1
|
Sharkia R, Vuillaume ML, Jain S, Mahajnah M, Stoeva R, Guichet A, Colin E, Champ J, Derive N, Chefdor A, Zalan A. An Update of Phenotypic-Genotypic IMNEPD Cases and a Bioinformatics Analysis of the New PTRH2 Gene Variants. Genes (Basel) 2024; 15:1508. [PMID: 39766776 PMCID: PMC11675358 DOI: 10.3390/genes15121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Biallelic mutations in the PTRH2 gene are associated with a rare genetic disease known as infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). In this study, we describe a new case carrying a previously identified mutation, provide an updated analysis of the relative frequencies of the clinical features across all published cases (including the three latest studies), and perform a bioinformatics analysis of the newly identified PTRH2 protein variants from a structural perspective. METHODS Clinical examination of the patients was carried out, and genetic testing was performed using a genome sequencing strategy. A bioinformatics analysis was carried out for the newly reported mutations using PYMOL that was utilized to view the structure and analyze the mutations. Additionally, the ThermoMPNN webserver was employed to check the effect of point mutations on the overall stability of the protein. RESULTS Our findings indicate that motor delay, neuropathy, intellectual disability, distal weakness, hearing impairment, and ataxia are the most common symptoms, while the other clinical features fall into two frequency categories: moderately common ones and the least common ones. The bioinformatics analysis revealed that the Q85 residue is highly conserved, suggesting that mutations at this position could disrupt key signaling pathways or cellular functions. Indeed, the Q85R mutation was shown to significantly impair the stability and functionality of the protein. CONCLUSIONS The clinical presentation of IMNEPD remains highly variable in terms of both severity and progression. Mutations at the Q85 residue have been identified in nearly 50% of reported cases, highlighting this position as a potential mutational hotspot in the PTRH2 protein.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qari 3007500, Israel;
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Marie-Laure Vuillaume
- Genetics Department, Tours University Hospital, 37044 Tours, France
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U12523, University of Tours, 37032 Tours, France
| | - Sahil Jain
- Bioinformatics Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109600, Israel
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 3810000, Israel
| | - Radka Stoeva
- Department of Medical Genetics, Le Mans Hospital, 72037 Le Mans, France
| | - Agnès Guichet
- Genetics Department CHU 4 Rue Larrey, 49933 Angers, France
- Miotvasc, UMR CNRS 6015, INSERM U1083, Angers University, 49933 Angers, France
| | - Estelle Colin
- Genetics Department CHU 4 Rue Larrey, 49933 Angers, France
- Miotvasc, UMR CNRS 6015, INSERM U1083, Angers University, 49933 Angers, France
| | | | | | - Arnaud Chefdor
- Department of Pediatrics, Le Mans Hospital, 72037 Le Mans, France
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qari 3007500, Israel;
| |
Collapse
|
2
|
Berling E, Latour P, Loiselet K, Guémy C, Vidoni L, Romero NB, Lacene E, Evangelista T, Stojkovic T. Severe Respiratory and Swallowing Disorders in Infantile-Onset Multisystem Neurologic, Endocrine, and Pancreatic Disease Type 1: Two Cases. Neurol Genet 2024; 10:e200178. [PMID: 39176129 PMCID: PMC11341004 DOI: 10.1212/nxg.0000000000200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Objectives The objective of this study was to expand the phenotypic spectrum of infantile-onset multisystem neurologic, endocrine, and pancreatic disease type 1 (IMNEPD1) and highlight the importance of analyzing the PTRH2 gene in patients with neuropathy presenting with pancreatic lipomatosis. Methods Two sisters, aged 73 and 71 years, respectively, presented a severe, length-dependent sensorimotor axonal neuropathy, associated with deafness and intellectual deficiency. Results They both needed a wheelchair from the fourth decade. They developed a severe respiratory dysfunction, requiring nocturnal noninvasive ventilation from around 50 years of age. The younger sister developed severe dysphagia complicated by aspiration pneumonia. A muscle biopsy of the younger sister was suggestive of mitochondrial myopathy. The youngest presented a complete pancreatic lipomatosis. A biallelic novel likely pathogenic variant within PTRH2, c.254A>G (p.Gln85Arg), was evidenced in both patients. Discussion IMNEPD1 is a rare autosomal recessive disorder caused by sequence variant in the PTRH2 gene and characterized by a peripheral neuropathy, cerebellar atrophy, intellectual disability, hearing loss, pancreatic insufficiency, hypothyroidism, and dysmorphic features. In addition to these classic manifestations of the disorder, severe dysphagia and respiratory insufficiency may develop over the course of the disease and should be systematically screened. PTRH2 gene should be considered in patients with pancreatic lipomatosis and neuropathy.
Collapse
Affiliation(s)
- Edouard Berling
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Latour
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Klervie Loiselet
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Clément Guémy
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Léo Vidoni
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Norma B Romero
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Lacene
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Teresinha Evangelista
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tanya Stojkovic
- From the APHP (E.B., C.G.), Service de Neurologie, Hôpital Raymond Poincaré, Garches; APHP (E.B., C.G.), Centre de référence Nord-Est-Ile-de-France, FHU PHENIX; Université de Versailles Saint-Quentin-en-Yvelines (E.B.), U 1179 INSERM, Paris-Saclay; Centre de Biologie Est (P.L., L.V.), Hospices Civils, Lyon; Department of Pediatric Radiology (K.L.), Hôpital Necker-Enfants Malades, Paris; Sorbonne Université (N.B.R., T.E.), UMRS974, - INSERM, Centre de Recherche en Myologie, Institut de Myologie Paris; APHP (N.B.R., E.L., T.E.), Unité de Morphologie neuromusculaire, Centre de référence des maladies neuromusculaires Nord-Est-Ile-de-France; and APHP (T.S.), Sorbonne Université, Service de Neuromyologie, Centre de référence Nord-Est-Ile-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
3
|
Mammi A, Geroldi A, Patrone S, Gotta F, Origone P, Gaudio A, La Barbera A, Sanguineri F, Ponti C, Iacomino M, Traverso M, Ferlazzo E, Schenone A, Pascarella A, Marsico O, Mandich P, Bellone E. The neurological core features of the infantile-onset multisystem neurologic, endocrine, and pancreatic disease: A novel nonsense mutation in an Italian family. J Peripher Nerv Syst 2024; 29:279-285. [PMID: 38874107 DOI: 10.1111/jns.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
AIM Biallelic mutations in the PTRH2 gene have been associated with infantile multisystem neurological, endocrine, and pancreatic disease (IMNEPD), a rare autosomal recessive disorder of variable expressivity characterized by global developmental delay, intellectual disability or borderline IQ level, sensorineural hearing loss, ataxia, and pancreatic insufficiency. Various additional features may be included, such as peripheral neuropathy, facial dysmorphism, hypothyroidism, hepatic fibrosis, postnatal microcephaly, cerebellar atrophy, and epilepsy. Here, we report the first Italian family presenting only predominant neurological features. METHODS Extensive neurological and neurophysiological evaluations have been conducted on the two affected brothers and their healthy mother since 1996. The diagnosis of peripheral neuropathy of probable hereditary origin was confirmed through a sural nerve biopsy. Exome sequencing was performed after the analysis of major neuropathy-associated genes yielded negative results. RESULTS Whole-exome sequencing analysis identified the homozygous substitution c.256C>T (p.Gln86Ter) in the PTRH2 gene in the two siblings. According to American College of Medical Genetics and Genomics (ACMG) guidelines, the variant has been classified as pathogenic. At 48 years old, the proband's reevaluation confirmed a demyelinating sensorimotor polyneuropathy with bilateral sensorineural hearing loss that had been noted since he was 13. Additionally, drug-resistant epileptic seizures occurred when he was 32 years old. No hepatic or endocrinological signs developed. The younger affected brother, 47 years old, has an overlapping clinical presentation without epilepsy. INTERPRETATION Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants. We thereby hope to better define IMNEPD and facilitate the identification and diagnosis of this novel disease entity.
Collapse
Affiliation(s)
- Alessia Mammi
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Serena Patrone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
| | - Paola Origone
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
| | - Andrea La Barbera
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
| | - Francesca Sanguineri
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Clarissa Ponti
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- IRCCS Istituto Giannina Gaslini, Medical Genetic Unit, Genoa, Italy
| | - Monica Traverso
- IRCCS Istituto Giannina Gaslini, Medical Genetic Unit, Genoa, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Regional Epilepsy Centre, "Bianchi-Melacrino-Morelli" Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, UOC Neurology Clinic, Genoa, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Regional Epilepsy Centre, "Bianchi-Melacrino-Morelli" Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Oreste Marsico
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Emilia Bellone
- IRCCS Ospedale Policlinico San Martino, UOC Medical Genetics, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
4
|
Picker-Minh S, Luperi I, Ravindran E, Kraemer N, Zaqout S, Stoltenburg-Didinger G, Ninnemann O, Hernandez-Miranda LR, Mani S, Kaindl AM. PTRH2 is Necessary for Purkinje Cell Differentiation and Survival and its Loss Recapitulates Progressive Cerebellar Atrophy and Ataxia Seen in IMNEPD Patients. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1137-1151. [PMID: 36219306 PMCID: PMC10657312 DOI: 10.1007/s12311-022-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Hom ozygous variants in the peptidyl-tRNA hydrolase 2 gene (PTRH2) cause infantile-onset multisystem neurologic, endocrine, and pancreatic disease. The objective is to delineate the mechanisms underlying the core cerebellar phenotype in this disease. For this, we generated constitutive (Ptrh2LoxPxhCMVCre, Ptrh2-/- mice) and Purkinje cell (PC) specific (Ptrh2LoxPxPcp2Cre, Ptrh2ΔPCmice) Ptrh2 mutant mouse models and investigated the effect of the loss of Ptrh2 on cerebellar development. We show that Ptrh2-/- knockout mice had severe postnatal runting and lethality by postnatal day 14. Ptrh2ΔPC PC specific knockout mice survived until adult age; however, they showed progressive cerebellar atrophy and functional cerebellar deficits with abnormal gait and ataxia. PCs of Ptrh2ΔPC mice had reduced cell size and density, stunted dendrites, and lower levels of ribosomal protein S6, a readout of the mammalian target of rapamycin pathway. By adulthood, there was a marked loss of PCs. Thus, we identify a cell autonomous requirement for PTRH2 in PC maturation and survival. Loss of PTRH2 in PCs leads to downregulation of the mTOR pathway and PC atrophy. This suggests a molecular mechanism underlying the ataxia and cerebellar atrophy seen in patients with PTRH2 mutations leading to infantile-onset multisystem neurologic, endocrine, and pancreatic disease.
Collapse
Affiliation(s)
- Sylvie Picker-Minh
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Ilaria Luperi
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ethiraj Ravindran
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nadine Kraemer
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sami Zaqout
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Gisela Stoltenburg-Didinger
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Shyamala Mani
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
5
|
Sharkia R, Jain S, Mahajnah M, Habib C, Azem A, Al-Shareef W, Zalan A. PTRH2 Gene Variants: Recent Review of the Phenotypic Features and Their Bioinformatics Analysis. Genes (Basel) 2023; 14:genes14051031. [PMID: 37239392 DOI: 10.3390/genes14051031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2) is an evolutionarily highly conserved mitochondrial protein. The biallelic mutations in the PTRH2 gene have been suggested to cause a rare autosomal recessive disorder characterized by an infantile-onset multisystem neurologic endocrine and pancreatic disease (IMNEPD). Patients with IMNEPD present varying clinical manifestations, including global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, sensorineural hearing loss, and abnormalities of thyroid, pancreas, and liver. In the current study, we conducted an extensive literature review with an emphasis on the variable clinical spectrum and genotypes in patients. Additionally, we reported on a new case with a previously documented mutation. A bioinformatics analysis of the various PTRH2 gene variants was also carried out from a structural perspective. It appears that the most common clinical characteristics among all patients include motor delay (92%), neuropathy (90%), distal weakness (86.4%), intellectual disability (84%), hearing impairment (80%), ataxia (79%), and deformity of head and face (~70%). The less common characteristics include hand deformity (64%), cerebellar atrophy/hypoplasia (47%), and pancreatic abnormality (35%), while the least common appear to be diabetes mellitus (~30%), liver abnormality (~22%), and hypothyroidism (16%). Three missense mutations were revealed in the PTRH2 gene, the most common one being Q85P, which was shared by four different Arab communities and was presented in our new case. Moreover, four different nonsense mutations in the PTRH2 gene were detected. It may be concluded that disease severity depends on the PTRH2 gene variant, as most of the clinical features are manifested by nonsense mutations, while only the common features are presented by missense mutations. A bioinformatics analysis of the various PTRH2 gene variants also suggested the mutations to be deleterious, as they seem to disrupt the structural confirmation of the enzyme, leading to loss of stability and functionality.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 38100, Israel
| | - Clair Habib
- Genetics Institute, Rambam Health Care Campus, Haifa 31096, Israel
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wasif Al-Shareef
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| |
Collapse
|
6
|
Malformations of cerebral development and clues from the peripheral nervous system: A systematic literature review. Eur J Paediatr Neurol 2022; 37:155-164. [PMID: 34535379 DOI: 10.1016/j.ejpn.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Clinical manifestations of malformations of cortical development (MCD) are variable and can range from mild to severe intellectual disability, cerebral palsy and drug-resistant epilepsy. Besides common clinical features, non-specific or more subtle clinical symptoms may be present in association with different types of MCD. Especially in severely affected individuals, subtle but specific underlying clinical symptoms can be overlooked or overshadowed by the global clinical presentation. To facilitate the interpretation of genetic variants detailed clinical information is indispensable. Detailed (neurological) examination can be helpful in assisting with the diagnostic trajectory, both when referring for genetic work-up as well as when interpreting data from molecular genetic testing. This systematic literature review focusses on different clues derived from the neurological examination and potential further work-up triggered by these signs and symptoms in genetically defined MCDs. A concise overview of specific neurological findings and their associations with MCD subtype and genotype are presented, easily applicable in daily clinical practice. The following pathologies will be discussed: neuropathy, myopathy, muscular dystrophies and spastic paraplegia. In the discussion section, tips and pitfalls are illustrated to improve clinical outcome in the future.
Collapse
|
7
|
Ando M, Higuchi Y, Takeuchi M, Hashiguchi A, Takashima H. The first case of infantile-onset multisystem neurologic, endocrine, and pancreatic disease caused by novel PTRH2 mutation in Japan. Neurol Sci 2022; 43:2133-2136. [DOI: 10.1007/s10072-021-05817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
|
8
|
A novel PTRH2 missense mutation causing IMNEPD: a case report. Hum Genome Var 2021; 8:23. [PMID: 34112751 PMCID: PMC8192544 DOI: 10.1038/s41439-021-00147-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/08/2022] Open
Abstract
PTRH2 deficiency is associated with an extremely rare disease, infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). We report the first Iranian patient with IMNEPD. We detected a pathogenic variant in the PTRH2 gene (NM_016077.5: c.68T > C, p.V23A). The proband has myopia, spastic diplegic cerebral palsy, urolithiasis, and a history of seizures.
Collapse
|
9
|
Charles Bronson S, Suresh E, Stephen Abraham Suresh Kumar S, Mythili C, Shanmugam A. A Novel Synergistic Association of Variants in PTRH2 and KIF1A Relates to a Syndrome of Hereditary Axonopathy, Outer Hair Cell Dysfunction, Intellectual Disability, Pancreatic Lipomatosis, Diabetes, Cerebellar Atrophy, and Vertebral Artery Hypoplasia. Cureus 2021; 13:e13174. [PMID: 33717719 PMCID: PMC7939034 DOI: 10.7759/cureus.13174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The gene PTRH2 encodes a protein with peptidyl-tRNA hydrolase activity and is involved in the translation process in protein synthesis. The kinesin family member 1-A (KIF1A) gene encodes a molecular motor involved in axonal transport along microtubules. Mutations in these genes lead to respective phenotypical conditions that have been reported in the literature. In this paper, we present a novel syndrome of concurrent occurrence of mutations in the PTRH2 and KIF1A genes in a 19-year-old girl of Dravidian-Tamil descent from the Southern part of India. The girl presented with global developmental delay, intellectual disability, weakness of upper and lower limbs, and diabetes. On workup, she was found to have severe peripheral axonopathy, outer hair cell (OHC) dysfunction, severe bilateral sensorineural hearing loss (SNHL), total pancreatic lipomatosis, exocrine pancreatic insufficiency, cerebellar atrophy, vertebral artery hypoplasia, and scoliosis. The patient had a deceased elder sibling who also had had a similar phenotype. Whole exome sequencing (WES) revealed a novel variant in the PTRH2 gene and a rare variant in the KIF1A gene. The predominant axonal involvement seen in our patient, which was attributable to KIF1A involvement, distinguishes this syndrome from the infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) caused by PTRH2 involvement alone. To the best of our knowledge, this is the first report in the medical literature of a syndrome caused by the synergistic occurrence of mutations in the PTRH2 and KIF1A genes. In order to provide more clarity on the genetic and clinical features of such syndromes and to aid the treating clinician to recognize the existence of such syndromes, we propose the broader umbrella term "neuro-pancreatic syndromes" (NPS). Presently, under NPS, we include two entities: the syndrome described by us in this paper and the IMNEPD. Prompt and effective recognition and management of such NPS would immensely benefit the patient in terms of treatment and prognosis. Furthermore, we hope that this paper will promote further understanding of NPS and foster more research, both clinical and genetic, which would widen the spectrum of NPS. Eventually, this would throw more light on treatment options and ultimately benefit patients with NPS.
Collapse
Affiliation(s)
- S Charles Bronson
- Internal Medicine: Diabetes and Endocrinology, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| | - E Suresh
- Internal Medicine: Diabetes and Endocrinology, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| | | | - C Mythili
- Biochemistry, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| | - A Shanmugam
- Internal Medicine: Diabetes and Endocrinology, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| |
Collapse
|
10
|
Diabetes mellitus in an adolescent girl with intellectual disability caused by novel single base pair duplication in the PTRH2 gene: Expanding the clinical spectrum of IMNEPD. Brain Dev 2021; 43:314-319. [PMID: 33092935 DOI: 10.1016/j.braindev.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) is an extremely rare autosomal recessive disorder with variable expressivity, caused by biallelic mutations in the PTRH2 gene. Core features are global developmental delay or isolated speech delay, intellectual disability, sensorineural hearing loss, ataxia, and pancreatic insufficiency (both exocrine and endocrine). Additional features may include postnatal microcephaly, peripheral neuropathy, facial dysmorphism, and cerebellar atrophy. In literature, there are only a few anecdotal case reports and none of the previous cases presented with diabetic ketoacidosis. METHODS We are reporting a 12-year old adolescent girl with mild intellectual disability who presented with fever, pain abdomen for 2 days, and fast breathing for one day. RESULTS Her random blood sugar was 472 mg/dl and arterial blood gas revealed high anion gap metabolic acidosis. Urine examination showed ketonuria. On further evaluation, she was found to have demyelinating sensorimotor polyneuropathy and sensorineural hearing loss. Neuroimaging and other ancillary investigations were normal. Whole exome sequencing revealed a novel homozygous single base pair duplication in exon 1 of the PTRH2 gene (c.127dupA, p.Ser43LysfsTer11), confirming the diagnosis of IMNEPD. CONCLUSIONS Apart from describing a novel single base pair duplication causing protein truncation in the PTRH2 gene for the first time, our case also expanded the clinical spectrum of IMNEPD, as this is the first case with seemingly pure neurodevelopmental phenotype, who later developed diabetes mellitus, without any exocrine pancreatic abnormality. IMNEPD should be considered in children or adolescents with global developmental delay or intellectual disability when they develop diabetes mellitus.
Collapse
|
11
|
Murdock DR, Dai H, Burrage LC, Rosenfeld JA, Ketkar S, Müller MF, Yépez VA, Gagneur J, Liu P, Chen S, Jain M, Zapata G, Bacino CA, Chao HT, Moretti P, Craigen WJ, Hanchard NA, Undiagnosed Diseases Network, Lee B. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest 2021; 131:141500. [PMID: 33001864 PMCID: PMC7773386 DOI: 10.1172/jci141500] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUNDTranscriptome sequencing (RNA-seq) improves diagnostic rates in individuals with suspected Mendelian conditions to varying degrees, primarily by directing the prioritization of candidate DNA variants identified on exome or genome sequencing (ES/GS). Here we implemented an RNA-seq-guided method to diagnose individuals across a wide range of ages and clinical phenotypes.METHODSOne hundred fifteen undiagnosed adult and pediatric patients with diverse phenotypes and 67 family members (182 total individuals) underwent RNA-seq from whole blood and skin fibroblasts at the Baylor College of Medicine (BCM) Undiagnosed Diseases Network clinical site from 2014 to 2020. We implemented a workflow to detect outliers in gene expression and splicing for cases that remained undiagnosed despite standard genomic and transcriptomic analysis.RESULTSThe transcriptome-directed approach resulted in a diagnostic rate of 12% across the entire cohort, or 17% after excluding cases solved on ES/GS alone. Newly diagnosed conditions included Koolen-de Vries syndrome (KANSL1), Renpenning syndrome (PQBP1), TBCK-associated encephalopathy, NSD2- and CLTC-related intellectual disability, and others, all with negative conventional genomic testing, including ES and chromosomal microarray (CMA). Skin fibroblasts exhibited higher and more consistent expression of clinically relevant genes than whole blood. In solved cases with RNA-seq from both tissues, the causative defect was missed in blood in half the cases but none from fibroblasts.CONCLUSIONSFor our cohort of undiagnosed individuals with suspected Mendelian conditions, transcriptome-directed genomic analysis facilitated diagnoses, primarily through the identification of variants missed on ES and CMA.TRIAL REGISTRATIONNot applicable.FUNDINGNIH Common Fund, BCM Intellectual and Developmental Disabilities Research Center, Eunice Kennedy Shriver National Institute of Child Health & Human Development.
Collapse
Affiliation(s)
- David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Michaela F. Müller
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Vicente A. Yépez
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Gladys Zapata
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Laboratory for Translational Genomics, Agricultural Research Service (ARS)/United States Department of Agriculture (USDA) Children’s Nutrition Research Center, and
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- McNair Medical Institute at the Robert and Janice McNair Foundation, Houston, Texas, USA
| | - Paolo Moretti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Department of Neurology, University of Utah and George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - William J. Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Laboratory for Translational Genomics, Agricultural Research Service (ARS)/United States Department of Agriculture (USDA) Children’s Nutrition Research Center, and
| | | | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
12
|
Corpuz AD, Ramos JW, Matter ML. PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 2020; 6:124. [PMID: 33298880 PMCID: PMC7661711 DOI: 10.1038/s41420-020-00357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD). In contrast, in cancer PTRH2 is a potential oncogene that promotes malignancy and metastasis. PTRH2 modulates PI3K/AKT and ERK signaling in addition to Bcl2 expression and thereby regulates key cellular processes in response to adhesion including cell survival, growth, and differentiation. In this Review, we discuss the state of the science on this important cell survival, anoikis and differentiation regulator, and opportunities for further investigation and translation. We begin with a brief overview of the structure, regulation, and subcellular localization of PTRH2. We discuss the cluster of gene mutations thus far identified which cause developmental delays and multisystem disease. We then discuss the role of PTRH2 and adhesion in breast, lung, and esophageal cancers focusing on signaling pathways involved in cell survival, cell growth, and cell differentiation.
Collapse
Affiliation(s)
- Austin D Corpuz
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.,Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.
| |
Collapse
|
13
|
Abstract
BACKGROUND Retrospective observational study to determine diagnostic yield and utility of genetic testing in children with epilepsy attending the Epilepsy Clinic at Children's Hospital, London, Ontario, Canada. METHODS Children (birth-18 years) with epilepsy, who were seen in a 10-year period (January 1, 2008-March 31, 2018), were selected using defined inclusion criteria and by combining clinic datasets and laboratory records. RESULTS In total, 105 children (52.38% male and 47.61% female) with a variety of seizures were included in the analysis. Developmental delay was documented in the majority (83; 79.04%). Overall, a genetic diagnosis was established in 24 (22.85%) children. The diagnostic yield was highest for whole-exome sequencing (WES), at 35.71%. The yield from microarray was 8.33%. Yields of single-gene testing (18.60%) and targeted multigene panel testing (19.23%) were very similar. Several likely pathogenic and pathogenic variants not previously reported were identified and categorized using ACMG criteria. All diagnosed patients underwent a review of anti-seizure medication management and received counseling on natural history of their disease, possible complications, recurrence risks, and possibilities of preimplantation or prenatal genetic diagnosis. CONCLUSIONS Our study confirms the multiple benefits of detecting a genetic etiology in children with epilepsy. Similar yields in single versus multigene testing underscore the importance of accurate clinical phenotyping. Patients with epilepsy and their caregivers in Ontario would undoubtedly benefit from repatriation of multigene panels and WES to the province.
Collapse
|
14
|
Schneeberger PE, Kortüm F, Korenke GC, Alawi M, Santer R, Woidy M, Buhas D, Fox S, Juusola J, Alfadhel M, Webb BD, Coci EG, Abou Jamra R, Siekmeyer M, Biskup S, Heller C, Maier EM, Javaher-Haghighi P, Bedeschi MF, Ajmone PF, Iascone M, Peeters H, Ballon K, Jaeken J, Rodríguez Alonso A, Palomares-Bralo M, Santos-Simarro F, Meuwissen MEC, Beysen D, Kooy RF, Houlden H, Murphy D, Doosti M, Karimiani EG, Mojarrad M, Maroofian R, Noskova L, Kmoch S, Honzik T, Cope H, Sanchez-Valle A, Gelb BD, Kurth I, Hempel M, Kutsche K. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020; 143:2437-2453. [PMID: 32761064 PMCID: PMC7447524 DOI: 10.1093/brain/awaa204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Malik Alawi
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Woidy
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | - Stephanie Fox
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | | | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emanuele G Coci
- Department for Neuropediatrics, University Children's Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Pediatrics, Prignitz Hospital, Brandenburg Medical School, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Manuela Siekmeyer
- Universitätsklinikum Leipzig - AöR, University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Corina Heller
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany
| | | | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola F Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Katleen Ballon
- Centre for Developmental Disabilities, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Aroa Rodríguez Alonso
- Unidad de Patología Compleja, Servicio de Pediatría, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | | | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University, London, UK
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|