1
|
Yagi H, Hara-Nishimura I, Ueda H. Quantitative analysis of the root posture of Arabidopsis thaliana mutants with wavy roots. QUANTITATIVE PLANT BIOLOGY 2024; 5:e9. [PMID: 39777035 PMCID: PMC11706685 DOI: 10.1017/qpb.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025]
Abstract
Plant postures are affected by environmental stimuli. When the gravitational direction changes, the Arabidopsis thaliana mutants myosin xif xik (xif xik) and atp-binding cassette b19 (abcb19) exhibit aberrantly enhanced organ bending. Whether their phenotypes are due to the same mechanism is unknown. We characterized the primary root postures of these mutants. Their roots exhibited enhanced gravitropic bending with the same root-tip angles. The wavy roots of vertically grown plants were quantitatively evaluated using four indices. The straightness index (root base-to-tip length to total root-length ratio) was similar for xif xik and abcb19, and it slightly decreased for xif xik abcb19. The curvature index was similar for abcb19 and xif xik abcb19, but it decreased for xif xik, suggesting the ABCB19 deficiency caused the roots to curve more sharply. Combination of these indices for quantitative analyses of root postures may distinguish between similar wavy-root phenotypes and clarify genetic relationships.
Collapse
Affiliation(s)
- Hiroki Yagi
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
| | | | - Haruko Ueda
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe658-8501, Japan
| |
Collapse
|
2
|
Doğru D, Özdemir GD, Özdemir MA, Ercan UK, Topaloğlu Avşar N, Güren O. An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology. BMC Med Imaging 2024; 24:158. [PMID: 38914942 PMCID: PMC11197287 DOI: 10.1186/s12880-024-01332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The assessment of in vitro wound healing images is critical for determining the efficacy of the therapy-of-interest that may influence the wound healing process. Existing methods suffer significant limitations, such as user dependency, time-consuming nature, and lack of sensitivity, thus paving the way for automated analysis approaches. METHODS Hereby, three structurally different variations of U-net architectures based on convolutional neural networks (CNN) were implemented for the segmentation of in vitro wound healing microscopy images. The developed models were fed using two independent datasets after applying a novel augmentation method aimed at the more sensitive analysis of edges after the preprocessing. Then, predicted masks were utilized for the accurate calculation of wound areas. Eventually, the therapy efficacy-indicator wound areas were thoroughly compared with current well-known tools such as ImageJ and TScratch. RESULTS The average dice similarity coefficient (DSC) scores were obtained as 0.958 ∼ 0.968 for U-net-based deep learning models. The averaged absolute percentage errors (PE) of predicted wound areas to ground truth were 6.41%, 3.70%, and 3.73%, respectively for U-net, U-net++, and Attention U-net, while ImageJ and TScratch had considerable averaged error rates of 22.59% and 33.88%, respectively. CONCLUSIONS Comparative analyses revealed that the developed models outperformed the conventional approaches in terms of analysis time and segmentation sensitivity. The developed models also hold great promise for the prediction of the in vitro wound area, regardless of the therapy-of-interest, cell line, magnification of the microscope, or other application-dependent parameters.
Collapse
Affiliation(s)
- Dilan Doğru
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
| | - Gizem D Özdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Mehmet A Özdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey.
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| | - Utku K Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Nermin Topaloğlu Avşar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Onan Güren
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| |
Collapse
|
3
|
Kubalová M, Müller K, Dobrev PI, Rizza A, Jones AM, Fendrych M. Auxin co-receptor IAA17/AXR3 controls cell elongation in Arabidopsis thaliana root solely by modulation of nuclear auxin pathway. THE NEW PHYTOLOGIST 2024; 241:2448-2463. [PMID: 38308183 DOI: 10.1111/nph.19557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/06/2024] [Indexed: 02/04/2024]
Abstract
The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.
Collapse
Affiliation(s)
- Monika Kubalová
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Petre Ivanov Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Annalisa Rizza
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | | | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| |
Collapse
|
4
|
Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 2024; 187:130-148.e17. [PMID: 38128538 PMCID: PMC10783624 DOI: 10.1016/j.cell.2023.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
Collapse
Affiliation(s)
- Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Aline Monzer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Serre NBC, Wernerová D, Vittal P, Dubey SM, Medvecká E, Jelínková A, Petrášek J, Grossmann G, Fendrych M. The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile. eLife 2023; 12:e85193. [PMID: 37449525 PMCID: PMC10414970 DOI: 10.7554/elife.85193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here, we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor, and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.
Collapse
Affiliation(s)
- Nelson BC Serre
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Daša Wernerová
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
- Institute of Cell and Interaction Biology, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
| | - Pruthvi Vittal
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Eva Medvecká
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Adriana Jelínková
- Institute of Experimental Botany, Czech Academy of SciencesPragueCzech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
- Institute of Experimental Botany, Czech Academy of SciencesPragueCzech Republic
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| |
Collapse
|
6
|
Dubey SM, Han S, Stutzman N, Prigge MJ, Medvecká E, Platre MP, Busch W, Fendrych M, Estelle M. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. MOLECULAR PLANT 2023; 16:1120-1130. [PMID: 37391902 PMCID: PMC10720607 DOI: 10.1016/j.molp.2023.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
The phytohormone auxin triggers root growth inhibition within seconds via a non-transcriptional pathway. Among members of the TIR1/AFB auxin receptor family, AFB1 has a primary role in this rapid response. However, the unique features that confer this specific function have not been identified. Here we show that the N-terminal region of AFB1, including the F-box domain and residues that contribute to auxin binding, is essential and sufficient for its specific role in the rapid response. Substitution of the N-terminal region of AFB1 with that of TIR1 disrupts its distinct cytoplasm-enriched localization and activity in rapid root growth inhibition by auxin. Importantly, the N-terminal region of AFB1 is indispensable for auxin-triggered calcium influx, which is a prerequisite for rapid root growth inhibition. Furthermore, AFB1 negatively regulates lateral root formation and transcription of auxin-induced genes, suggesting that it plays an inhibitory role in canonical auxin signaling. These results suggest that AFB1 may buffer the transcriptional auxin response, whereas it regulates rapid changes in cell growth that contribute to root gravitropism.
Collapse
Affiliation(s)
- Shiv Mani Dubey
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Soeun Han
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Nathan Stutzman
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Michael J Prigge
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Eva Medvecká
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic.
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Dubey SM, Han S, Stutzman N, Prigge MJ, Medvecká E, Platre MP, Busch W, Fendrych M, Estelle M. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522696. [PMID: 36711737 PMCID: PMC9881920 DOI: 10.1101/2023.01.04.522696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The phytohormone auxin triggers root growth inhibition within seconds via a non-transcriptional pathway. Among members of the TIR1/AFBs auxin receptor family, AFB1 has a primary role in this rapid response. However, the unique features that confer this specific function have not been identified. Here we show that the N-terminal region of AFB1, including the F-box domain and residues that contribute to auxin binding, are essential and sufficient for its specific role in the rapid response. Substitution of the N-terminal region of AFB1 with that of TIR1 disrupts its distinct cytoplasm-enriched localization and activity in rapid root growth inhibition. Importantly, the N-terminal region of AFB1 is indispensable for auxin-triggered calcium influx which is a prerequisite for rapid root growth inhibition. Furthermore, AFB1 negatively regulates lateral root formation and transcription of auxin-induced genes, suggesting that it plays an inhibitory role in canonical auxin signaling. These results suggest that AFB1 may buffer the transcriptional auxin response while it regulates rapid changes in cell growth that contribute to root gravitropism.
Collapse
Affiliation(s)
- Shiv Mani Dubey
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Soeun Han
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Nathan Stutzman
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Michael J Prigge
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States
| | - Eva Medvecká
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic,For correspondence: and
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, United States,For correspondence: and
| |
Collapse
|