1
|
Firouzabadi N, Karbasi D, Ghasemiyeh P, Sadeghi F, Alimoradi N, Kavousi M, Mohammadi-Samani S. Investigation on the association between Osteopontin and Apolipoprotein E gene polymorphisms and vancomycin-induced acute kidney injury: A pharmacokinetic/pharmacogenetic study in critically ill patients. Gene 2025; 952:149386. [PMID: 40081681 DOI: 10.1016/j.gene.2025.149386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Vancomycin is a commonly administered antibiotic for various Gram-positive infections in critically ill patients. Vancomycin has a narrow therapeutic index and its main adverse drug reaction is acute kidney injury (AKI). In this regard, various pharmacokinetic parameters have been widely considered for therapeutic drug monitoring (TDM) purposes. Higher vancomycin trough concentration and area under the curve (AUC) values would be associated with higher rates of AKI. Therefore, dose adjustment based on targeted pharmacokinetic values would be essential to avoid toxicity and achieve optimal clinical response. However, there are numerous reports regarding the discrepancy between pharmacokinetic parameter values and AKI. In this regard, we examined the possible role of pharmacogenetics in vancomycin-induced AKI to distinguish patients who are genetically prone to AKI. In this cross-sectional study, polymorphisms of osteopontin (OPN) and Apolipoprotein E (APOE) along with pharmacokinetic parameters were assessed in 87 critically ill patients admitted to ICU wards and received vancomycin. The results indicated a significant difference in OPN and APOE genotype distribution between AKI and non-AKI patients (P = 0.001 and 0.02, respectively). Stepwise multivariate logistic regression analysis showed that patients with e2e3 genotype were 4.2-fold more prone to AKI (P = 0.029; OR = 4.2; 95 %CI = 1.2-15.7). Moreover, there was a significant correlation between pharmacokinetic parameters (calculated trough concentration, AUCτ, AUC24h, and t1/2) and vancomycin-induced AKI. Genotyping the patients for OPN and APOE polymorphisms before vancomycin initiation would be promising as a routine clinical practice to obtain an efficient clinical response and prevent vancomycin-induced AKI, especially in critically ill patients.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorsa Karbasi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Sadeghi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Bader M, Abdelwanis M, Maalouf M, Jelinek HF. Detecting depression severity using weighted random forest and oxidative stress biomarkers. Sci Rep 2024; 14:16328. [PMID: 39009760 PMCID: PMC11250802 DOI: 10.1038/s41598-024-67251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
This study employs machine learning to detect the severity of major depressive disorder (MDD) through binary and multiclass classifications. We compared models that used only biomarkers of oxidative stress with those that incorporate sociodemographic and health-related factors. Data collected from 830 participants, based on the Patient Health Questionnaire (PHQ-9) score, inform our analysis. In binary classification, the Random Forest (RF) classifier achieved the highest Area Under the Curve (AUC) of 0.84 when all features were included. In multiclass classification, the AUC improved from 0.84 with only oxidative stress biomarkers to 0.88 when all characteristics were included. To address data imbalance, weighted classifiers, and Synthetic Minority Over-sampling Technique (SMOTE) approaches were applied. Weighted random forest (WRF) improved multiclass classification, achieving an AUC of 0.91. Statistical tests, including the Friedman test and the Conover post-hoc test, confirmed significant differences between model performances, with WRF using all features outperforming others. Feature importance analysis shows that oxidative stress biomarkers, particularly GSH, are top ranked among all features. Clinicians can leverage the results of this study to improve their decision-making processes by incorporating oxidative stress biomarkers in addition to the standard criteria for depression diagnosis.
Collapse
Affiliation(s)
- Mariam Bader
- Department of Management Science and Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Moustafa Abdelwanis
- Department of Management Science and Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Maher Maalouf
- Department of Management Science and Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Herbert F Jelinek
- Department of Medical Science, Biotechnology Center, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, Papadakis M, Saad HM, Batiha GE. Role of brain renin-angiotensin system in depression: A new perspective. CNS Neurosci Ther 2024; 30:e14525. [PMID: 37953501 PMCID: PMC11017442 DOI: 10.1111/cns.14525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Depression is a mood disorder characterized by abnormal thoughts. The pathophysiology of depression is related to the deficiency of serotonin (5HT), which is derived from tryptophan (Trp). Mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of depression. Notably, the renin-angiotensin system (RAS) is involved in the pathogenesis of depression, and different findings revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may be effective in depression. However, the underlying mechanism for the role of dysregulated brain RAS-induced depression remains speculative. Therefore, this review aimed to revise the conceivable role of ACEIs and ARBs and how these agents ameliorate the pathophysiology of depression. Dysregulation of brain RAS triggers the development and progression of depression through the reduction of brain 5HT and expression of brain-derived neurotrophic factor (BDNF) and the induction of mitochondrial dysfunction, oxidative stress, and neuroinflammation. Therefore, inhibition of central classical RAS by ARBS and ACEIs and activation of non-classical RAS prevent the development of depression by regulating 5HT, BDNF, mitochondrial dysfunction, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal MedicineMedical CollegeNajran UniversityNajranKSA
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Rabab S. Hamad
- Biological Sciences DepartmentCollege of Science, King Faisal UniversityAl AhsaSaudi Arabia
- Central LaboratoryTheodor Bilharz Research InstituteGizaEgypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
4
|
Barak R, Goshtasbi G, Fatehi R, Firouzabadi N. Signaling pathways and genetics of brain Renin angiotensin system in psychiatric disorders: State of the art. Pharmacol Biochem Behav 2024; 236:173706. [PMID: 38176544 DOI: 10.1016/j.pbb.2023.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Roya Barak
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Goshtasbi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Zhao F, Zhang K, Chen H, Zhang T, Zhao J, Lv Q, Yu Q, Ruan M, Cui R, Li B. Therapeutic potential and possible mechanisms of ginseng for depression associated with COVID-19. Inflammopharmacology 2024; 32:229-247. [PMID: 38012459 PMCID: PMC10907431 DOI: 10.1007/s10787-023-01380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Recently, a global outbreak of COVID-19 has rapidly spread to various national regions. As the number of COVID-19 patients has increased, some of those infected with SARS-CoV-2 have developed a variety of psychiatric symptoms, including depression, cognitive impairment, and fatigue. A distinct storm of inflammatory factors that contribute to the initial disease but also a persistent post-acute phase syndrome has been reported in patients with COVID-19. Neuropsychological symptoms including depression, cognitive impairment, and fatigue are closely related to circulating and local (brain) inflammatory factors. Natural products are currently being examined for their ability to treat numerous complications caused by COVID-19. Among them, ginseng has anti-inflammatory, immune system stimulating, neuroendocrine modulating, and other effects, which may help improve psychiatric symptoms. This review summarizes the basic mechanisms of COVID-19 pneumonia, psychiatric symptoms following coronavirus infections, effects of ginseng on depression, restlessness, and other psychiatric symptoms associated with post-COVID syn-dromes, as well as possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Kai Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Qin Yu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China.
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China.
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China.
| |
Collapse
|
6
|
Manolis TA, Manolis AA, Apostolopoulos EJ, Melita H, Manolis AS. Depression and atrial fibrillation in a reciprocal liaison: a neuro-cardiac link. Int J Psychiatry Clin Pract 2023; 27:397-415. [PMID: 37615537 DOI: 10.1080/13651501.2023.2248214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE To explore the reciprocal relationship of depression and atrial fibrillation (AF). METHODS A literature search was conducted in Pub Med, Scopus, and Google Scholar using relevant terms for depression and AF and respective therapies. RESULTS There is evidence that depression is involved in the aetiology and prognosis of AF. AF, independently of its type, incurs a risk of depression in 20-40% of patients. Also, depression significantly increases cumulative incidence of AF (from 1.92% to 4.44% at 10 years); 25% increased risk of new-onset AF is reported in patients with depression, reaching 32% in recurrent depression. Hence, emphasis is put on the importance of assessing depression in the evaluation of AF and vice versa. Persistent vs paroxysmal AF patients may suffer from more severe depression. Furthermore, depression can impact the effectiveness of AF treatments, including pharmacotherapy, anticoagulation, cardioversion and catheter ablation. CONCLUSIONS A reciprocal association of depression and AF, a neurocardiac link, has been suggested. Thus, strategies which can reduce depression may improve AF patients' course and treatment outcomes. Also, AF has a significant impact on risk of depression and quality of life. Hence, effective antiarrhythmic therapies may alleviate patients' depressive symptoms. KEY POINTSAF, independently of its type of paroxysmal, permanent or chronic, appears to have mental besides physical consequences, including depression and anxietyA reciprocal influence or bidirectional association of depression and AF, a neurocardiac link, has been suggestedAF has considerable impact on the risk of depression occurrence with 20-40% of patients with AF found to have high levels of depressionAlso, depression significantly increases 10-year cumulative incidence and risk of AF from 1.92% to 4.44% in people without depression, and the risk of new-onset AF by 25-32%Emphasis should be placed on the importance of assessing depression in the evaluation of AF and vice versaPersistent/chronic AF patients may suffer from more severe depressed mood than paroxysmal AF patients with similar symptom burdenDepression and anxiety can impact the effectiveness of certain AF treatments, including pharmacotherapy, anticoagulation treatment, cardioversion and catheter ablationThus, strategies which can reduce anxiety and depression may improve AF patients' course and treatment outcomesAlso, effective antiarrhythmic therapies to control AF may alleviate patients' depressive mood.
Collapse
|
7
|
Zi-Yang Y, Nanshan X, Dongling L, Tao H, Yigao H, Danqing Y, Caojin Z. ACE2 gene polymorphisms are associated with elevated pulmonary artery pressure in congenital heart diseases. Gene 2023; 882:147642. [PMID: 37454747 DOI: 10.1016/j.gene.2023.147642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUNDS Angiotensin converting enzyme 2 (ACE2) polymorphisms are related to the occurrence and prognosis of cardiovascular disease. However, whether ACE2 polymorphisms also affect pulmonary circulation in congenital heart disease (CHD) remains unclear. Thus, we investigated the relationship between ACE2 single nucleotide polymorphism (SNPs) and pulmonary circulation in CHD patients of Chinese Han ethnicity. METHODS Enrolled CHD patients (n = 367) underwent gene sequencing of ACE2 SNPs rs2074192, rs2285666, and rs2106809. Patients with pulmonary hypertension were further examined for detailed hemodynamics. RESULTS Female heterozygous patients had worse pulmonary circulation hemodynamic parameters compared to those of homozygotes. Female CHD patients with the CCA (OR = 0.53, 95% CI: 0.32-0.88) or CCG (OR = 0.59, 95% CI: 0.35-0.99) haplotype had a lower risk of elevated pulmonary artery pressure. CONCLUSION In female CHD patients, ACE2 SNPs are related to pulmonary circulation hemodynamics. Female CHD patients with the CCA and CCG haplotype had a lower risk of pulmonary hypertension.
Collapse
Affiliation(s)
- Yang Zi-Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xie Nanshan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Luo Dongling
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Huang Tao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Huang Yigao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Yu Danqing
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhang Caojin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front Pharmacol 2022; 13:968104. [PMID: 36386190 PMCID: PMC9664202 DOI: 10.3389/fphar.2022.968104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.
Collapse
Affiliation(s)
- Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Yang
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
10
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|