1
|
Mao Q, Liu J, Yan Y, Wang G, Zhang M, Wang Z, Wen X, Jiang Z, Li H, Li J, Xu M, Zhang R, Yang B. 13-Methylpalmatine alleviates bleomycin-induced pulmonary fibrosis by suppressing the ITGA5/TGF-β/Smad signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156545. [PMID: 40023972 DOI: 10.1016/j.phymed.2025.156545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease for which there is a lack of effective and safe therapeutic drugs. 13-Methylpalmatine (13-Me-PLT) is an active compound from Coptis chinensis, and no study has yet been reported on its pharmacological effects in pulmonary fibrotic diseases. The group has previously demonstrated the antimyocardial fibrosis efficacy of 13-Me-PLT but its effect on pulmonary fibrosis and its potential mechanism has not yet been investigated. PURPOSE The present research is designed to clarify the therapeutic potential and mechanism of action of 13-Me-PLT in IPF using a bleomycin (BLM)-induced mouse model of IPF. METHODS In vivo, mice were administrated with BLM to establish the IPF model, and IPF mice were treated with 13-Me-PLT (5, 10, and 20 mg/kg) and pirfenidone (PFD, 300 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/ml)-induced MRC5 cells, which were then treated with 13-Me-PLT (5, 10, 20 μM) and PFD (500 μM). High-throughput transcriptome sequencing, molecular dynamics simulations, molecular docking and Surface plasmon resonance (SPR) were employed to elucidate the underlying mechanisms of 13-Me-PLT in mitigating IPF. RESULT In vivo experiments showed that 13-Me-PLT significantly ameliorated BLM-induced lung fibrosis in mice. In vitro studies, 13-Me-PLT showed good antifibrotic potential by inhibiting fibroblast differentiation. Transcriptomic analysis of mouse lung tissues identified ITGA5 and TGF-β/Smad signaling pathways as key targets for the antifibrotic effects of 13-Me-PLT. Molecular docking and kinetic analyses further supported these findings. Functional studies involving ITGA5 silencing and overexpression confirmed that 13-Me-PLT down-regulated ITGA5 expression and inhibited the activation of the TGF-β/Smad signaling pathway, confirming its mechanism of action. CONCLUSION To our best knowledge, these results provide the first insight that 13-Me-PLT is protective against BLM-induced IPF in mice. Unlike existing antifibrotic drugs, 13-Me-PLT specifically targets the ITGA5/TGF-β/Smad signaling pathway, offering a novel and potentially more effective therapeutic approach. This study not only validates the antifibrotic efficacy of 13-Me-PLT but also elucidates its unique mechanism of action, these findings may provide an opportunity to develop new drugs to treat IPF.
Collapse
Affiliation(s)
- Qin Mao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jiajing Liu
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yu Yan
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gang Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Miao Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiaowei Wen
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zefeng Jiang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Haijing Li
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Mingyang Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Rong Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, PR China.
| |
Collapse
|
2
|
Heidari P, Taghizadeh M, Vakili O. Signaling pathways and molecular mechanisms involved in the onset and progression of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL); a focus on Notch3 signaling. J Headache Pain 2025; 26:96. [PMID: 40301727 PMCID: PMC12042419 DOI: 10.1186/s10194-025-02025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal-dominantly inherited cerebral small-vessel disease (SVD). CADASIL has diverse clinical features such as migraine with aura, dementia, and recurrent strokes, and is caused by a pathogenic mutation in the NOTCH3 gene which encodes a transmembrane receptor found in smooth muscle cells of small arteries and pericytes of brain capillaries. Pathogenic mutations alter the number of cysteine residues in the extracellular domain of NOTCH3, leading to the abnormal accumulation of granular osmiophilic material in the vessels of affected individuals. In addition, potential signaling pathways, such as transforming growth factor beta (TGF-β), may be involved in pathogenesis of the disease. This review aims to elucidate these mechanisms, particularly NOTCH3, in the context of CADASIL pathogenesis, providing insight into the role of NOTCH3 signaling and discussing the significance of these pathways for potential future therapeutic interventions in CADASIL patients.
Collapse
Affiliation(s)
- Parasta Heidari
- Center for Genomics and Personalized Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Sun J, Lin J, Yin D, Pan Z, Ye Y, Wang Y, Wang X, Guo Q. Androgen receptor inhibitor ameliorates pulmonary arterial hypertension by enhancing the apoptosis level through suppressing the Notch3/Hes5 pathway. Front Pharmacol 2025; 16:1572489. [PMID: 40356960 PMCID: PMC12067419 DOI: 10.3389/fphar.2025.1572489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Background Pulmonary arterial hypertension (PAH) exhibits significant gender differences in prognosis, with male patients typically showing worse outcomes than females. These disparities may stem from differences in androgen receptor expression and activity. Clinical studies suggest that the androgen receptor plays a crucial role in the pathophysiology of PAH, influencing disease progression and treatment response. Despite the lack of targeted therapies for PAH, these findings have spurred investigations into the potential therapeutic role of androgen receptors. This study explores the role of androgen receptors in PAH and evaluates their therapeutic potential. Methods PAH was induced in rats via intraperitoneal injection of monocrotaline (MCT). Following model establishment, Enzalutamide was administered every 3 days at 10 mg/kg once for a total of 7 times (21 days). A mouse model of PAH was developed by subcutaneously injecting SU5416 and exposing the mice to hypoxia. Androgen receptor knockout (AR-/-) mice were also utilized to investigate the role of androgen receptors in disease progression. Key indicators were compared across groups. The in vivo mechanisms through which androgen receptors influence PAH were examined in both rat and mouse models. Additionally, mouse pulmonary artery endothelial cells (PAECs) were cultured under hypoxic conditions to create an in vitro model of PAH, facilitating further investigation into the role of androgen receptors in disease pathogenesis. Results Compared to the normal group, the model group exhibited significantly increased androgen receptor expression in rats, mice, and mPAECs. This was accompanied by pronounced pulmonary artery wall thickening, right ventricular hypertrophy, pulmonary fibrosis, elevated pulmonary artery pressure, and a reduced level of apoptosis both in vivo and in vitro. Furthermore, activation of the Notch3/Hes5 signaling pathway was observed. However, treatment with androgen receptor inhibitors or gene knockout significantly ameliorated these pathological changes. Apoptosis levels increased both in vivo and in vitro, and the activation of the Notch3/Hes5 signaling pathway was effectively inhibited. Conclusion Our findings suggest that in both animal models and the hypoxic mPAECs, inhibition of androgen receptor expression leads to increased apoptosis via suppression of the Notch3/Hes5 signaling pathway. This mechanism likely contributes to the therapeutic effects observed, providing insights for potential treatment strategies targeting androgen receptors in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jiayan Sun
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Jiancheng Lin
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Di Yin
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Zetao Pan
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Yuheng Ye
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Yi Wang
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Xiaowan Wang
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Qiang Guo
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Cao Z, Zhao S, Hu S, Wu T, Sun F, Shi LI. Screening COPD-Related Biomarkers and Traditional Chinese Medicine Prediction Based on Bioinformatics and Machine Learning. Int J Chron Obstruct Pulmon Dis 2024; 19:2073-2095. [PMID: 39346628 PMCID: PMC11438478 DOI: 10.2147/copd.s476808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose To employ bioinformatics and machine learning to predict the characteristics of immune cells and genes associated with the inflammatory response and ferroptosis in chronic obstructive pulmonary disease (COPD) patients and to aid in the development of targeted traditional Chinese medicine (TCM). Mendelian randomization analysis elucidates the causal relationships among immune cells, genes, and COPD, offering novel insights for the early diagnosis, prevention, and treatment of COPD. This approach also provides a fresh perspective on the use of traditional Chinese medicine for treating COPD. Methods R software was used to extract COPD-related data from the Gene Expression Omnibus (GEO) database, differentially expressed genes were identified for enrichment analysis, and WGCNA was used to pinpoint genes within relevant modules associated with COPD. This analysis included determining genes linked to the inflammatory response in COPD patients and analyzing their correlation with ferroptosis. Further steps involved filtering core genes, constructing TF-miRNA‒mRNA network diagrams, and employing three types of machine learning to predict the core miRNAs, key immune cells, and characteristic genes of COPD patients. This process also delves into their correlations, single-gene GSEA, and diagnostic model predictions. Reverse inference complemented by molecular docking was used to predict compounds and traditional Chinese medicines for treating COPD; Mendelian randomization was applied to explore the causal relationships among immune cells, genes, and COPD. Results We identified 2443 differential genes associated with COPD through the GEO database, along with 8435 genes relevant to WGCNA and 1226 inflammation-related genes. A total of 141 genes related to the inflammatory response in COPD patients were identified, and 37 core genes related to ferroptosis were selected for further enrichment analysis and analysis. The core miRNAs predicted for COPD include hsa-miR-543, hsa-miR-181c, and hsa-miR-200a, among others. The key immune cells identified were plasma cells, activated memory CD4 T cells, gamma delta T cells, activated NK cells, M2 macrophages, and eosinophils. Characteristic genes included EGF, PLG, PTPN22, and NR4A1. A total of 78 compounds and 437 traditional Chinese medicines were predicted. Mendelian randomization analysis revealed a causal relationship between 36 types of immune cells and COPD, whereas no causal relationship was found between the core genes and COPD. Conclusion A definitive causal relationship exists between immune cells and COPD, while the prediction of core miRNAs, key immune cells, characteristic genes, and targeted traditional Chinese medicines offers novel insights for the early diagnosis, prevention, and treatment of COPD.
Collapse
Affiliation(s)
- Zhenghua Cao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shengkun Zhao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shaodan Hu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Tong Wu
- Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Feng Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - L I Shi
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
5
|
Antar SA, ElMahdy MK, Darwish AG. Examining the contribution of Notch signaling to lung disease development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6337-6349. [PMID: 38652281 DOI: 10.1007/s00210-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| |
Collapse
|
6
|
Kortekaas RK, Geillinger-Kästle KE, Fuentes-Mateos R, van Orsoy R, Al-Alyan N, Burgess JK, Gosens R. The disruptive effects of COPD exacerbation-associated factors on epithelial repair responses. Front Immunol 2024; 15:1346491. [PMID: 38911863 PMCID: PMC11193328 DOI: 10.3389/fimmu.2024.1346491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Exacerbations of chronic obstructive pulmonary disease (COPD) increase mortality risk and can lead to accelerated loss of lung function. The increased inflammatory response during exacerbations contributes to worsening of airflow limitation, but whether it also impacts epithelial repair is unclear. Therefore, we studied the effect of the soluble factor micro-environment during COPD exacerbations on epithelial repair using an exacerbation cocktail (EC), composed of four factors that are increased in COPD lungs during exacerbations (IL-1β, IL-6, IL-8, TNF-α). Methods Mouse organoids (primary CD31-CD45-Epcam+ cells co-cultured with CCL206 fibroblasts) were used to study epithelial progenitor behavior. Mature epithelial cell responses were evaluated using mouse precision cut lung slices (PCLS). The expression of epithelial supportive factors was assessed in CCL206 fibroblasts and primary human lung fibroblasts. Results EC exposure increased the number and size of organoids formed, and upregulated Lamp3, Muc5ac and Muc5b expression in day 14 organoids. In PCLS, EC imparted no effect on epithelial marker expression. Pre-treatment of CCL206 fibroblasts with EC was sufficient to increase organoid formation. Additionally, the expression of Il33, Tgfa and Areg was increased in CCL206 fibroblasts from EC treated organoids, but these factors individually did not affect organoid formation or size. However, TGF-α downregulated Foxj1 expression and upregulated Aqp5 expression in day 14 organoids. Conclusions EC exposure stimulates organoid formation and growth, but it alters epithelial differentiation. EC changes the epithelial progenitor support function of fibroblasts which contributes to observed effects on epithelial progenitors.
Collapse
Affiliation(s)
- Rosa K. Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kerstin E. Geillinger-Kästle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rocío Fuentes-Mateos
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roël van Orsoy
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nakaa Al-Alyan
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Janette K. Burgess
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
8
|
Zhao W, Li Y, Cheng H, Wang M, Zhang Z, Cai M, Zhao C, Xi X, Zhao X, Zhao W, Yang Y, Shao R. Myofibrillogenesis Regulator-1 Regulates the Ubiquitin Lysosomal Pathway of Notch3 Intracellular Domain Through E3 Ubiquitin-Protein Ligase Itchy Homolog in the Metastasis of Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306472. [PMID: 38342606 PMCID: PMC11022719 DOI: 10.1002/advs.202306472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
Myofibrillogenesis regulator-1 (MR-1) is a multifunctional protein involved in the development of various human tumors. The study is the first to report the promoting effect of MR-1 on the development and metastasis of non-small cell lung cancer (NSCLC). MR-1 is upregulated in NSCLC and positively associated with poor prognosis. The overexpression of MR-1 promotes the metastasis of NSCLC cells by stabilizing the expression of Notch3-ICD (NICD3) in the cytoplasm through enrichment analysis, in vitro and in vivo experimental researches. And Notch3 signaling can upregulate many genes related to metastasis. The stabilizing effect of MR-1 on NICD3 is achieved through the mono-ubiquitin lysosomal pathway and the specific E3 ubiquitin ligase is Itchy homolog (ITCH). There is a certain interaction between MR-1 and NICD3. Elevated MR-1 can affect the level of ITCH phosphorylation, reduce its E3 enzyme activity, and thus lead to reduce the ubiquitination and degradation of NICD3. Interference with the interaction between MR-1 and NICD3 can increase the degradation of NICD3 and impair the metastatic ability of NSCLC cells, which is a previously overlooked treatment option in NSCLC. In summary, interference with the interaction between MR-1 and NICD3 in the progression of lung cancer may be a promising therapeutic target.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yang Li
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Hanzeng Cheng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
- Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Zhishuo Zhang
- Department of EmergencyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai200092P. R. China
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Cong Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaoming Xi
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaojun Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| |
Collapse
|
9
|
Wu T, Liu S, Chen W, Zhao D, Lu Z. Huaier suppresses cell viability, migration and invasion in human non-small cell lung cancer via lncRNA DLEU2/miR-212-5p/ELF3 axis. Int J Med Sci 2024; 21:319-331. [PMID: 38169645 PMCID: PMC10758155 DOI: 10.7150/ijms.89308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Accumulating studies suggest that Huaier exerts anti-tumor effects through intricate mechanisms. Despite extensive research on its efficacy in lung cancer, further investigation is required to elucidate the molecular mechanism of Huaier. The involvement of long noncoding RNAs (lncRNAs) in the anti-lung cancer effects of Huaier remains unknown. In this study, we found Huaier suppressed cell viability, migration and invasion in non-small cell lung cancer (NSCLC) cells. LncRNA sequencing analysis revealed Deleted in lymphocytic leukemia 2 (DLEU2) to be significantly downregulated in Huaier-treated NSCLC cells. Furthermore, DLEU2 silencing was observed to suppress NSCLC progression, while DLEU2 overexpression attenuated the anti-tumor effects of Huaier in NSCLC, thereby promoting cell viability, migration and invasion of NSCLC. The ceRNA role of DLEU2 had been demonstrated in NSCLC, which directly interacted with miR-212-5p to rescue the repression of E74 Like ETS Transcription Factor 3 (ELF3) by this microRNA. Additionally, Huaier was found to regulate the expression of miR-212-5p and ELF3. Functionally, miR-212-5p inhibitor or ELF3 overexpression reversed the effects of DLEU2 silencing or Huaier treatment, resulting in increased colony formation, migration and invasion in NSCLC. Taken together, these results illuminate the mechanism underlying Huaier's anti-tumor effects via the DLEU2/miR-212-5p/ELF3 signaling pathway, which offers novel insights into the anti-tumor effects of Huaier and constitutes a promising therapeutic target for the treatment in NSCLC.
Collapse
Affiliation(s)
- Tangwei Wu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Shuiyi Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dan Zhao
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhongxin Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
10
|
Garcia-Ryde M, van der Burg NMD, Larsson CE, Larsson-Callerfelt AK, Westergren-Thorsson G, Bjermer L, Tufvesson E. Lung Fibroblasts from Chronic Obstructive Pulmonary Disease Subjects Have a Deficient Gene Expression Response to Cigarette Smoke Extract Compared to Healthy. Int J Chron Obstruct Pulmon Dis 2023; 18:2999-3014. [PMID: 38143920 PMCID: PMC10742772 DOI: 10.2147/copd.s422508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
Background and aim Cigarette smoking is the most common cause of chronic obstructive pulmonary disease (COPD) but more mechanistic studies are needed. Cigarette smoke extract (CSE) can elicit a strong response in many COPD-related cell types, but no studies have been performed in lung fibroblasts. Therefore, we aimed to investigate the effect of CSE on gene expression in lung fibroblasts from healthy and COPD subjects. Patients and methods Primary lung fibroblasts, derived from six healthy and six COPD subjects (all current or ex-smokers), were either unstimulated (baseline) or stimulated with 30% CSE for 4 h prior to RNA isolation. The mRNA expression levels were measured using the NanoString nCounter Human Fibrosis V2 panel (760 genes). Pathway enrichment was assessed for unique gene ontology terms of healthy and COPD. Results At baseline, a difference in the expression of 17 genes was found in healthy and COPD subjects. Differential expression of genes after CSE stimulation resulted in significantly less changes in COPD lung fibroblasts (70 genes) than in healthy (207 genes), with 51 genes changed in both. COPD maintained low NOTCH signaling throughout and upregulated JUN >80%, indicating an increase in apoptosis. Healthy downregulated the Mitogen-activated protein kinase (MAPK) signaling cascade, including a ≥50% reduction in FGF2, CRK, TGFBR1 and MEF2A. Healthy also downregulated KAT6A and genes related to cell proliferation, all together indicating possible cell senescence signaling. Conclusion Overall, COPD lung fibroblasts responded to CSE stimulation with a very different and deficient expression profile compared to healthy. Highlighting that stimulated healthy cells are not an appropriate substitute for COPD cells which is important when investigating the mechanisms of COPD.
Collapse
Affiliation(s)
- Martin Garcia-Ryde
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Nicole M D van der Burg
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Carin E Larsson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | | | | | - Leif Bjermer
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Russo RC, Quesniaux VFJ, Ryffel B. Homeostatic chemokines as putative therapeutic targets in idiopathic pulmonary fibrosis. Trends Immunol 2023; 44:1014-1030. [PMID: 37951789 DOI: 10.1016/j.it.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease (ILD) that affects lung mechanical functions and gas exchange. IPF is caused by increased fibroblast activity and collagen deposition that compromise the alveolar-capillary barrier. Identifying an effective therapy for IPF remains a clinical challenge. Chemokines are key proteins in cell communication that have functions in immunity as well as in tissue homeostasis, damage, and repair. Chemokine receptor signaling induces the activation and proliferation of lung-resident cells, including alveolar macrophages (AMs) and fibroblasts. AMs are an important source of chemokines and cytokines during IPF. We highlight the complexity of this system and, based on insights from genetic and transcriptomic studies, propose a new role for homeostatic chemokine imbalance in IPF, with implications for putative therapeutic targets.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Valerie F J Quesniaux
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| |
Collapse
|
12
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|