1
|
Shanaida M, Mykhailenko O, Lysiuk R, Hudz N, Balwierz R, Shulhai A, Shapovalova N, Shanaida V, Bjørklund G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals (Basel) 2025; 18:403. [PMID: 40143179 PMCID: PMC11945224 DOI: 10.3390/ph18030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
- CONEM Ukraine Life Science Research Group, 79010 Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Radosław Balwierz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Arkadii Shulhai
- Department of Public Health and Healthcare Management, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Nataliya Shapovalova
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
2
|
Crowder SL, Gudenkauf LM, Hoogland AI, Han HS, Small BJ, Carson TL, Parker NH, Booth-Jones M, Jim HSL. Cancer-Related Cognitive Impairment and the Potential of Dietary Interventions for the Prevention and Mitigation of Neurodegeneration. Cancer Res 2025; 85:203-217. [PMID: 39570793 DOI: 10.1158/0008-5472.can-24-3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
Approximately 35% of long-term cancer survivors experience ongoing cancer-related cognitive impairment (CRCI). Yet, few efficacious interventions exist to prevent or ameliorate CRCI. The underlying biological processes driving CRCI are complex and are reported to include changes in brain structure and function, increased oxidative stress and inflammation, and alterations in gut microbiome composition. Some of the mechanisms promoting CRCI have the potential to be modified through behavioral changes, such as dietary changes. Compelling evidence from randomized controlled trials and observational research supports the positive impacts of the Mediterranean-DASH Intervention for Neurodegenerative Delay diet on cognition outside of the context of cancer, but studies investigating the Mediterranean-DASH Intervention for Neurodegenerative Delay diet as an intervention for people who experience CRCI are lacking. This review examines the current state of the science for cognitive outcomes of dietary interventions in aging populations and discusses future opportunities to adapt these interventions to cancer populations.
Collapse
Affiliation(s)
- Sylvia L Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lisa M Gudenkauf
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aasha I Hoogland
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brent J Small
- School of Nursing, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Tiffany L Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nathan H Parker
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Margaret Booth-Jones
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
3
|
Navarrete-Pérez A, Gómez-Melero S, Escribano BM, Galvao-Carmona A, Conde-Gavilán C, Peña-Toledo MÁ, Villarrubia N, Villar LM, Túnez I, Agüera-Morales E, Caballero-Villarraso J. MIND Diet Impact on Multiple Sclerosis Patients: Biochemical Changes after Nutritional Intervention. Int J Mol Sci 2024; 25:10009. [PMID: 39337497 PMCID: PMC11431943 DOI: 10.3390/ijms251810009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
There is substantial evidence supporting the neuroprotective effects of the MIND diet in neurodegenerative diseases like Parkinson's and Alzheimer's. Our aim was to evaluate the impact of a nutritional intervention (NI) with this diet on multiple sclerosis (MS) patients. The study was conducted in two stages. In the first stage, two groups were included: MS patients before the NI (group A) and healthy control subjects (group B). In this stage, groups (A) and (B) were compared (case-control study). In the second stage, group (A) was assessed after the NI, with comparisons made between baseline and final measurements (before-and-after study). In the case-control stage (baseline evaluation), we found significant differences in fatigue scores (p < 0.001), adherence to the MIND diet (p < 0.001), the serum levels of brain-derived neurotrophic factor (BDNF) (p < 0.001), and higher oxidative status in the MS group, with lower levels of reduced glutathione (p < 0.001), reduced/oxidised glutathione ratio (p < 0.001), and elevated levels of lipoperoxidation (p < 0.002) and 8-hydroxy-2'-deoxyguanosine (p < 0.025). The before-and-after intervention stage showed improvements in fatigue scores (p < 0.001) and physical quality-of-life scores (MSQOL-54) (p < 0.022), along with decreases in the serum levels of glial-derived neurotrophic factor (GDNF) (p < 0.041), lipoperoxidation (p < 0.046), and 8-hydroxy-2'-deoxyguanosine (p < 0.05). Consumption of the MIND diet is linked to clinical and biochemical improvement in MS patients.
Collapse
Affiliation(s)
- Ainoa Navarrete-Pérez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
| | - Sara Gómez-Melero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
| | - Begoña Mª Escribano
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, Universidad of Córdoba, 14071 Córdoba, Spain
| | - Alejandro Galvao-Carmona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
- Department of Psychology, Universidad Loyola Andalucía, 41704 Sevilla, Spain
| | - Cristina Conde-Gavilán
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
| | - Mª Ángeles Peña-Toledo
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple, Red de Enfermedades Inflamatorias, Instituto de Salud Carlos III, IRYCIS, 28034 Madrid, Spain; (N.V.); (L.M.V.)
| | - Luisa Mª Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple, Red de Enfermedades Inflamatorias, Instituto de Salud Carlos III, IRYCIS, 28034 Madrid, Spain; (N.V.); (L.M.V.)
| | - Isaac Túnez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
- Department of Biochemistry and Molecular Biology, Universidad of Córdoba, 14071 Córdoba, Spain
| | - Eduardo Agüera-Morales
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
- Neurology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Javier Caballero-Villarraso
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain; (A.N.-P.); (S.G.-M.); (B.M.E.); (A.G.-C.); (C.C.-G.); (M.Á.P.-T.); (I.T.)
- Department of Biochemistry and Molecular Biology, Universidad of Córdoba, 14071 Córdoba, Spain
- Clinical Analyses Service, Reina Sofía University Hospital, 14004 Córdoba, Spain
| |
Collapse
|
4
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Ajeeb TT, Gonzalez E, Solomons NW, Vossenaar M, Koski KG. Human milk microbiome: associations with maternal diet and infant growth. Front Nutr 2024; 11:1341777. [PMID: 38529196 PMCID: PMC10962684 DOI: 10.3389/fnut.2024.1341777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Ingestion of human milk (HM) is identified as a significant factor associated with early infant gut microbial colonization, which has been associated with infant health and development. Maternal diet has been associated with the HM microbiome (HMM). However, a few studies have explored the associations among maternal diet, HMM, and infant growth during the first 6 months of lactation. Methods For this cross-sectional study, Mam-Mayan mother-infant dyads (n = 64) were recruited from 8 rural communities in the Western Highlands of Guatemala at two stages of lactation: early (6-46 days postpartum, n = 29) or late (109-184 days postpartum, n = 35). Recruited mothers had vaginally delivered singleton births, had no subclinical mastitis or antibiotic treatments, and breastfed their infants. Data collected at both stages of lactation included two 24-h recalls, milk samples, and infant growth status indicators: head-circumference-for-age-z-score (HCAZ), length-for-age-z-score (LAZ), and weight-for-age-z-score (WAZ). Infants were divided into subgroups: normal weight (WAZ ≥ -1SD) and mildly underweight (WAZ < -1SD), non-stunted (LAZ ≥ -1.5SD) and mildly stunted (LAZ < -1.5SD), and normal head-circumference (HCAZ ≥ -1SD) and smaller head-circumference (HCAZ < -1SD). HMM was identified using 16S rRNA gene sequencing; amplicon analysis was performed with the high-resolution ANCHOR pipeline, and DESeq2 identified the differentially abundant (DA) HMM at the species-level between infant growth groups (FDR < 0.05) in both early and late lactation. Results Using both cluster and univariate analyses, we identified (a) positive correlations between infant growth clusters and maternal dietary clusters, (b) both positive and negative associations among maternal macronutrient and micronutrient intakes with the HMM at the species level and (c) distinct correlations between HMM DA taxa with maternal nutrient intakes and infant z-scores that differed between breast-fed infants experiencing growth faltering and normal growth in early and late lactation. Conclusion Collectively, these findings provide important evidence of the potential influence of maternal diet on the early-life growth of breastfed infants via modulation of the HMM.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marieke Vossenaar
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
6
|
Mishra A, Krishnamurthy S. Recent advancements in the role of phytochemicals and medicinal plants in prophylaxis and management of Alzheimer's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1357-1369. [PMID: 39386232 PMCID: PMC11459346 DOI: 10.22038/ijbms.2024.77760.16826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/24/2024] [Indexed: 10/12/2024]
Abstract
Medicinal plants and phytochemicals are some of the major sources in the treatment of various neurodegenerative disorders including Alzheimer's disease (AD). There is no FDA-approved drug to target AD pathology directly. Full cognitive restoration and management of psychosis-like symptoms are still to be achieved. Being comparatively safer with fewer side effects, medicinal plants have been among the major areas of interest to be researched. Several mechanistic pathways are involved in AD including anticholinesterase activity, glutamate toxicity, free radicals generation, Amyloid β (Aβ) toxicity, inflammation, and mitochondrial dysfunction. Various phytochemicals such as paenol, andrographolide, isoquercitrin, flavonoids, and saponins obtained from different plant sources, various medicinal plants like Spirulina maxima, Salicornia europaea, Curcuma longa, Citrus Junos Tanaka, Cassiae semen, Centella asiatica as well as various traditional medicinal plants of China, Asia, Europe, Turkey, and Iran have been found effective against one or more of these targets. Large numbers of clinical trials are under process to evaluate the role of different phytoconstituents in AD management. Out of 143 agents under clinical trials, 119 have been categorized as disease-modifying agents. The present review extensively covers the recent advancements in the usage of phytochemicals and medicinal plants in various experimental AD models. It involves clinical trials and other research works divided into three sections, including those performed in vitro, in vivo, and in humans mainly from the last five years along with disease markers and mechanistic pathways involved. However, phytochemicals should be explored further in order to achieve neurorestoration in AD.
Collapse
Affiliation(s)
- Akanksha Mishra
- Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow-226031, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, U.P., India
| |
Collapse
|
7
|
Kurano M, Saito Y, Yatomi Y. Comprehensive Analysis of Metabolites in Postmortem Brains of Patients with Alzheimer's Disease. J Alzheimers Dis 2024; 97:1139-1159. [PMID: 38250775 DOI: 10.3233/jad-230942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Disturbed metabolism has been proposed as being involved in the pathogenesis of Alzheimer's disease (AD), and more evidence from human AD brains is required. OBJECTIVE In this study, we attempted to identify or confirm modulations in the levels of metabolites associated with AD in postmortem AD brains. METHODS We performed metabolomics analyses using a gas chromatography mass spectrometry system in postmortem brains of patients with confirmed AD, patients with CERAD score B, and control subjects. RESULTS Impaired phosphorylation of glucose and elevation of several tricarboxylic acid (TCA) metabolites, except citrate, were observed and the degree of impaired phosphorylation and elevation in the levels of the TCA cycle metabolites were negatively and positively correlated, respectively, with the clinical phenotypes of AD. The levels of uronic acid pathway metabolites were modulated in AD and correlated positively with the amyloid-β content. The associations of nucleic acid synthesis and amino acid metabolites with AD depended on the kinds of metabolites; in particular, the contents of ribose 5-phosphate, serine and glycine were negatively correlated, while those of ureidosuccinic acid and indole-3-acetic acid were positively modulated in AD. Comprehensive statistical analyses suggested that alterations in the inositol pathway were most closely associated with AD. CONCLUSIONS The present study revealed many novel associations between metabolites and AD, suggesting that some of these might serve as novel potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Liu X, Beck T, Dhana K, Desai P, Krueger KR, Tangney CC, Holland TM, Agarwal P, Evans DA, Rajan KB. Association of Whole Grain Consumption and Cognitive Decline: An Investigation From a Community-Based Biracial Cohort of Older Adults. Neurology 2023; 101:e2277-e2287. [PMID: 37993270 PMCID: PMC10727204 DOI: 10.1212/wnl.0000000000207938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To examine the association of whole grain consumption and longitudinal change in global cognition, perceptual speed, and episodic memory by different race/ethnicity. METHODS We included 3,326 participants from the Chicago Health and Aging Project who responded to a Food Frequency Questionnaire (FFQ), with 2 or more cognitive assessments. Global cognition was assessed using a composite score of episodic memory, perceptual speed, and the Mini Mental State Examination (MMSE). Diet was assessed by a 144-item FFQ. Linear mixed-effects models were used to estimate the association of intakes of whole grains and cognitive decline. RESULTS This study involved 3,326 participants (60.1% African American [AA], 63.7% female) with a mean age of 75 years at baseline and a mean follow-up of 6.1 years. Higher consumption of whole grains was associated with a slower rate of global cognitive decline. Among AA participants, those in the highest quintile of whole grain consumption had a slower rate of decline in global cognition (β = 0.024, 95% CI [0.008-0.039], p = 0.004), perceptual speed (β = 0.023, 95% CI [0.007-0.040], p = 0.005), and episodic memory (β = 0.028, 95% CI [0.005-0.050], p = 0.01) compared with those on the lowest quintile. Regarding the amount consumed, in AA participants, those who consumed >3 servings/d vs those who consumed <1 serving/d had a slower rate of decline in global cognition (β = 0.021, 95% CI [0.005-0.036], p = 0.0093). In White participants, with >3 servings/d, we found a suggestive association of whole grains with global cognitive decline when compared with those who consumed <1 serving/d (β = 0.025, 95% CI [-0.003 to 0.053], p = 0.08). DISCUSSION Among AA participants, individuals with higher consumption of whole grains and more frequent consumption of whole grain had slower decline in global cognition, perceptual speed, and episodic memory. We did not see a similar trend in White adults.
Collapse
Affiliation(s)
- Xiaoran Liu
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL.
| | - Todd Beck
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Klodian Dhana
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Pankaja Desai
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Kristin R Krueger
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Christy C Tangney
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Thomas M Holland
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Puja Agarwal
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Denis A Evans
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| | - Kumar B Rajan
- From the Rush Institute for Healthy Aging (X.L., T.B., K.D., P.D., K.R.K., T.M.H., D.A.E., K.B.R.), Rush University Medical Center; Department of Internal Medicine (X.L., T.B., K.D., P.D., K.R.K., T.M.H., P.A., D.A.E., K.B.R.), Rush University Medical Center; Department of Clinical Nutrition & Preventive Medicine (C.C.T.), Rush University Medical Center; and Rush Alzheimer's Disease Center (P.A.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
9
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
10
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023; 64:12555-12573. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
11
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
12
|
Holthaus TA, Kashi M, Cannavale CN, Edwards CG, Aguiñaga S, Walk ADM, Burd NA, Holscher HD, Khan NA. MIND Dietary Pattern Adherence Is Selectively Associated with Cognitive Processing Speed in Middle-Aged Adults. J Nutr 2023; 152:2941-2949. [PMID: 36055774 DOI: 10.1093/jn/nxac203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Most previous work has focused on a single-nutrient, bottom-up approach when examining the influence of diet on neurocognition. Thus, the impact of dietary patterns on cognitive health is underinvestigated. OBJECTIVES We aimed to investigate the relation between different diet indices [i.e., Mediterranean, Dietary Approaches to Stop Hypertension (DASH), Healthy Eating Index-2015 (HEI-2015), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND)] and attentional inhibition and neuroelectric function. METHODS We undertook a cross-sectional analysis of adults aged 34.1 ± 6.0 y (n = 207, 116 females) with a BMI of 18.5 to >40 kg/m2 who completed the Dietary History Questionnaire II (DHQII) FFQ (Past Month and Year with Serving Sizes) to assess adherence to different diet quality indices. Attentional inhibition was assessed using a modified Eriksen flanker task during which event-related potentials (ERPs) were recorded. The amplitude and latency of the P3/P300 ERP were used to index attentional resource allocation and information processing speed, respectively. RESULTS P3 peak latency was inversely associated with greater adherence to the MIND dietary pattern during incongruent flanker trials (∆R2 = 0.02, β = -0.14, P = 0.043) but not during congruent trials. Adherence to the Mediterranean, DASH, and HEI-2015 patterns was not associated with P3 latency (P > 0.05). No associations were observed between the diet indices and attentional inhibition at the behavioral level (i.e., accuracy or reaction time) or P3 amplitude (all P values >0.05). CONCLUSIONS Greater adherence to the MIND diet was selectively associated with faster information processing speed in middle-aged adults with healthy to obese BMI. Further, the influence of the MIND diet for faster information processing speed might be particularly beneficial when cognitive control demands are increased. Future intervention trials testing the effects of consuming a MIND diet on cognitive function are warranted to help inform dietary recommendations for healthy cognitive aging.
Collapse
Affiliation(s)
- Tori A Holthaus
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Monica Kashi
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Caitlyn G Edwards
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Susan Aguiñaga
- Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
| | - Anne D M Walk
- Department of Psychology, Eastern Illinois University, Charleston, IL, USA
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.,Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.,Kinesiology and Community Health, University of Illinois, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.,Kinesiology and Community Health, University of Illinois, Urbana, IL, USA.,Neuroscience Program, University of Illinois, Urbana, IL, USA.,Beckman Institute of Advanced Science and Technology, Urbana, IL, USA
| |
Collapse
|
13
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
14
|
Devranis P, Vassilopoulou Ε, Tsironis V, Sotiriadis PM, Chourdakis M, Aivaliotis M, Tsolaki M. Mediterranean Diet, Ketogenic Diet or MIND Diet for Aging Populations with Cognitive Decline: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010173. [PMID: 36676122 PMCID: PMC9866105 DOI: 10.3390/life13010173] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
(1) Background: Compelling evidence shows that dietary patterns can slow the rate of cognitive decline, suggesting diet is a promising preventive measure against dementia. (2) Objective: This systematic review summarizes the evidence of three dietary patterns, the Mediterranean diet, the ketogenic diet and the MIND diet, for the prevention of cognitive decline. (3) Methods: A systematic search was conducted in major electronic databases (PubMed, ScienceDirect and Web of Science) up until 31 January 2022, using the key search terms "Mediterranean diet", "ketogenic diet", "MIND diet", "dementia", "cognition" and "aging". A statistical analysis was performed using RoB 2 and the Jadad scale to assess the risk of bias and methodological quality in randomized controlled trials. (4) Results: Only RCTs were included in this study; there were eleven studies (n = 2609 participants) of the Mediterranean diet, seven studies (n = 313) of the ketogenic diet and one study (n = 37) of the MIND diet. The participants' cognitive statuses were normal in seven studies, ten studies included patients with mild cognitive impairments and two studies included Alzheimer's disease patients. (5) Conclusion: All three dietary interventions have been shown to slow the rate of cognitive decline in the included studies. The Mediterranean diet was shown to be beneficial for global cognition after 10 weeks of adherence, the ketogenic diet had a beneficial effect for patients with diabetes mellitus and improved verbal recognition, while the MIND diet showed benefits in obese patients, improving working memory, verbal recognition, memory and attention.
Collapse
Affiliation(s)
- Paschalis Devranis
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Εmilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Vasileios Tsironis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | | | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Magdalini Tsolaki
- 1st Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
- Greek Alzheimer Association and Related Disorders, 54643 Thessaloniki, Greece
| |
Collapse
|
15
|
Association of Dietary α-Carotene and β-Carotene Intake with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from the National Health and Nutrition Examination Survey. Nutrients 2023; 15:nu15010239. [PMID: 36615894 PMCID: PMC9823947 DOI: 10.3390/nu15010239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
This study aims to examine the relationships of dietary α-carotene and β-carotene intake with cognitive function. The data were selected from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. A total of 2009 participants were included in this analysis. Dietary α-carotene and β-carotene intake were averaged by two 24-h dietary recalls. The Consortium to Establish a Registry for Alzheimer's Disease Word Learning subset (CERAD W-L), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST) were used to evaluate cognitive function. Logistic regression and restricted cubic spline models were applied to explore the associations of dietary α-carotene and β-carotene intake with cognitive performance. After adjusting for all confounding factors, compared with individuals in the lowest quartile of β-carotene dietary intake, those in the highest quartile had lower risks of both CERAD W-L decline [odds ratio (OR) = 0.63, 95% confidence interval (CI): 0.44-0.90] and AFT decline (OR = 0.66, 95% CI: 0.47-0.94). In addition, the third quartile of β-carotene dietary intake had a significantly decreased risk of lower DSST (OR = 0.67, 95% CI: 0.48-0.83). Compared with the lowest quartile of α-carotene intake, the OR of AFT decline in the highest intake quartile was 0.66 (95% CI: 0.46, 0.94). For males, both dietary α-carotene and β-carotene intake were associated with a decreased risk of AFT decline (OR = 0.42, 95% CI: 0.25-0.71; OR = 0.51, 95% CI: 0.30-0.85, respectively). For females, dietary α-carotene intake was associated with a decreased risk of CERAD W-L decline (OR = 0.55, 95% CI: 0.33-0.91) and dietary β-carotene intake was associated with decreased risks of both CERAD W-L and AFT decline (OR = 0.37, 95% CI: 0.21-0.64; OR = 0.58, 95% CI: 0.37-0.91, respectively). Our results suggested that higher dietary α-carotene and β-carotene intake had inverse effects on cognitive function decline among older adults.
Collapse
|
16
|
Concurrent Production of α- and β-Carotenes with Different Stoichiometries Displaying Diverse Antioxidative Activities via Lycopene Cyclases-Based Rational System. Antioxidants (Basel) 2022; 11:antiox11112267. [DOI: 10.3390/antiox11112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
α- and β-carotenes belong to the most essential carotenoids in the human body and display remarkable pharmacological value for health due to their beneficial antioxidant activities. Distinct high α-/β-carotene stoichiometries have gained increasing attention for their effective preventions of Alzheimer’s disease, cardiovascular disease, and cancer. However, it is extremely difficult to obtain α-carotene in nature, impeding the accumulations of high α-/β-carotene stoichiometries and excavation of their antioxidant activities. Herein, we developed a dynamically operable strategy based on lycopene cyclases (LCYB and LCYE) for concurrently enriching α- and β-carotenes along with high stoichiometries in E. coli. Membrane-targeted and promoter-centered approaches were firstly implemented to spatially enhance catalytic efficiency and temporally boost expression of TeLCYE to address its low competitivity at the starting stage. Dynamically temperature-dependent regulation of TeLCYE and TeLCYB was then performed to finally achieve α-/β-carotene stoichiometries of 4.71 at 37 °C, 1.65 at 30 °C, and 1.06 at 25 °C, respectively. In the meantime, these α-/β-carotene ratios were confirmed to result in diverse antioxidative activities. According to our knowledge, this is the first time that both the widest range and antioxidant activities of high α/β-carotene stoichiometries were reported in any organism. Our work provides attractive potentials for obtaining natural products with competitivity and a new insight on the protective potentials of α-/β-carotenes with high ratios for health supply.
Collapse
|
17
|
Zhao Z, Chen J, Ci F, Pang H, Cheng N, Xing A. α-Carotene: a valuable carotenoid in biological and medical research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5606-5617. [PMID: 35478460 DOI: 10.1002/jsfa.11966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
α-Carotene, one of the C40 carotenes, is a natural lipid-soluble terpene. The chemical structure of α-carotene is based on the unsaturated polyene chain skeleton, with an ε-ring and a β-ring on each side of the skeleton. α-Carotene is widely found in dietary fruits and vegetables, and the concentration depends on the plant species. In addition, processing methods and storage conditions used in the food and medical industries can alter the concentration of α-carotene in raw materials. This review of α-carotene summarizes the major studies on chemical structure, source, extraction, detection, biosynthesis, processing effect, bioactivity, medicine, and biotechnology. Whether α-carotene supplementation or a diet rich in fruits and vegetables has a positive effect on the prevention of cancer, cardiovascular disease, and other diseases is the focus of this study. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilong Zhao
- Department of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou, China
| | - Jing Chen
- Department of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou, China
| | - FangFang Ci
- Weihai Institute for Food and Drug Control, Weihai, China
| | - He Pang
- Ningbo Innolux Optoelectronics Ltd, Innolux Display Group, Innolux Corporation, Ningbo, China
| | - Ning Cheng
- Department of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou, China
| | - Aijia Xing
- Department of Food Engineering, Harbin University of Science and Technology (Rongcheng Campus), Weihai, China
| |
Collapse
|
18
|
Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23169328. [PMID: 36012599 PMCID: PMC9409201 DOI: 10.3390/ijms23169328] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022] Open
Abstract
The distinguishing pathogenic features of neurodegenerative diseases include mitochondrial dysfunction and derived reactive oxygen species generation. The neural tissue is highly sensitive to oxidative stress and this is a prominent factor in both chronic and acute neurodegeneration. Based on this, therapeutic strategies using antioxidant molecules towards redox equilibrium have been widely used for the treatment of several brain pathologies. Globally, polyphenols, carotenes and vitamins are among the most typical exogenous antioxidant agents that have been tested in neurodegeneration as adjunctive therapies. However, other types of antioxidants, including hormones, such as the widely used melatonin, are also considered neuroprotective agents and have been used in different neurodegenerative contexts. This review highlights the most relevant mitochondrial antioxidant targets in the main neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease and also in the less represented amyotrophic lateral sclerosis, as well as traumatic brain injury, while summarizing the latest randomized placebo-controlled trials.
Collapse
|
19
|
Li X, Zhang P, Li H, Yu H, Xi Y. The Protective Effects of Zeaxanthin on Amyloid-β Peptide 1–42-Induced Impairment of Learning and Memory Ability in Rats. Front Behav Neurosci 2022; 16:912896. [PMID: 35813593 PMCID: PMC9262409 DOI: 10.3389/fnbeh.2022.912896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives Zeaxanthin (ZEA) as one of the biologically active phytochemicals presents a neuroprotective effect. Since ZEA may play its anti-oxidative role in neurodegenerative diseases including Alzheimer’s disease (AD), we hypothesized cognitive defects could be prevented or deferred by ZEA pre-treatment. Methods and Study Design All the rats were randomly divided into four groups (control, Aβ1–42, ZEA, and ZEA + Aβ groups). Learning and memory ability of rats, cerebrovascular ultrastructure changes, the redox state, endothelin-1 (ET-1) level, and amyloid-β peptide (Aβ) level in plasma and the Aβ transport receptors which are advanced glycation end products (RAGEs) and LDL receptor-related protein-1 (LRP-1) and interleukin-1β (IL-1β) expressions in the cerebrovascular tissue were measured in the present study. Results The escape latency and frequency of spanning the position of platform showed significant differences between the Aβ group and ZEA treatment groups. ZEA could prevent the ultrastructure changes of cerebrovascular tissue. In addition, ZEA also showed the protective effects on regulating redox state, restraining ET-1 levels, and maintaining Aβ homeostasis in plasma and cerebrovascular. Moreover, the disordered expressions of RAGE and LRP-1 and IL-1β induced by Aβ1–42 could be prevented by the pre-treatment of ZEA. Conclusion ZEA pre-treatment could prevent learning and memory impairment of rats induced by Aβ1–42. This neuroprotective effect might be attributable to the anti-oxidative and anti-inflammatory effects of ZEA on maintaining the redox state and reducing the Aβ level through regulating the Aβ transport receptors and inflammatory cytokine of the cerebrovascular tissue.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Ping Zhang
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Hongrui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
| | - Yuandi Xi
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
- *Correspondence: Yuandi Xi,
| |
Collapse
|
20
|
Escobar YNH, O’Piela D, Wold LE, Mackos AR. Influence of the Microbiota-Gut-Brain Axis on Cognition in Alzheimer’s Disease. J Alzheimers Dis 2022; 87:17-31. [PMID: 35253750 PMCID: PMC10394502 DOI: 10.3233/jad-215290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gut microbiota is made up of trillions of microbial cells including bacteria, viruses, fungi, and other microbial bodies and is greatly involved in the maintenance of proper health of the host body. In particular, the gut microbiota has been shown to not only be involved in brain development but also in the modulation of behavior, neuropsychiatric disorders, and neurodegenerative diseases including Alzheimer’s disease. The precise mechanism by which the gut microbiota can affect the development of Alzheimer’s disease is unknown, but the gut microbiota is thought to communicate with the brain directly via the vagus nerve or indirectly through signaling molecules such as cytokines, neuroendocrine hormones, bacterial components, neuroactive molecules, or microbial metabolites such as short-chain fatty acids. In particular, interventions such as probiotic supplementation, fecal microbiota transfer, and supplementation with microbial metabolites have been used not only to study the effects that the gut microbiota has on behavior and cognitive function, but also as potential therapeutics for Alzheimer’s disease. A few of these interventions, such as probiotics, are promising candidates for the improvement of cognition in Alzheimer ’s disease and are the focus of this review.
Collapse
Affiliation(s)
- Yael-Natalie H. Escobar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Devin O’Piela
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Amy R. Mackos
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|