1
|
Louie AY, Tingling J, Dray E, Hussain J, McKim DB, Swanson KS, Steelman AJ. Dietary Cholesterol Causes Inflammatory Imbalance and Exacerbates Morbidity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2523-2539. [PMID: 35577367 DOI: 10.4049/jimmunol.2100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Influenza is a common cause of pneumonia-induced hospitalization and death, but how host factors function to influence disease susceptibility or severity has not been fully elucidated. Cellular cholesterol levels may affect the pathogenesis of influenza infection, as cholesterol is crucial for viral entry and replication, as well as immune cell proliferation and function. However, there is still conflicting evidence on the extent to which dietary cholesterol influences cholesterol metabolism. In this study, we examined the effects of a high-cholesterol diet in modulating the immune response to influenza A virus (IAV) infection in mice. Mice were fed a standard or a high-cholesterol diet for 5 wk before inoculation with mouse-adapted human IAV (Puerto Rico/8/1934), and tissues were collected at days 0, 4, 8, and 16 postinfection. Cholesterol-fed mice exhibited dyslipidemia characterized by increased levels of total serum cholesterol prior to infection and decreased triglycerides postinfection. Cholesterol-fed mice also displayed increased morbidity compared with control-fed mice, which was neither a result of immunosuppression nor changes in viral load. Instead, transcriptomic analysis of the lungs revealed that dietary cholesterol caused upregulation of genes involved in viral-response pathways and leukocyte trafficking, which coincided with increased numbers of cytokine-producing CD4+ and CD8+ T cells and infiltrating dendritic cells. Morbidity as determined by percent weight loss was highly correlated with numbers of cytokine-producing CD4+ and CD8+ T cells as well as granulocytes. Taken together, dietary cholesterol promoted IAV morbidity via exaggerated cellular immune responses that were independent of viral load.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Joseph Tingling
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Evan Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; .,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
2
|
Wang X, Tanaka N, Hu X, Kimura T, Lu Y, Jia F, Sato Y, Nakayama J, Moriya K, Koike K, Aoyama T. A high-cholesterol diet promotes steatohepatitis and liver tumorigenesis in HCV core gene transgenic mice. Arch Toxicol 2019; 93:1713-1725. [PMID: 31004178 DOI: 10.1007/s00204-019-02440-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
Previous epidemiological studies have suggested a link between high-cholesterol intake and liver disease progression, including hepatocellular carcinoma (HCC). However, the precise mechanism of hepatotoxicity and hepatocarcinogenesis caused by excessive cholesterol consumption remains unclear. We aimed to investigate the impact of dietary cholesterol using hepatitis C virus core gene transgenic (HCVcpTg) mice, which spontaneously developed HCC with age. Male HCVcpTg mice were treated for 15 months with either a control diet or an isocaloric diet containing 1.5% cholesterol, and liver phenotypes and tumor-associated signaling pathways were evaluated. The high-cholesterol diet-fed HCVcpTg mice exhibited a significantly higher incidence of liver tumors compared with the control diet mice (100% vs. 41%, P < 0.001). The diet induced steatohepatitis with pericellular fibrosis and evoked higher mRNA expression of pro-inflammatory and pro-fibrotic mediators along with enhanced hepatocyte proliferation and greater oxidative and endoplasmic reticulum stress in the liver. Moreover, long-term consumption of cholesterol-rich diet activated nuclear factor-kappa B (NF-κB) and p62/sequestosome 1 (Sqstm1)-nuclear factor erythroid 2 (NRF2) axis, enhanced fibrogenesis, and consequently accelerated hepatic tumorigenesis. In conclusion, these results demonstrate that a high-cholesterol diet facilitates liver tumorigenesis by inducing steatohepatitis, promoting hepatocyte division, and up-regulating cellular stress and pro-inflammatory NF-κB and detoxifying p62/Sqstm1-NRF2 signals. Therefore, high dietary cholesterol should be avoided in HCV-infected patients to prevent development of steatohepatitis, liver fibrosis, and HCC.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, People's Republic of China
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan.
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| | - Xiao Hu
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yu Lu
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| |
Collapse
|
3
|
Andersen CJ. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients 2018; 10:E764. [PMID: 29899295 PMCID: PMC6024721 DOI: 10.3390/nu10060764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 01/02/2023] Open
Abstract
Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015⁻2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.
Collapse
|