1
|
Lan Q, Pinheiro ACDAS, Braschi G, Picone G, Rocculi P, Laghi L. Integrated metabolomics analysis of chill-stored rose shrimp (Parapenaeus longirostris) treated with different pressure levels of high hydrostatic pressure by 1H-NMR spectroscopy. J Food Sci 2024; 89:5411-5424. [PMID: 39098810 DOI: 10.1111/1750-3841.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
The antimicrobial effects of high hydrostatic pressure (HHP) treatments on chill-stored seafood are well-documented, while their impact on the metabolic profile of seafood, especially the metabolome of fish flesh, and remains underexplored. Addressing this gap, this study investigates the effects of HHP on the metabolome of chill-stored rose shrimp by conducting multivariate data analysis based on untargeted proton nuclear magnetic resonance observations. Vacuum-packed rose shrimp samples were subjected to HHP at 0, 400, 500, and 600 MPa for 10 min and then stored at 2-4°C. The microorganism analysis and metabolic analysis were carried out on days 1 and 14. HHP treatment effectively deactivated Lactobacillus spp., Escherichia coli, Pseudomonas spp., total Coliforms, and sulfite-reducing anaerobic bacteria. Consequently, HHP treatment significantly reduced the formation rate of decay-related metabolites, such as hypoxanthine, trimethylamine, and biogenic amines, which exhibited significant accumulation in untreated samples. Multivariate unsupervised analyses provided insights into the overall changes in the metabolite profile induced by HHP. Metabolic pathway analysis revealed several pathways underlying spoilage, including pyruvate metabolism, valine, leucine, and isoleucine biosynthesis, purine metabolism, methane metabolism, glycine, serine, and threonine metabolism, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, alanine, aspartate, and glutamate metabolism, sulfur metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and glyoxylate and dicarboxylate metabolism. Importantly, these pathways underwent alterations due to the application of HHP, particularly at high-pressure levels. In summary, the results unveil the potential mechanisms of HHP effects on chill-stored rose shrimps.
Collapse
Affiliation(s)
- Qiuyu Lan
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Centre for Industrial Agrofood Research, University of Bologna, Cesena, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Centre for Industrial Agrofood Research, University of Bologna, Cesena, Italy
| |
Collapse
|
2
|
Casu F, Watson AM, Yost J, Gaylord TG, Bearden DW, Denson MR. Evaluation of a hepatic biomarker of nutritional imbalance in juvenile red drum ( Sciaenops ocellatus) fed 60% soybean meal-based diets using NMR-based metabolomics. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:45-61. [PMID: 38144431 PMCID: PMC10746370 DOI: 10.1016/j.aninu.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 12/26/2023]
Abstract
A 12-week feeding trial with juvenile red drum (Sciaenops ocellatus) fed high-soybean meal (SBM) diets was conducted to investigate a putative biomarker of nutritional imbalance, N-formimino-L-glutamate (FIGLU). Three fishmeal-free, 60% SBM pelleted diets (named B12, Fol, and Met, respectively) were tested to evaluate the effects on growth performance and tissue metabolite profiles of supplementation of vitamin B12 (0.012 mg/kg), folate (10 mg/kg), methionine (1 g/kg) respectively, above basal supplementation levels. A fourth SBM-based diet (named B12/Fol/Met) was formulated with a combination of B12, folate, and methionine to attain the above-mentioned target concentrations. A fifth 60% SBM diet (named FWS) with methionine supplementation (1 g/kg above basal supplementation levels), enriched with taurine, lysine and threonine as well as minerals, was also tested. This diet contained formulation targets and additives which have allowed for replacing fishmeal with plant proteins in rainbow trout feeds. Control diets included a fishmeal-based diet (named FM), an unsupplemented basal 60% SBM diet (named SBM60), and a "natural" diet (named N) made up of equal parts of fish (cigar minnows), squid and shrimp as a positive reference for growth performance. Formulated feeds contained approximately 37% total crude protein, approximately 14% total crude lipid and were energetically balanced. Standard growth performance metrics were measured, and tissues (liver, muscle) were collected at week 12 to evaluate diet-induced metabolic changes using nuclear magnetic resonance (NMR)-based metabolomics. Our results show that the FWS diet outperformed all other SBM diets and the FM diet under all performance metrics (P < 0.05). FIGLU was not detected in fish fed the N diet but was detected in those fed the SBM diets and the FM diet. Fish fed the FWS diet and the Met diet showed lower hepatic levels of FIGLU compared with the other SBM-based diets (P < 0.05), suggesting that among the different supplementation regimes, methionine supplementation was associated with lower FIGLU levels. The FWS diet produced tissue metabolite profiles that were more similar to those of fish fed the N diet. Based on our results, the FWS diet constitutes a promising SBM-based alternative diet to fishmeal for red drum.
Collapse
Affiliation(s)
- Fabio Casu
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Aaron M. Watson
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Justin Yost
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - T. Gibson Gaylord
- Bozeman Fish Technology Center, United States Fish and Wildlife Service, 4050 Bridger Canyon Road, Bozeman, MT 59715, USA
| | - Daniel W. Bearden
- Marine Biochemical Sciences Group, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Michael R. Denson
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| |
Collapse
|
3
|
Petereit J, Lannig G, Baßmann B, Bock C, Buck BH. Circadian rhythm in turbot (Scophthalmus maximus): daily variation of blood metabolites in recirculating aquaculture systems. Metabolomics 2024; 20:23. [PMID: 38347335 PMCID: PMC10861666 DOI: 10.1007/s11306-023-02077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Animal welfare in aquaculture is becoming increasingly important, and detailed knowledge of the species concerned is essential for further optimization on farms. Every organism is controlled by an internal clock, the circadian rhythm, which is crucial for metabolic processes and is partially influenced by abiotic factors, making it important for aquaculture practices. OBJECTIVE In order to determine the circadian rhythm of adult turbot (Scophthalmus maximus), blood samples were collected over a 24-h period and plasma metabolite profiles were analyzed by 1H-NMR spectroscopy. METHODS The fish were habituated to feeding times at 9 am and 3 pm and with the NMR spectroscopy 46 metabolites could be identified, eight of which appeared to shift throughout the day. RESULTS We noted exceptionally high values around 3 pm for the amino acids isoleucine, leucine, valine, phenylalanine, lysine, and the stress indicator lactate. These metabolic peaks were interpreted as either habituation to the usual feeding time or as natural peak levels in turbot in a 24-h circle because other indicators for stress (glucose, cortisol and lysozymes) showed a stable baseline, indicating that the animals had no or very little stress during the experimental period. CONCLUSION This study provides initial insights into the diurnal variation of metabolites in adult turbot; however, further studies are needed to confirm present findings of possible fluctuations in amino acids and sugars. Implementing optimized feeding times (with high levels of sugars and low levels of stress metabolites) could lead to less stress, fewer disease outbreaks and overall improved fish welfare in aquaculture facilities.
Collapse
Affiliation(s)
- J Petereit
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany.
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Aquaculture and Sea-Ranching, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany.
| | - G Lannig
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - B Baßmann
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Aquaculture and Sea-Ranching, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany
| | - C Bock
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - B H Buck
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
- University of Applied Sciences Bremerhaven, An Der Karlstadt 8, 27568, Bremerhaven, Germany
| |
Collapse
|
4
|
Iobbi V, Donadio G, Lanteri AP, Maggi N, Kirchmair J, Parisi V, Minuto G, Copetta A, Giacomini M, Bisio A, De Tommasi N, Drava G. Targeted metabolite profiling of Salvia rosmarinus Italian local ecotypes and cultivars and inhibitory activity against Pectobacterium carotovorum subsp. carotovorum. FRONTIERS IN PLANT SCIENCE 2024; 15:1164859. [PMID: 38390298 PMCID: PMC10883066 DOI: 10.3389/fpls.2024.1164859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Introduction The development of agriculture in terms of sustainability and low environmental impact is, at present, a great challenge, mainly in underdeveloped and marginal geographical areas. The Salvia rosmarinus "Eretto Liguria" ecotype is widespread in Liguria (Northwest Italy), and farmers commonly use it by for cuttings and for marketing. In the present study, this ecotype was characterized in comparison with other cultivars from the same geographical region and Campania (Southern Italy), with a view to application and registration processes for the designation of protected geographical indications. Moreover, the possibility of using the resulting biomass after removing cuttings or fronds as a source of extracts and pure compounds to be used as phytosanitary products in organic farming was evaluated. Specifically, the potential of rosemary extracts and pure compounds to prevent soft rot damage was then tested. Methods A targeted NMR metabolomic approach was employed, followed by multivariate analysis, to characterize the rosemary accessions. Bacterial soft rot assay and disk diffusion test were carried out to evaluate the activity of extracts and isolated compounds against Pectobacterium carotovorum subsp. carotovorum. Enzymatic assay was performed to measure the in vitro inhibition of the pectinase activity produced by the selected pathogen. Molecular docking simulations were used to explore the possible interaction of the selected compounds with the pectinase enzymes. Results and Discussion The targeted metabolomic analysis highlighted those different geographical locations can influence the composition and abundance of bioactive metabolites in rosemary extracts. At the same time, genetic factors are important when a single geographical area is considered. Self-organizing maps (SOMs) showed that the accessions of "Eretto Liguria" appeared well characterized when compared to the others and had a good content in specialized metabolites, particularly carnosic acid. Soft rotting Enterobacteriaceae belonging to the Pectobacterium genus represent a serious problem in potato culture. Even though rosemary methanolic extracts showed a low antibacterial activity against a strain of Pectobacterium carotovorum subsp. carotovorum in the disk diffusion test, they showed ability in reducing the soft rot damage induced by the bacterium on potato tissue. 7-O-methylrosmanol, carnosol and isorosmanol appeared to be the most active components. In silico studies indicated that these abietane diterpenoids may interact with P. carotovorum subsp. carotovorum pectate lyase 1 and endo-polygalacturonase, thus highlighting these rosemary components as starting points for the development of agents able to prevent soft rot progression.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | - Anna Paola Lanteri
- Plant Pathology Laboratory, Section Microbiology and Molecular Biology, Centro di Sperimentazione e Assistenza Agricola (CeRSAA), Albenga, Italy
| | - Norbert Maggi
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Genova, Italy
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Giovanni Minuto
- Plant Pathology Laboratory, Section Microbiology and Molecular Biology, Centro di Sperimentazione e Assistenza Agricola (CeRSAA), Albenga, Italy
| | - Andrea Copetta
- Research Centre For Vegetable and Ornamental Crops (CREA), Sanremo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Genova, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | - Giuliana Drava
- Department of Pharmacy, University of Genova, Genova, Italy
| |
Collapse
|
5
|
Roques S, Deborde C, Skiba-Cassy S, Médale F, Dupont-Nivet M, Lefevre F, Bugeon J, Labbé L, Marchand Y, Moing A, Fauconneau B. New alternative ingredients and genetic selection are the next game changers in rainbow trout nutrition: a metabolomics appraisal. Sci Rep 2023; 13:19634. [PMID: 37949954 PMCID: PMC10638236 DOI: 10.1038/s41598-023-46809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
The formulation of sustainable fish feeds based on plant ingredients supplemented by alternative ingredients to plant (insect, micro-algae, yeast) and genetic selection of fish for plant-based diets were tested on rainbow trout in two separate experiments. Plant-based diets and corresponding diets supplemented with an ingredient mix: insect, micro-algae and yeast in Experiment A, and insect and yeast in Experiment B were compared to commercial-like diets. In experiment A, the mix-supplemented diet was successful in compensating the altered growth performance of fish fed their respective plant-based diet compared to those fed the commercial diet, by restoring feed conversion. In experiment B, the selected line demonstrated improved growth performances of fish fed mix-supplemented and plant-based diets compared to the non-selected line. Metabolomics demonstrated a plasma compositional stability in fish fed mix-supplemented and basal plant-based diets comprising an amino acid accumulation and a glucose depletion, compared to those fed commercial diets. The selected line fed mix-supplemented and commercial diets showed changes in inositol, ethanol and methanol compared to the non-selected line, suggesting an involvement of microbiota. Changes in plasma glycine-betaine content in fish fed the mix-supplemented diet suggest the ability of the selected line to adapt to alternative ingredients.
Collapse
Affiliation(s)
- Simon Roques
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France
- Phileo by Lesaffre, 59700, Marcq-en-Barœul, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122, Saint-Genes-Champanelle, France
| | - Catherine Deborde
- Bordeaux Metabolome, MetaboHUB, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Centre INRAE de Nouvelle-Aquitaine Bordeaux, INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
- INRAE, Biopolymères Interactions Assemblages, UR1268, 44300, Nantes, France
- INRAE, BIBS Facility, Centre INRAE Pays de Loire - Nantes, 44000, Nantes, France
| | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France
| | - Françoise Médale
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France
| | - Mathilde Dupont-Nivet
- Université Paris-Saclay, INRAE, AgroParisTech, Génétique Animale et Biologie Intégrative, UMR 1313, 78350, Jouy-en-Josas, France
| | - Florence Lefevre
- INRAE, Laboratoire de Physiologie et Génomique des Poissons, UR 1037, 35000, Rennes, France
| | - Jérome Bugeon
- INRAE, Laboratoire de Physiologie et Génomique des Poissons, UR 1037, 35000, Rennes, France
| | | | | | - Annick Moing
- Bordeaux Metabolome, MetaboHUB, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Centre INRAE de Nouvelle-Aquitaine Bordeaux, INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Benoit Fauconneau
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France.
| |
Collapse
|
6
|
Krebs N, Bock C, Tebben J, Mark FC, Lucassen M, Lannig G, Pörtner HO. Evolutionary Adaptation of Protein Turnover in White Muscle of Stenothermal Antarctic Fish: Elevated Cold Compensation at Reduced Thermal Responsiveness. Biomolecules 2023; 13:1507. [PMID: 37892189 PMCID: PMC10605280 DOI: 10.3390/biom13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Protein turnover is highly energy consuming and overall relates to an organism's growth performance varying largely between species, e.g., due to pre-adaptation to environmental characteristics such as temperature. Here, we determined protein synthesis rates and capacity of protein degradation in white muscle of the cold stenothermal Antarctic eelpout (Pachycara brachycephalum) and its closely related temperate counterpart, the eurythermal common eelpout (Zoarces viviparus). Both species were exposed to acute warming (P. brachycephalum, 0 °C + 2 °C day-1; Z. viviparus, 4 °C + 3 °C day-1). The in vivo protein synthesis rate (Ks) was monitored after injection of 13C-phenylalanine, and protein degradation capacity was quantified by measuring the activity of cathepsin D in vitro. Untargeted metabolic profiling by nuclear magnetic resonance (NMR) spectroscopy was used to identify the metabolic processes involved. Independent of temperature, the protein synthesis rate was higher in P. brachycephalum (Ks = 0.38-0.614 % day-1) than in Z. viviparus (Ks= 0.148-0.379% day-1). Whereas protein synthesis remained unaffected by temperature in the Antarctic species, protein synthesis in Z. viviparus increased to near the thermal optimum (16 °C) and tended to fall at higher temperatures. Most strikingly, capacities for protein degradation were about ten times higher in the Antarctic compared to the temperate species. These differences are mirrored in the metabolic profiles, with significantly higher levels of complex and essential amino acids in the free cytosolic pool of the Antarctic congener. Together, the results clearly indicate a highly cold-compensated protein turnover in the Antarctic eelpout compared to its temperate confamilial. Constant versus variable environments are mirrored in rigid versus plastic functional responses of the protein synthesis machinery.
Collapse
Affiliation(s)
- Nina Krebs
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Christian Bock
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Jan Tebben
- Department of Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Felix C. Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Magnus Lucassen
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Gisela Lannig
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Hans-Otto Pörtner
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| |
Collapse
|
7
|
Ronda K, Downey K, Jenne A, Bastawrous M, Wolff WW, Steiner K, Lysak DH, Costa PM, Simpson MJ, Jobst KJ, Simpson AJ. Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations. Molecules 2023; 28:4863. [PMID: 37375418 DOI: 10.3390/molecules28124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Environmental metabolomics provides insight into how anthropogenic activities have an impact on the health of an organism at the molecular level. Within this field, in vivo NMR stands out as a powerful tool for monitoring real-time changes in an organism's metabolome. Typically, these studies use 2D 13C-1H experiments on 13C-enriched organisms. Daphnia are the most studied species, given their widespread use in toxicity testing. However, with COVID-19 and other geopolitical factors, the cost of isotope enrichment increased ~6-7 fold over the last two years, making 13C-enriched cultures difficult to maintain. Thus, it is essential to revisit proton-only in vivo NMR and ask, "Can any metabolic information be obtained from Daphnia using proton-only experiments?". Two samples are considered here: living and whole reswollen organisms. A range of filters are tested, including relaxation, lipid suppression, multiple-quantum, J-coupling suppression, 2D 1H-1H experiments, selective experiments, and those exploiting intermolecular single-quantum coherence. While most filters improve the ex vivo spectra, only the most complex filters succeed in vivo. If non-enriched organisms must be used, then, DREAMTIME is recommended for targeted monitoring, while IP-iSQC was the only experiment that allowed non-targeted metabolite identification in vivo. This paper is critically important as it documents not just the experiments that succeed in vivo but also those that fail and demonstrates first-hand the difficulties associated with proton-only in vivo NMR.
Collapse
Affiliation(s)
- Kiera Ronda
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Katelyn Downey
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Monica Bastawrous
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - William W Wolff
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Katrina Steiner
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Daniel H Lysak
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Peter M Costa
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL A1C 5S7, Canada
| | - Andre J Simpson
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
8
|
Xu X, Yang H, Xu Z, Li X, Leng X. The comparison of largemouth bass (Micropterus salmoides) fed trash fish and formula feeds: Growth, flesh quality and metabolomics. Front Nutr 2022; 9:966248. [PMID: 36245533 PMCID: PMC9561894 DOI: 10.3389/fnut.2022.966248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study compared the growth, flesh quality and metabolomics of largemouth bass (Micropterus salmoides) fed trash fish and formula feeds. Trash fish (TF), self-made feed (SF) and commercial feed (CF) were prepared with crude protein levels of 172.2 g/kg, 503.5 g/kg and 504.1 g/kg (666.2 g/kg, 547.3 g/kg and 535.1 g/kg based on dry matter), respectively. Then, the three diets were fed to largemouth bass with an initial body weight of 75.0 ± 0.1 g for 12 weeks. SF and CF groups presented significantly lower feed intake (FI), feed conversion ratio (FCR) and higher protein efficiency ratio (PER) than TF group based on dry matter basis without affecting the weight gain (P < 0.05). The yellowness (b*) in dorsal muscle, flesh heat-insoluble collagen and free flavor amino acids contents in SF group were significantly higher (P < 0.05), while drip loss were significantly lower (P < 0.05) than those of TF group. Compared to TF group, SF and CF groups showed significantly higher flesh polyunsaturated fatty acids (PUFAs), n-3 PUFAs and n-6 PUFAs contents, flesh hardness, shear force and muscle fiber density (P < 0.05), and lower flesh total free amino acids, essential amino acids, muscle fiber diameter, intestine villus height and muscular thickness (P < 0.05). The serum total protein, triglyceride and cholesterol levels in SF group were significantly lower than those in TF and CF groups (P < 0.05). In the muscle metabolomics, 177 differential metabolites were detected between SF and TF groups, which mainly enriched in pathways as biosynthesis of amino acid, histidine metabolism, glycine, serine and threonine metabolism, etc. Conclusively, feeding largemouth bass with formula feeds improved flesh fatty acid profile and flesh texture without negative effects on the growth, but the flesh free amino acids contents were lower than the fish fed trash fish.
Collapse
Affiliation(s)
- Xiaoying Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Center for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Hang Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Center for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Zhen Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Center for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Center for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- Xiaoqin Li,
| | - Xiangjun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Center for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Xiangjun Leng,
| |
Collapse
|