1
|
Shao D, Zhang Z, Liu X, Fu H, Shao X, Cai W. Screening Fast-Mode Motion in Collective Variable Discovery for Biochemical Processes. J Chem Theory Comput 2024; 20:10393-10405. [PMID: 39601677 DOI: 10.1021/acs.jctc.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Collective variables (CVs) describing slow degrees of freedom (DOFs) in biomolecular assemblies are crucial for analyzing molecular dynamics trajectories, creating Markov models and performing CV-based enhanced sampling simulations. While time-lagged independent component analysis (tICA) and its nonlinear successor, time-lagged autoencoder (tAE), are widely used, they often struggle to capture protein dynamics due to interference from random fluctuations along fast DOFs. To address this issue, we propose a novel approach integrating discrete wavelet transform (DWT) with dimensionality reduction techniques. DWT effectively separates fast and slow motion in protein simulation trajectories by decoupling high- and low-frequency signals. Based on the trajectory after filtering out high-frequency signals, which corresponds to fast motion, tICA and tAE can accurately extract CVs representing slow DOFs, providing reliable insights into protein dynamics. Our method demonstrates superior performance in identifying CVs that distinguish metastable states compared to standard tICA and tAE, as validated through analyses of conformational changes of alanine dipeptide and tripeptide and folding of CLN025. Moreover, we show that DWT can be used to improve the performance of a variety of CV-finding algorithms by combining it with Deep-tICA, a cutting-edge CV-finding algorithm, to extract CVs for enhanced-sampling calculations. Given its negligible computational cost and remarkable ability to screen fast motion, we propose DWT as a "free lunch" for CV extraction, applicable to a wide range of CV-finding algorithms.
Collapse
Affiliation(s)
- Donghui Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhiteng Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xuyang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Zhang M, Wu H, Wang Y. Enhanced Sampling of Biomolecular Slow Conformational Transitions Using Adaptive Sampling and Machine Learning. J Chem Theory Comput 2024; 20:8569-8582. [PMID: 39301626 DOI: 10.1021/acs.jctc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Biomolecular simulations often suffer from the "time scale problem", hindering the study of rare events occurring over extended time scales. Enhanced sampling techniques aim to alleviate this issue by accelerating conformational transitions, yet they typically necessitate well-defined collective variables (CVs), posing a significant challenge. Machine learning offers promising solutions but typically requires rich training data encompassing the entire free energy surface (FES). In this work, we introduce an automated iterative pipeline designed to mitigate these limitations. Our protocol first utilizes a CV-free count-based adaptive sampling method to generate a data set rich in rare events. From this data set, slow modes are identified using Koopman-reweighted time-lagged independent component analysis (KTICA), which are subsequently leveraged by on-the-fly probability enhanced sampling (OPES) to efficiently explore the FES. The effectiveness of our pipeline is demonstrated and further compared with the common Markov State Model (MSM) approach on two model systems with increasing complexity: alanine dipeptide (Ala2) and deca-alanine (Ala10), underscoring its applicability across diverse biomolecular simulations.
Collapse
Affiliation(s)
- Mingyuan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hao Wu
- School of Mathematical Sciences, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Rydzewski J. Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles. J Chem Theory Comput 2024; 20. [PMID: 39265157 PMCID: PMC11428138 DOI: 10.1021/acs.jctc.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Understanding the behavior of complex molecular systems is a fundamental problem in physical chemistry. To describe the long-time dynamics of such systems, which is responsible for their most informative characteristics, we can identify a few slow collective variables (CVs) while treating the remaining fast variables as thermal noise. This enables us to simplify the dynamics and treat it as diffusion in a free-energy landscape spanned by slow CVs, effectively rendering the dynamics Markovian. Our recent statistical learning technique, spectral map [Rydzewski, J. J. Phys. Chem. Lett. 2023, 14(22), 5216-5220], explores this strategy to learn slow CVs by maximizing a spectral gap of a transition matrix. In this work, we introduce several advancements into our framework, using a high-dimensional reversible folding process of a protein as an example. We implement an algorithm for coarse-graining Markov transition matrices to partition the reduced space of slow CVs kinetically and use it to define a transition state ensemble. We show that slow CVs learned by spectral map closely approach the Markovian limit for an overdamped diffusion. We demonstrate that coordinate-dependent diffusion coefficients only slightly affect the constructed free-energy landscapes. Finally, we present how spectral maps can be used to quantify the importance of features and compare slow CVs with structural descriptors commonly used in protein folding. Overall, we demonstrate that a single slow CV learned by spectral map can be used as a physical reaction coordinate to capture essential characteristics of protein folding.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus
Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Aristoff D, Johnson M, Simpson G, Webber RJ. The fast committor machine: Interpretable prediction with kernels. J Chem Phys 2024; 161:084113. [PMID: 39193940 DOI: 10.1063/5.0222798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
In the study of stochastic systems, the committor function describes the probability that a system starting from an initial configuration x will reach a set B before a set A. This paper introduces an efficient and interpretable algorithm for approximating the committor, called the "fast committor machine" (FCM). The FCM uses simulated trajectory data to build a kernel-based model of the committor. The kernel function is constructed to emphasize low-dimensional subspaces that optimally describe the A to B transitions. The coefficients in the kernel model are determined using randomized linear algebra, leading to a runtime that scales linearly with the number of data points. In numerical experiments involving a triple-well potential and alanine dipeptide, the FCM yields higher accuracy and trains more quickly than a neural network with the same number of parameters. The FCM is also more interpretable than the neural net.
Collapse
Affiliation(s)
- David Aristoff
- Mathematics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Mats Johnson
- Mathematics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Gideon Simpson
- Mathematics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Robert J Webber
- Mathematics, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Lelièvre T, Pigeon T, Stoltz G, Zhang W. Analyzing Multimodal Probability Measures with Autoencoders. J Phys Chem B 2024; 128:2607-2631. [PMID: 38466759 DOI: 10.1021/acs.jpcb.3c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Finding collective variables to describe some important coarse-grained information on physical systems, in particular metastable states, remains a key issue in molecular dynamics. Recently, machine learning techniques have been intensively used to complement and possibly bypass expert knowledge in order to construct collective variables. Our focus here is on neural network approaches based on autoencoders. We study some relevant mathematical properties of the loss function considered for training autoencoders and provide physical interpretations based on conditional variances and minimum energy paths. We also consider various extensions in order to better describe physical systems, by incorporating more information on transition states at saddle points, and/or allowing for multiple decoders in order to describe several transition paths. Our results are illustrated on toy two-dimensional systems and on alanine dipeptide.
Collapse
Affiliation(s)
- Tony Lelièvre
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Thomas Pigeon
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
- IFP Energies Nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, 69360 Solaize, France
| | - Gabriel Stoltz
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Wei Zhang
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| |
Collapse
|
6
|
Rydzewski J, Gökdemir T. Learning Markovian dynamics with spectral maps. J Chem Phys 2024; 160:091102. [PMID: 38436438 DOI: 10.1063/5.0189241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The long-time behavior of many complex molecular systems can often be described by Markovian dynamics in a slow subspace spanned by a few reaction coordinates referred to as collective variables (CVs). However, determining CVs poses a fundamental challenge in chemical physics. Depending on intuition or trial and error to construct CVs can lead to non-Markovian dynamics with long memory effects, hindering analysis. To address this problem, we continue to develop a recently introduced deep-learning technique called spectral map [J. Rydzewski, J. Phys. Chem. Lett. 14, 5216-5220 (2023)]. Spectral map learns slow CVs by maximizing a spectral gap of a Markov transition matrix describing anisotropic diffusion. Here, to represent heterogeneous and multiscale free-energy landscapes with spectral map, we implement an adaptive algorithm to estimate transition probabilities. Through a Markov state model analysis, we validate that spectral map learns slow CVs related to the dominant relaxation timescales and discerns between long-lived metastable states.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Tuğçe Gökdemir
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Fu H, Bian H, Shao X, Cai W. Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learning. J Phys Chem Lett 2024; 15:1774-1783. [PMID: 38329095 DOI: 10.1021/acs.jpclett.3c03542] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Enhanced-sampling algorithms relying on collective variables (CVs) are extensively employed to study complex (bio)chemical processes that are not amenable to brute-force molecular simulations. The selection of appropriate CVs characterizing the slow movement modes is of paramount importance for reliable and efficient enhanced-sampling simulations. In this Perspective, we first review the application and limitations of CVs obtained from chemical and geometrical intuition. We also introduce path-sampling algorithms, which can identify path-like CVs in a high-dimensional free-energy space. Machine-learning algorithms offer a viable approach to finding suitable CVs by analyzing trajectories from preliminary simulations. We discuss both the performance of machine-learning-derived CVs in enhanced-sampling simulations of experimental models and the challenges involved in applying these CVs to realistic, complex molecular assemblies. Moreover, we provide a prospective view of the potential advancements of machine-learning algorithms for the development of CVs in the field of enhanced-sampling simulations.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hengwei Bian
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Oh M, da Hora GCA, Swanson JMJ. tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation. J Chem Theory Comput 2023; 19:8886-8900. [PMID: 37943658 PMCID: PMC11282584 DOI: 10.1021/acs.jctc.3c00526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Molecular simulations are commonly used to understand the mechanism of membrane permeation of small molecules, particularly for biomedical and pharmaceutical applications. However, despite significant advances in computing power and algorithms, calculating an accurate permeation free energy profile remains elusive for many drug molecules because it can require identifying the rate-limiting degrees of freedom (i.e., appropriate reaction coordinates). To resolve this issue, researchers have developed machine learning approaches to identify slow system dynamics. In this work, we apply time-lagged independent component analysis (tICA), an unsupervised dimensionality reduction algorithm, to molecular dynamics simulations with well-tempered metadynamics to find the slowest collective degrees of freedom of the permeation process of trimethoprim through a multicomponent membrane. We show that tICA-metadynamics yields translational and orientational collective variables (CVs) that increase convergence efficiency ∼1.5 times. However, crossing the periodic boundary is shown to introduce artifacts in the translational CV that can be corrected by taking absolute values of molecular features. Additionally, we find that the convergence of the tICA CVs is reached with approximately five membrane crossings and that data reweighting is required to avoid deviations in the translational CV.
Collapse
Affiliation(s)
- Myongin Oh
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Oh M, da Hora GCA, Swanson JMJ. tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553477. [PMID: 37645884 PMCID: PMC10462029 DOI: 10.1101/2023.08.16.553477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Molecular simulations are commonly used to understand the mechanism of membrane permeation of small molecules, particularly for biomedical and pharmaceutical applications. However, despite significant advances in computing power and algorithms, calculating an accurate permeation free energy profile remains elusive for many drug molecules because it can require identifying the rate-limiting degrees of freedom (i.e., appropriate reaction coordinates). To resolve this issue, researchers have developed machine learning approaches to identify slow system dynamics. In this work, we apply time-lagged independent component analysis (tICA), an unsupervised dimensionality reduction algorithm, to molecular dynamics simulations with well-tempered metadynamics to find the slowest collective degrees of freedom of the permeation process of trimethoprim through a multicomponent membrane. We show that tICA-metadynamics yields translational and orientational collective variables (CVs) that increase convergence efficiency ∼1.5 times. However, crossing the periodic boundary is shown to introduce artefacts in the translational CV that can be corrected by taking absolute values of molecular features. Additionally, we find that the convergence of the tICA CVs is reached with approximately five membrane crossings, and that data reweighting is required to avoid deviations in the translational CV.
Collapse
|
10
|
Chipot C. Predictions from First-Principles of Membrane Permeability to Small Molecules: How Useful Are They in Practice? J Chem Inf Model 2023; 63:4533-4544. [PMID: 37449868 DOI: 10.1021/acs.jcim.3c00686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Predicting from first-principles the rate of passive permeation of small molecules across the biological membrane represents a promising strategy for screening lead compounds upstream in the drug-discovery and development pipeline. One popular avenue for the estimation of permeation rates rests on computer simulations in conjunction with the inhomogeneous solubility-diffusion model, which requires the determination of the free-energy change and position-dependent diffusivity of the substrate along the translocation pathway through the lipid bilayer. In this Perspective, we will clarify the physical meaning of the membrane permeability inferred from such computer simulations, and how theoretical predictions actually relate to what is commonly measured experimentally. We will also examine why these calculations remain both technically challenging and overly computationally expensive, which has hitherto precluded their routine use in nonacademic settings. We finally synopsize possible research directions to meet these challenges, increase the predictive power of physics-based rates of passive permeation, and, by ricochet, improve their practical usefulness.
Collapse
Affiliation(s)
- Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n◦7019, Université de Lorraine, 54500 Vandœuvre-lès-Nancy cedex, France
- Beckman Institute for Advanced Science and Technology, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Chen H, Roux B, Chipot C. Discovering Reaction Pathways, Slow Variables, and Committor Probabilities with Machine Learning. J Chem Theory Comput 2023; 19:4414-4426. [PMID: 37224455 PMCID: PMC11372462 DOI: 10.1021/acs.jctc.3c00028] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A significant challenge faced by atomistic simulations is the difficulty, and often impossibility, to sample the transitions between metastable states of the free-energy landscape associated with slow molecular processes. Importance-sampling schemes represent an appealing option to accelerate the underlying dynamics by smoothing out the relevant free-energy barriers, but require the definition of suitable reaction-coordinate (RC) models expressed in terms of compact low-dimensional sets of collective variables (CVs). While most computational studies of slow molecular processes have traditionally relied on educated guesses based on human intuition to reduce the dimensionality of the problem at hand, a variety of machine-learning (ML) algorithms have recently emerged as powerful alternatives to discover meaningful CVs capable of capturing the dynamics of the slowest degrees of freedom. Considering a simple paradigmatic situation in which the long-time dynamics is dominated by the transition between two known metastable states, we compare two variational data-driven ML methods based on Siamese neural networks aimed at discovering a meaningful RC model─the slowest decorrelating CV of the molecular process, and the committor probability to first reach one of the two metastable states. One method is the state-free reversible variational approach for Markov processes networks (VAMPnets), or SRVs─the other, inspired by the transition path theory framework, is the variational committor-based neural networks, or VCNs. The relationship and the ability of these methodologies to discover the relevant descriptors of the slow molecular process of interest are illustrated with a series of simple model systems. We also show that both strategies are amenable to importance-sampling schemes through an appropriate reweighting algorithm that approximates the kinetic properties of the transition.
Collapse
Affiliation(s)
- Haochuan Chen
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, 60637, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, 60637, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|