" or "super-refractory" status epilepticus (RSE, SRSE). Prolonged seizure activity is associated with neuronal damage, systemic complications and mortality rates of up to 50%, especially in generalized tonic clonic seizure types. In order to terminate the status, several rescue interventions with drugs and other measures are available. However, their evidence base is low because the effectiveness of the measures was almost exclusively derived from case reports and case series. In individual cases, a good outcome is possible even after several months of ongoing SRSE.
Collapse
Affiliation(s)
- Frank Erbguth
- Klinik für Neurologie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Breslauer Str. 201, 90471, Nürnberg, Deutschland.
| |
Collapse
|
24
|
[Diagnosis and treatment of status epilepticus in the intensive care unit]. Med Klin Intensivmed Notfmed 2019; 114:475-484. [PMID: 31053866 DOI: 10.1007/s00063-019-0581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/09/2019] [Accepted: 03/07/2019] [Indexed: 10/26/2022]
Abstract
Both convulsive and nonconvulsive status epilepticus are associated with a high risk of morbidity and mortality. To limit brain damage, emergency investigation of etiology and treatment must be done synchronously. This review presents the general rules for treatment. The steps of pharmacologic escalation with benzodiazepines, antiepileptics, and anesthetics are discussed together with their advantages and disadvantages.
Collapse
|
25
|
Abstract
In caring for critically ill children, recognition and management often begins in the pediatric emergency department. A seamless transition in care is needed to ensure appropriate care to the sickest of children. This review covers the management of critically ill children in the pediatric emergency department beyond the initial stabilization for conditions such as acute respiratory failure and pediatric acute respiratory distress syndrome, traumatic brain injury, status epilepticus, congenital heart disease, and metabolic emergencies.
Collapse
|
26
|
Manatpon P, Kofke WA. Toxicity of inhaled agents after prolonged administration. J Clin Monit Comput 2018; 32:651-666. [PMID: 29098494 DOI: 10.1007/s10877-017-0077-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/28/2017] [Indexed: 11/24/2022]
Abstract
Inhaled anesthetics have been utilized mostly for general anesthesia in the operating room and oftentimes for sedation and for treatment of refractory status epilepticus and status asthmaticus in the intensive care unit. These contexts in the ICU setting are related to potential for prolonged administration wherein potential organ toxicity is a concern. Over the last decade, several clinical and animal studies of neurotoxicity attributable to inhaled anesthetics have been emerging, particularly in extremes of age. This review overviews potential for and potential mechanisms of neurotoxicity and systemic toxicity of prolonged inhaled anesthesia and clinical scenarios where inhaled anesthesia has been used in order to assess safety of possible prolonged use for sedation. High dose inhaled agents are associated with postoperative cognitive dysfunction (POCD) and other situations. However, thus far no strong indication of problematic neuro or organ toxicity has been demonstrated after prolonged use of low dose volatile anesthesia.
Collapse
Affiliation(s)
- Panumart Manatpon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Isoflurane Use in the Treatment of Super-Refractory Status Epilepticus is Associated with Hippocampal Changes on MRI. Neurocrit Care 2018; 26:420-427. [PMID: 28028789 DOI: 10.1007/s12028-016-0340-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Refractory status epilepticus (RSE) is associated with high morbidity and mortality. Experts recommend aggressive management with continuous intravenous infusions or inhaled anesthetics such as isoflurane. However, there is concern that MRI changes in RSE reflect isoflurane neurotoxicity. We performed a case-control study to determine whether isoflurane is neurotoxic, based on MRI signal changes. METHODS We performed a retrospective case-control study of the incidence of MRI changes in RSE treated with and without isoflurane. Charts were reviewed for demographic and treatment information. T1, T2, and FLAIR sequences of MRIs were reviewed independently by two neuroradiologists blinded to treatment group for presence or absence of signal change or atrophy in the meninges, cortex, white matter, basal ganglia, thalamus, hippocampus, brainstem, and cerebellum. RESULTS Eight cases of RSE receiving treatment with isoflurane were identified and double-matched with 15 controls who received only intravenous anesthetics. Baseline characteristics were similar. Hippocampal signal change was observed more frequently in cases receiving isoflurane (p = 0.026). CONCLUSIONS Hippocampal signal changes were associated with isoflurane use in patients with RSE. They were also associated with number of seizure days prior to MRI and the use of multiple anesthetic agents. Similar changes have been seen as a result of RSE itself, and one cannot rule out the possibility these changes represent seizure-related effects. If isoflurane-related, these hippocampal signal changes may be the result of a direct neurotoxic effect of prolonged isoflurane use or failure of isoflurane to protect the hippocampus from seizure-induced injury despite achieving electrographic burst-suppression.
Collapse
|
28
|
Abstract
Patients with prolonged seizures that do not respond to intravenous benzodiazepines and a second-line anticonvulsant suffer from refractory status epilepticus and those with seizures that do not respond to continuous intravenous anesthetic anticonvulsants suffer from super-refractory status epilepticus. Both conditions are associated with significant morbidity and mortality. A strict pharmacological treatment regimen is urgently required, but the level of evidence for the available drugs is very low. Refractory complex focal status epilepticus generally does not require anesthetics, but all intravenous non-anesthetizing anticonvulsants may be used. Most descriptive data are available for levetiracetam, phenytoin and valproate. Refractory generalized convulsive status epilepticus is a life-threatening emergency, and long-term clinical consequences are eminent. Administration of intravenous anesthetics is mandatory, and drugs acting at the inhibitory gamma-aminobutyric acid (GABA)A receptor such as midazolam, propofol and thiopental/pentobarbital are recommended without preference for one of those. One in five patients with anesthetic treatment does not respond and has super-refractory status epilepticus. With sustained seizure activity, excitatory N-methyl-d-aspartate (NMDA) receptors are increasingly expressed post-synaptically. Ketamine is an antagonist at this receptor and may prove efficient in some patients at later stages. Neurosteroids such as allopregnanolone increase sensitivity at GABAA receptors; a Phase 1/2 trial demonstrated safety and tolerability, but randomized controlled data failed to demonstrate efficacy. Adjunct ketogenic diet may contribute to termination of difficult-to-treat status epilepticus. Randomized controlled trials are needed to increase evidence for treatment of refractory and super-refractory status epilepticus, but there are multiple obstacles for realization. Hitherto, prospective multicenter registries for pharmacological treatment may help to improve our knowledge.
Collapse
Affiliation(s)
- Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Status epilepticus (SE) is a multisystem disorder. Initially, complications of a massive catecholamine release followed by the side effects of medical therapies, impact patients' outcomes. The aim of this article is to provide an updated summary of the systemic complications following SE. RECENT FINDINGS In recent years, the importance of the multifaceted nature of SE and its relationship with clinical outcomes has been increasingly recognized. The cumulative systemic effects of prolonged seizures and their treatment contribute to morbidity and mortality in this condition. Most systemic complications after SE are predictable. Anticipating their occurrence and respecting a number of simple guidelines may improve the prognosis of these patients.
Collapse
Affiliation(s)
- Maximiliano A Hawkes
- Department of Neurology, Division of Critical Care Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| | - Sara E Hocker
- Department of Neurology, Division of Critical Care Neurology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| |
Collapse
|
30
|
Hobson BA, Rowland DJ, Supasai S, Harvey DJ, Lein PJ, Garbow JR. A magnetic resonance imaging study of early brain injury in a rat model of acute DFP intoxication. Neurotoxicology 2017; 66:170-178. [PMID: 29183789 DOI: 10.1016/j.neuro.2017.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022]
Abstract
Current treatments for seizures induced by organophosphates do not protect sufficiently against progressive neurodegeneration or delayed cognitive impairment. Developing more effective therapeutic approaches has been challenging because the pathogenesis of these delayed consequences is poorly defined. Using magnetic resonance imaging (MRI), we previously reported brain lesions that persist for months in a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP). However, the early spatiotemporal progression of these lesions remains unknown. To address this data gap, we used in vivo MRI to longitudinally monitor brain lesions during the first 3 d following acute DFP intoxication. Adult male Sprague Dawley rats acutely intoxicated with DFP (4mg/kg, sc) were MR imaged at 6, 12, 18, 24, 48, 72h post-DFP, and their brains then taken for correlative histology to assess neurodegeneration using FluoroJade C (FJC) staining. Acute DFP intoxication elicited moderate-to-severe seizure activity. T2-weighted (T2w) anatomic imaging revealed prominent lesions within the thalamus, piriform cortex, cerebral cortex, hippocampus, corpus striatum, and substantia nigra that corresponded to neurodegeneration, evident as bands of FJC positive cells. Semi-quantitative assessment of lesion severity demonstrated significant regional variation in the onset and progression of injury, and suggested that lesion severity may be modulated by isoflurane anesthesia. These results imply that the timing of therapeutic intervention for attenuating brain injury following OP intoxication may be regionally dependent, and that longitudinal assessment of OP-induced damage by MRI may be a powerful tool for assessing therapeutic response.
Collapse
Affiliation(s)
- Brad A Hobson
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, Davis, CA, 95616, United States.
| | - Suangsuda Supasai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Joel R Garbow
- Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, School of Medicine,Washington University in St. Louis, St. Louis, MO, 63110, United States.
| |
Collapse
|
31
|
Abstract
OPINION STATEMENT Convulsive status epilepticus (CSE) is a medical emergency with an associated high mortality and morbidity. It is defined as a convulsive seizure lasting more than 5 min or consecutive seizures without recovery of consciousness. Successful management of CSE depends on rapid administration of adequate doses of anti-epileptic drugs (AEDs). The exact choice of AED is less important than rapid treatment and early consideration of reversible etiologies. Current guidelines recommend the use of benzodiazepines (BNZ) as first-line treatment in CSE. Midazolam is effective and safe in the pre-hospital or home setting when administered intramuscularly (best evidence), buccally, or nasally (the latter two possibly faster acting than intramuscular (IM) but with lower levels of evidence). Regular use of home rescue medications such as nasal/buccal midazolam by patients and caregivers for prolonged seizures and seizure clusters may prevent SE, prevent emergency room visits, improve quality of life, and lower health care costs. Traditionally, phenytoin is the preferred second-line agent in treating CSE, but it is limited by hypotension, potential arrhythmias, allergies, drug interactions, and problems from extravasation. Intravenous valproate is an effective and safe alternative to phenytoin. Valproate is loaded intravenously rapidly and more safely than phenytoin, has broad-spectrum efficacy, and fewer acute side effects. Levetiracetam and lacosamide are well tolerated intravenous (IV) AEDs with fewer interactions, allergies, and contraindications, making them potentially attractive as second- or third-line agents in treating CSE. However, data are limited on their efficacy in CSE. Ketamine is probably effective in treating refractory CSE (RCSE), and may warrant earlier use; this requires further study. CSE should be treated aggressively and quickly, with confirmation of treatment success with epileptiform electroencephalographic (EEG), as a transition to non-convulsive status epilepticus is common. If the patient is not fully awake, EEG should be continued for at least 24 h. How aggressively to treat refractory non-convulsive SE (NCSE) or intermittent non-convulsive seizures is less clear and requires additional study. Refractory SE (RSE) usually requires anesthetic doses of anti-seizure medications. If an auto-immune or paraneoplastic etiology is suspected or no etiology can be identified (as with cryptogenic new onset refractory status epilepticus, known as NORSE), early treatment with immuno-modulatory agents is now recommended by many experts.
Collapse
|
32
|
Trinka E, Höfler J, Leitinger M, Rohracher A, Kalss G, Brigo F. Pharmacologic treatment of status epilepticus. Expert Opin Pharmacother 2016; 17:513-34. [DOI: 10.1517/14656566.2016.1127354] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|