1
|
Xu H, Chen R, Hou X, Li N, Han Y, Ji S. The clinical potential of 1,5-anhydroglucitol as biomarker in diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1471577. [PMID: 39544236 PMCID: PMC11560458 DOI: 10.3389/fendo.2024.1471577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024] Open
Abstract
A crucial measure of diabetes management is to monitor blood glucose, which often requires continuous blood collection, leading to economic burden and discomfort. Blood glucose and glycated hemoglobin A1c serve as traditional indicators of glucose monitoring. But now glycated albumin, fructosamine, and 1,5-anhydroglucitol (1,5-AG) have been gaining more attention. 1,5-AG is a chemically stable monosaccharide that exists in the human body. Its serum concentration remains stable when blood glucose levels are normal. However, it decreases when blood glucose exceeds the renal glucose threshold. Studies have shown that 1.5-AG reflects blood glucose changes in 1 to 2 weeks; therefore, decreased levels of serum 1,5-AG can serve as a clinical indicator of short-term blood glucose disturbances. Recent studies have shown that 1,5-AG can be used not only for the screening and managing of diabetes but also for predicting diabetes-related adverse events and islet β cell function in prediabetic patients. In addition, saliva 1,5-AG demonstrates potential value in the screening and diagnosis of diabetes. This review focuses on the biological characteristics, detection methods, and clinical application of 1,5-AG to promote understanding and applicable research of 1,5-AG in the future.
Collapse
Affiliation(s)
- Haiying Xu
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Renyin Chen
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Xiaoli Hou
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Na Li
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Yanwei Han
- Hospital Laboratory Department, Rehabilitation Hospital of Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Kikuchi K, Kiyama R, Yoshinaga K. Efficacy of 1,5-anhydro-D-fructose on reducing mental stress: a randomized, double-blind, placebo-controlled trial-a pilot study. Biomed Res 2024; 45:209-216. [PMID: 39370299 DOI: 10.2220/biomedres.45.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in mental stress. We have previously reported that 1,5-anhydro-D-fructose (1,5-AF) increases brain BDNF in vivo. The present randomized, controlled, double-blind study aimed to clinically evaluate the effects of 1,5-AF oral intake on mental stress in terms of three parameters: sleep, mood, and bowel issues. Healthy volunteers aged between 22 and 71 years (n = 24) were randomly assigned to receive 5.5 g of 1,5-AF or placebo orally, once daily for 4 weeks. Pre- and post-intervention, the subjects completed the Oguri-Shirakawa-Azumi Sleep Inventory, Middle-Aged and Aged Version (OSA-MA); Profile of Mood States, Second Edition (POMS2); and Constipation Assessment Scale (CAS) questionnaires. In the OSA-MA, both "sleepiness on rising" and "sleep length" were significantly improved after treatment with 1,5-AF compared with before treatment. Furthermore, in the POMS2, there was a clear tendency toward reduced "Anger-Hostility" in the 1,5-AF group after treatment, and in the CAS, there was a clear tendency toward reduced "diarrhea or liquid stool" in the 1,5-AF group after treatment. Together, our findings indicate that 1,5-AF has some effects on reducing post-intervention mental stress levels.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Ryoji Kiyama
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan
| | - Kazuhiro Yoshinaga
- Department of Research and Development, SUNUS CO., LTD., 3-20 Nanei, Kagoshima, Kagoshima 891-0196, Japan
| |
Collapse
|
3
|
Zhu H, Ma H, Dong N, Wu M, Li D, Liu L, Shi Q, Ju X. 1,5-Anhydroglucitol promotes pre-B acute lymphocytic leukemia progression by driving glycolysis and reactive oxygen species formation. BMC Cancer 2023; 23:122. [PMID: 36747147 PMCID: PMC9903573 DOI: 10.1186/s12885-023-10589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Precursor B-cell acute lymphoblastic leukemia (pre-B ALL) is the most common hematological malignancy in children. Cellular metabolic reorganization is closely related to the progression and treatment of leukemia. We found that the level of 1,5-anhydroglucitol (1,5-AG), which is structurally similar to glucose, was elevated in children with pre-B ALL. However, the effect of 1,5-AG on pre-B ALL was unclear. Here, we aimed to reveal the roles and mechanisms of 1,5-AG in pre-B ALL progression. METHODS The peripheral blood plasma level of children with initial diagnosis of pre-B ALL and that of healthy children was measured using untargeted metabolomic analysis. Cell Counting Kit-8 assay, RNA sequencing, siRNA transfection, real-time quantitative PCR, and western blot were performed using pre-B ALL cell lines Reh and HAL-01. Cell cycle, cell apoptosis, ROS levels, and the positivity rate of CD19 were assessed using flow cytometry. Oxygen consumption rates and extracellular acidification rate were measured using XFe24 Extracellular Flux Analyzer. The lactate and nicotinamide adenine dinucleotide phosphate levels were measured using kits. The effect of 1,5-AG on pre-B ALL progression was verified using the In Vivo Imaging System in a xenotransplantation leukemia model. RESULTS We confirmed that 1,5-AG promoted the proliferation, viability, and intracellular glycolysis of pre-B ALL cells. Mechanistically, 1,5-AG promotes glycolysis while inhibiting mitochondrial respiration by upregulating pyruvate dehydrogenase kinase 4 (PDK4). Furthermore, high levels of intracellular glycolysis promote pre-B ALL progression by activating the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Conversely, N-acetylcysteine or vitamin C, an antioxidant, effectively inhibited 1,5-AG-mediated progression of leukemia cells. CONCLUSIONS Our study reveals a previously undiscovered role of 1,5-AG in pre-B ALL, which contributes to an in-depth understanding of anaerobic glycolysis in the progression of pre-B ALL and provides new targets for the clinical treatment of pre-B ALL.
Collapse
Affiliation(s)
- Huasu Zhu
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Huixian Ma
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Na Dong
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Min Wu
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Dong Li
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Linghong Liu
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Qing Shi
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China. .,Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
4
|
Tanabe K, Nakamura S, Nakayama T, Yoshinaga K, Ushiroda C, Oku T. Supplemental feeding of 1,5-anhydro-D-glucitol prevents the onset and development of diabetes through the suppression of oxidative stress in KKAy mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2023; 29:413-421. [DOI: 10.3136/fstr.fstr-d-23-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Kenichi Tanabe
- Faculty of Nutrition Sciences, Nakamura Gakuen University
- Graduate School of Human Health Science, University of Nagasaki Siebold
| | - Sadako Nakamura
- Institute of International Nutrition and Health, Jumonji University
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health
| | | | - Chihiro Ushiroda
- Institute of International Nutrition and Health, Jumonji University
| | - Tsuneyuki Oku
- Institute of International Nutrition and Health, Jumonji University
- Graduate School of Human Health Science, University of Nagasaki Siebold
| |
Collapse
|
5
|
Oku T, Nakamura S, Takeshita T, Hashiguchi M, Tanabe K. Metabolic Fate and Expectation of Health Benefits of [U- 14C]-Sucrose Inhibited from Digestion Using Morus alba Leaf Extract. J Nutr Sci Vitaminol (Tokyo) 2022; 68:294-302. [PMID: 36047101 DOI: 10.3177/jnsv.68.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Morus alba leaf extract (MLE), a strong inhibitor of sucrase, suppresses blood glucose elevation following sucrose ingestion. To investigate that sucrose inhibited from digestion using MLE is utilized through gut microbiota, [U-14C]-sucrose solutions with or without MLE were administered orally to conventional and antibiotic-treated rats, and the excretion of 14CO2 and H2 produced by gut microbiota was measured for 24 h. After an administration of [U-14C]-sucrose to conventional rats, the unit excreted 14CO2 peaked at 4 h, and the cumulative 14CO2 excreted over 24 h was approximately 60% of the radioactivity administered. No H2 was excreted. Following an administration of [U-14C]-sucrose and MLE in conventional rats, the unit excreted 14CO2 peaked later, at 8 h, and was significantly lower (p<0.05). The cumulative 14CO2 excreted over 24 h was equal in both groups, although there was a time lag of 2-3 h in rats given [U-14C]-sucrose and MLE. The amount of H2 excreted by these rats peaked 8 h after administration. Following the administration of [U-14C]-sucrose and MLE to antibiotic-treated rats, the unit excreted 14CO2 peaked lower, and the cumulative 14CO2 excretion over 24 h was approximately 40%. In this group, H2 was minimally excreted. H2 and 14CO2 produced by gut microbiota were excreted simultaneously. In conclusion, sucrose inhibited from digestion using MLE was fermented spontaneously by gut microbiota and was not excreted into feces. In addition, it confirmed that H2 excretion could be used directly to indicate the degree of fermentation of nondigestible carbohydrates.
Collapse
Affiliation(s)
- Tsuneyuki Oku
- Institute of International Nutrition & Health, Jumonji University.,Department of Nutritional Science, University of Nagasaki Siebold
| | - Sadako Nakamura
- Institute of International Nutrition & Health, Jumonji University
| | - Tomoya Takeshita
- Department of Nutritional Science, University of Nagasaki Siebold
| | | | - Kenichi Tanabe
- Faculty of Nutrition Sciences, Nakamura Gakuen University
| |
Collapse
|
6
|
Tong L, Xiao X, Li M, Fang S, Ma E, Yu X, Zhu Y, Wu C, Tian D, Yang F, Sun J, Qu J, Zheng N, Liao S, Tai W, Feng S, Zhang L, Li Y, Wang L, Han X, Sun S, Yang L, Zhong H, Zhao J, Liu W, Liu X, Wang P, Li L, Zhao G, Zhang R, Cheng G. A glucose-like metabolite deficient in diabetes inhibits cellular entry of SARS-CoV-2. Nat Metab 2022; 4:547-558. [PMID: 35534727 DOI: 10.1038/s42255-022-00567-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
The severity and mortality of COVID-19 are associated with pre-existing medical comorbidities such as diabetes mellitus. However, the underlying causes for increased susceptibility to viral infection in patients with diabetes is not fully understood. Here we identify several small-molecule metabolites from human blood with effective antiviral activity against SARS-CoV-2, one of which, 1,5-anhydro-D-glucitol (1,5-AG), is associated with diabetes mellitus. The serum 1,5-AG level is significantly lower in patients with diabetes. In vitro, the level of SARS-CoV-2 replication is higher in the presence of serum from patients with diabetes than from healthy individuals and this is counteracted by supplementation of 1,5-AG to the serum from patients. Diabetic (db/db) mice undergo SARS-CoV-2 infection accompanied by much higher viral loads and more severe respiratory tissue damage when compared to wild-type mice. Sustained supplementation of 1,5-AG in diabetic mice reduces SARS-CoV-2 loads and disease severity to similar levels in nondiabetic mice. Mechanistically, 1,5-AG directly binds the S2 subunit of the SARS-CoV-2 spike protein, thereby interrupting spike-mediated virus-host membrane fusion. Our results reveal a mechanism that contributes to COVID-19 pathogenesis in the diabetic population and suggest that 1,5-AG supplementation may be beneficial to diabetic patients against severe COVID-19.
Collapse
Affiliation(s)
- Liangqin Tong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoping Xiao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Shisong Fang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Enhao Ma
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yibin Zhu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Chunli Wu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Qu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nianzhen Zheng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shumin Liao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shengyong Feng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liming Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yuhan Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lin Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Liu
- School of Life Science, Tsinghua University, Beijing, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, USA
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
7
|
Effects of 1,5-anhydro-D-glucitol on insulin secretion both in in vitro and ex vivo pancreatic preparations. J Pharmacol Sci 2022; 149:66-72. [DOI: 10.1016/j.jphs.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
|
8
|
Tanabe K, Okuda A, Nakamura S, Oku T. Revaluation of the available energy of difructose anhydride III and maltobionic acid based on the fermentability of breath hydrogen excretion in healthy humans. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1930186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kenichi Tanabe
- Faculty of Nutrition Sciences, Nakamura Gakuen University, Jonan-ku, Japan
- Graduate School of Human Life Science, Graduate School of Nagoya Women’s University, Mizuho-ku, Japan
| | - Asuka Okuda
- Graduate School of Human Life Science, Graduate School of Nagoya Women’s University, Mizuho-ku, Japan
| | - Sadako Nakamura
- Institute of International Nutrition and Health, Jumonji University, Niiza, Japan
| | - Tsuneyuki Oku
- Institute of International Nutrition and Health, Jumonji University, Niiza, Japan
| |
Collapse
|
9
|
Mizote A, Yasuda A, Yoshizane C, Ishida Y, Kakuta S, Endo S, Mitsuzumi H, Ushio S. Evaluation of the relative available energy of cyclic nigerosylnigerose using breath hydrogen excretion in healthy humans. Biosci Biotechnol Biochem 2021; 85:1485-1491. [PMID: 33881472 DOI: 10.1093/bbb/zbab066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/09/2021] [Indexed: 11/14/2022]
Abstract
Cyclic nigerosylnigerose (CNN) is a cyclic tetrasaccharide with properties distinct from those of other conventional cyclodextrins. We investigated the relative available energy of CNN in healthy humans. CNN digestibility was determined using brush border membrane vesicles from the small intestines of rats. CNN was not hydrolyzed by rat intestinal enzymes. To investigate breath hydrogen excretion, 13 human subjects were included in a double-blind cross-over, randomized, placebo-controlled study. The effects of CNN on hydrogen excretion were compared with those of a typical nondigestible, fermentable fructooligosaccharide (FOS). In the study participants, hydrogen excretion hardly increased upon CNN and was remarkably lower than for FOS. The available energy value was determined using the fermentability based on breath hydrogen excretion and was evaluated as 0 kcal/g for CNN. CNN was hardly metabolized and hence may be used as a low-energy dietary fiber.
Collapse
Affiliation(s)
| | | | | | - Yuki Ishida
- HAYASHIBARA CO., LTD., Naka-ku, Okayama, Japan
| | | | - Shin Endo
- HAYASHIBARA CO., LTD., Naka-ku, Okayama, Japan
| | | | | |
Collapse
|
10
|
Tian M, Ma S, You Y, Long S, Zhang J, Guo C, Wang X, Tan H. Serum Metabolites as an Indicator of Developing Gestational Diabetes Mellitus Later in the Pregnancy: A Prospective Cohort of a Chinese Population. J Diabetes Res 2021; 2021:8885954. [PMID: 33628838 PMCID: PMC7884125 DOI: 10.1155/2021/8885954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/23/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is a common metabolic disorder with onset during pregnancy. However, the etiology and pathogenesis of GDM have not been fully elucidated. In this study, we used a metabolomics approach to investigate the relationship between maternal serum metabolites and GDM in early pregnancy. METHODS A nested case-control study was performed. To establish an early pregnancy cohort, pregnant women in early pregnancy (10-13+6 weeks) were recruited. In total, 51 patients with GDM and 51 healthy controls were included. Serum samples were analyzed using an untargeted high-performance liquid chromatography mass spectrometry metabolomics approach. The relationships between metabolites and GDM were analyzed by an orthogonal partial least-squares discriminant analysis. Differential metabolites were evaluated using a KEGG pathway analysis. RESULTS A total of 44 differential metabolites were identified between GDM cases and healthy controls during early pregnancy. Of these, 26 significant metabolites were obtained in early pregnancy after false discovery rate (FDR < 0.1) correction. In the GDM group, the levels of L-pyroglutamic acid, L-glutamic acid, phenylacetic acid, pantothenic acid, and xanthine were significantly higher and the levels of 1,5-anhydro-D-glucitol, calcitriol, and 4-oxoproline were significantly lower than those in the control group. These metabolites were involved in multiple metabolic pathways, including those for amino acid, carbohydrate, lipid, energy, nucleotide, cofactor, and vitamin metabolism. CONCLUSIONS We identified significant differentially expressed metabolites associated with the risk of GDM, providing insight into the mechanisms underlying GDM in early pregnancy and candidate predictive markers.
Collapse
Affiliation(s)
- Mengyuan Tian
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Shujuan Ma
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yiping You
- Department of Obstetrics, Hunan Provincial Maternal and Child Health Hospital, Changsha, China
| | - Sisi Long
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Jiayue Zhang
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Chuhao Guo
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Xiaolei Wang
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Hongzhuan Tan
- Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Clinical Epidemiology, Changsha, China
| |
Collapse
|
11
|
Effects of Dietary Defatted Meat Species on Metabolomic Profiles of Murine Liver, Gastrocnemius Muscle, and Cecal Content. Metabolites 2020; 10:metabo10120503. [PMID: 33317193 PMCID: PMC7763243 DOI: 10.3390/metabo10120503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
In both humans and animals, meat not only constitutes one of the sources of protein, but also includes various water-soluble bioactive substances such as imidazole peptides (carnosine and anserine) and taurine. Previous studies demonstrated that dietary meat species could differently affect physiological functions; however, the mechanisms of this remain unclear. To explore the physiological effects of dietary defatted meat species, especially on metabolism, we investigated their influence on the metabolomic profiles of the liver, gastrocnemius muscle, and cecal content in mice. Casein (control) or a defatted meat species (beef leg, pork leg, chicken leg, or chicken breast) was supplied as the major protein source in the diet for four weeks, and metabolism-related molecules were measured by gas chromatography–mass spectrometry. We found that various metabolite levels in tissues and cecal content differed according to the types of dietary protein consumed. Specifically, differences in carnosine, 1,5-anhydro-glucitol, inositol, butyric acid, and propionic acid were clearly observed. Among them, the highest carnosine intake by dietary pork leg was clearly related to the highest carnosine level in the liver. In addition, taurine intake was suggested to be linked to some metabolic pathways including taurine and hypotaurine metabolism in cecal content. These results provide additional knowledge of the effects of different dietary meat species on human and animal health.
Collapse
|
12
|
Tanabe K, Okuda A, Ken F, Yamanaka N, Nakamura S, Oku T. Metabolic fate of newly developed nondigestible oligosaccharide, maltobionic acid, in rats and humans. Food Sci Nutr 2020; 8:3610-3616. [PMID: 32724623 PMCID: PMC7382184 DOI: 10.1002/fsn3.1643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 11/26/2022] Open
Abstract
Maltobionic acid (MA), formed by a gluconic acid and glucose linked by an α-1,4 bond, may have the properties of a nondigestible oligosaccharide. The objective of this study was to elucidate the bioavailability of MA in rats and humans by observing digestion of MA by small intestinal enzymes, the fermentation of MA by gut microbiota, and the effect of adaptation following prolonged ingestion of MA. MA digestion was assessed using brush border membrane vesicles (BBMV) from rat small intestine. A within-subject repeated measures design was used for ingestion experiments in 10 healthy female participants. After MA ingestion, postprandial plasma glucose and insulin levels, breath hydrogen excretion, and urinary MA were measured. The effect of adaptation following prolonged MA ingestion was investigated in rats. MA was minimally hydrolyzed by BBMV. Ingestion of 10 g of MA by healthy females did not elevate postprandial plasma glucose and insulin levels. Breath hydrogen and urinary MA were negligibly excreted over 8 hr following ingestion. Adaptation to prolonged MA ingestion produced no significant difference in exhaled hydrogen levels over 8 hr following administration compared with controls. MA is a new food material that is highly resistant to digestion and fermentation. It expresses the characteristics of a nondigestible oligosaccharide, including being low energy, improving the flavor of food and juice, and mineral solubilization.
Collapse
Affiliation(s)
- Kenichi Tanabe
- Faculty of Nutrition SciencesNakamura Gakuen UniversityFukuokaJapan
- Graduate School of Human Life ScienceNagoya Women's UniversityAichiJapan
| | - Asuka Okuda
- Graduate School of Human Life ScienceNagoya Women's UniversityAichiJapan
| | - Fukami Ken
- San‐ei Sucrochemical Co., Ltd.AichiJapan
| | - Natsumi Yamanaka
- Graduate School of Human Life ScienceNagoya Women's UniversityAichiJapan
| | - Sadako Nakamura
- Institute of International Nutrition and Health/Graduate School of Human Life Sciences/Department of Food and NutritionJumonji UniversitySaitamaJapan
| | - Tsuneyuki Oku
- Institute of International Nutrition and Health/Graduate School of Human Life Sciences/Department of Food and NutritionJumonji UniversitySaitamaJapan
| |
Collapse
|
13
|
Jian C, Zhao A, Ma X, Ge K, Lu W, Zhu W, Wang Y, Zhou J, Jia W, Bao Y. Diabetes Screening: Detection and Application of Saliva 1,5-Anhydroglucitol by Liquid Chromatography-Mass Spectrometry. J Clin Endocrinol Metab 2020; 105:5805160. [PMID: 32170297 DOI: 10.1210/clinem/dgaa114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Unlike other commonly used invasive blood glucose-monitoring methods, saliva detection prevents patients from suffering physical uneasiness. However, there are few studies on saliva 1,5-anhydroglucitol (1,5-AG) in patients with diabetes mellitus (DM). OBJECTIVE This study aimed to evaluate the effectiveness of saliva 1,5-AG in diabetes screening in a Chinese population. DESIGN AND PARTICIPANTS This was a population-based cross-sectional study. A total of 641 subjects without a valid diabetic history were recruited from September 2018 to June 2019. Saliva 1,5-AG was measured with liquid chromatography-mass spectrometry. MAIN OUTCOME MEASURES DM was defined per American Diabetes Association criteria. The efficiency of saliva 1,5-AG for diabetes screening was analyzed by receiver operating characteristic curves, and the optimal cutoff point was determined according to the Youden index. RESULTS Saliva 1,5-AG levels in subjects with DM were lower than those in subjects who did not have DM (both P < .05). Saliva 1,5-AG was positively correlated with serum 1,5-AG and negatively correlated with blood glucose and glycated hemoglobin (HbA1c) (all P < .05). The optimal cutoff points of saliva 1,5-AG0 and 1,5-AG120 for diabetes screening were 0.436 μg/mL (sensitivity: 63.58%, specificity: 60.61%) and 0.438 μg/mL (sensitivity: 62.25%, specificity: 60.41%), respectively. Fasting plasma glucose (FPG) combined with fasting saliva 1,5-AG reduced the proportion of people who required an oral glucose tolerance test by 47.22% compared with FPG alone. CONCLUSION Saliva 1,5-AG combined with FPG or HbA1c improved the efficiency of diabetes screening. Saliva 1,5-AG is robust in nonfasting measurements and a noninvasive and convenient tool for diabetes screening.
Collapse
Affiliation(s)
- Chaohui Jian
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
14
|
Liu Y, Smith CE, Parnell LD, Lee YC, An P, Straka RJ, Tiwari HK, Wood AC, Kabagambe EK, Hidalgo B, Hopkins PN, Province MA, Arnett DK, Tucker KL, Ordovas JM, Lai CQ. Salivary AMY1 Copy Number Variation Modifies Age-Related Type 2 Diabetes Risk. Clin Chem 2020; 66:718-726. [PMID: 32337541 PMCID: PMC7192522 DOI: 10.1093/clinchem/hvaa072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/28/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Copy number variation (CNV) in the salivary amylase gene (AMY1) modulates salivary α-amylase levels and is associated with postprandial glycemic traits. Whether AMY1-CNV plays a role in age-mediated change in insulin resistance (IR) is uncertain. METHODS We measured AMY1-CNV using duplex quantitative real-time polymerase chain reaction in two studies, the Boston Puerto Rican Health Study (BPRHS, n = 749) and the Genetics of Lipid-Lowering Drug and Diet Network study (GOLDN, n = 980), and plasma metabolomic profiles in the BPRHS. We examined the interaction between AMY1-CNV and age by assessing the relationship between age with glycemic traits and type 2 diabetes (T2D) according to high or low copy numbers of the AMY1 gene. Furthermore, we investigated associations between metabolites and interacting effects of AMY1-CNV and age on T2D risk. RESULTS We found positive associations of IR with age among subjects with low AMY1-copy-numbers in both studies. T2D was marginally correlated with age in participants with low AMY1-copy-numbers but not with high AMY1-copy-numbers in the BPRHS. Metabolic pathway enrichment analysis identified the pentose metabolic pathway based on metabolites that were associated with both IR and the interactions between AMY1-CNV and age. Moreover, in older participants, high AMY1-copy-numbers tended to be associated with lower levels of ribonic acid, erythronic acid, and arabinonic acid, all of which were positively associated with IR. CONCLUSIONS We found evidence supporting a role of AMY1-CNV in modifying the relationship between age and IR. Individuals with low AMY1-copy-numbers tend to have increased IR with advancing age.
Collapse
Affiliation(s)
- Yuwei Liu
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- School of Public Health, Fudan University, Shanghai, China
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Yu-Chi Lee
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Alexis C Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | | | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Paul N Hopkins
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
15
|
Morita A, Ouchi M, Satoh K, Terada M, Kon H, Wakashin H, Hayashi K, Anzai N, Oba K, Shimizu A, Fujita T. Development of an organ bath technique for isolated rat pancreas preparations to assess the effect of 1,5-AG on insulin secretion. Exp Anim 2020; 69:127-134. [PMID: 31735767 PMCID: PMC7220716 DOI: 10.1538/expanim.19-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To investigate substances related to insulin secretion, we reported a convenient
experimental method to reproduce insulin secretion from isolated rat pancreas preparations
using an organ bath. While the method has experimental utility for investigating insulin
secretion, optimization of the experimental design is still needed. The level of insulin
outflow in the control decreased over time in our previous study. Decreasing serum
1,5-anhydroglucitol (1,5-AG) levels is also known to be shown in patients with worsening
glycemic control. There is one in vitro report demonstrated that 1,5-AG
induced insulin release. It appears that discussion needs to be deepened further on it. In
this study, we investigated the effect of 1,5-AG on insulin secretion through to optimize
the condition of endocrine function using the ex vivo organ bath
technique. The level of insulin outflow in the control and 1,5-AG groups decreased over
time in the organ bath experiment. To analyze the effect of trypsin on reduced insulin
secretion, pancreas preparation was treated with soybean trypsin inhibitor (TI). Insulin
outflow levels of the TI group were significantly higher than the control group. An enzyme
indicator of tissue damage tended to be lower in the TI group. There was no significant
enhancement of insulin secretion by 1,5-AG. The present study demonstrated the utility of
TI application for the organ bath technique. This finding supported the development of an
organ bath technique for the assessment of the effects of novel therapeutics on insulin
secretion.
Collapse
Affiliation(s)
- Asuka Morita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Misao Terada
- Research Center for Laboratory Animals, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Hiroe Kon
- Research Center for Laboratory Animals, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Hidefumi Wakashin
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan.,Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kenzo Oba
- Kawaguchi Sakura Clinic, 258-2, Goudo, Kawaguchi, Saitama 333-0832, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| |
Collapse
|
16
|
Wada H, Dohi T, Miyauchi K, Takahashi N, Endo H, Kato Y, Ogita M, Okai I, Iwata H, Okazaki S, Isoda K, Shimada K, Suwa S, Daida H. Impact of serum 1,5-anhydro-D-glucitol level on the prediction of severe coronary artery calcification: an intravascular ultrasound study. Cardiovasc Diabetol 2019; 18:69. [PMID: 31159826 PMCID: PMC6545671 DOI: 10.1186/s12933-019-0878-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A low 1,5-anhydro-D-glucitol (AG) blood level is considered a clinical marker of postprandial hyperglycemia. Previous studies reported that 1,5-AG levels were associated with vascular endothelial dysfunction and coronary artery disease (CAD). However, the association between 1,5-AG levels and coronary artery plaque in patients with CAD is unclear. METHODS This study included 161 patients who underwent percutaneous coronary intervention for CAD. The culprit plaque characteristics and the extent of coronary calcification, which was measured by the angle of its arc, were assessed by preintervention intravascular ultrasound (IVUS). Patients with chronic kidney disease or glycosylated hemoglobin ≥ 7.0 were excluded. Patients were divided into 2 groups according to serum 1,5-AG levels (< 14.0 μg/mL vs. ≥ 14 μg/mL). RESULTS The total atheroma volume and the presence of IVUS-attenuated plaque in the culprit lesions were similar between groups. Calcified plaques were frequently observed in the low 1,5-AG group (p = 0.06). Compared with the high 1,5-AG group, the low 1,5-AG group had significantly higher median maximum calcification (144° vs. 107°, p = 0.03) and more frequent calcified plaques with a maximum calcification angle of ≥ 180° (34.0% vs. 13.2%, p = 0.003). Multivariate logistic regression analysis showed that a low 1,5-AG level was a significant predictor of a greater calcification angle (> 180°) (OR 2.64, 95% CI 1.10-6.29, p = 0.03). CONCLUSIONS Low 1,5-AG level, which indicated postprandial hyperglycemia, was associated with the severity of coronary artery calcification. Further studies are needed to clarify the effects of postprandial hyperglycemia on coronary artery calcification.
Collapse
Affiliation(s)
- Hideki Wada
- Department of Cardiovascular Medicine, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norihito Takahashi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirohisa Endo
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshiteru Kato
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Manabu Ogita
- Department of Cardiovascular Medicine, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Iwao Okai
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Iwata
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinya Okazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kikuo Isoda
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoru Suwa
- Department of Cardiovascular Medicine, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|