1
|
Qu H, Qu Y. Can coenzyme Q10 supplementation reduce exercise-induced muscle damage and oxidative stress in athletes? A systematic review and meta-analysis. Complement Ther Clin Pract 2025; 60:102001. [PMID: 40367843 DOI: 10.1016/j.ctcp.2025.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND AND PURPOSE Coenzyme Q10 (CoQ10) has been widely recognized for its potential antioxidative and cytoprotective properties. Oxidative stress and muscle damage can impair recovery in athletes. This meta-analysis evaluates the impact of CoQ10 supplementation on oxidative stress and muscle damage biomarkers in athletes. MATERIALS AND METHODS A systematic search of databases up to March 2025 identified controlled trials assessing the effects of CoQ10 on malondialdehyde (MDA), total antioxidant capacity (TAC), lactate dehydrogenase (LDH), and creatine kinase (CK). Random-effects model was performed to estimate mean differences (MD) with 95 % confidence intervals (CI). RESULTS Seventeen trials with 440 participants were included. CoQ10 significantly reduced MDA levels (MD = -0.61 μmol/L; 95 % CI: 1.18 to -0.03; p = 0.04) and muscle damage biomarkers LDH (MD = -69.99 IU/L; 95 % CI: 131.93 to -8.05; p = 0.033) and CK (MD = -71.81 IU/L; 95 % CI: 124.33 to -19.3; p = 0.012). However, CoQ10 had no significant effect on TAC (MD = -0.17 mmol/L; 95 % CI: 0.77 to 0.43; p = 0.472). Subgroup analyses revealed duration- and dose-specific effects, particularly for reductions in LDH at 14 days and CK at doses ≥300 mg/day. CONCLUSION CoQ10 supplementation shows promise in reducing oxidative stress and muscle damage markers in athletes. Although effects on TAC were not significant and evidence quality remains low to very low, these findings suggest CoQ10 may serve as a supportive recovery strategy to mitigate exercise-induced oxidative and muscle damage. Further high-quality studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Hui Qu
- Department of Physical Education, Northeastern University, Shenyang, Liaoning, China.
| | - Yueyao Qu
- College of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Yasul Y, Yılmaz B, Şenel Ö, Kurt D, Akbulut T, Çalıkuşu A, Anadol E, Yılmaz C. Evaluating the impact of coenzyme Q10 and high-intensity interval training on lactate threshold and Plasma blood gases in rats: a randomized controlled trial. Eur J Appl Physiol 2025:10.1007/s00421-025-05756-8. [PMID: 40100404 DOI: 10.1007/s00421-025-05756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Coenzyme Q10 (Q10) is a mitochondrial coenzyme that facilitates ATP production via oxidative phosphorylation. This study hypothesized that Q10 enhances mitochondrial efficiency and lactate threshold, while high-intensity interval training (HIIT) promotes metabolic adaptations, improving glucose utilization and buffering capacity for faster recovery after high-intensity exercise. METHODS A randomized controlled trial was conducted using 24 male Sprague-Dawley rats (250.4 ± 6.1 g, 8 weeks old). The rats were allocated into four groups: control (C), coenzyme Q10 (CoQ10), HIIT, and HIIT + Q10. The Q10 administration involved a dosage of 10 mg/kg/day, given 30 min prior to the HIIT protocol. Lactate threshold, blood gas parameters, oximetry values, metabolite levels, and electrolyte status were analyzed utilizing the Radiometer 900 device. The blood samples were collected at the fifth and tenth minutes following the HIIT training trials. RESULTS The HIIT + Q10 group exhibited a significant reduction in lactate threshold (p < 0.01), maintaining values below average. Significant improvements in blood gas parameters, including pH, pO2, and pCO2, were observed in this group. Enhanced oxygen transport capacity was indicated by improved oximetry parameters (Hb, HCT, sO2) and reduced COHb levels. Additionally, positive changes in HCO3- and base values indicated reduced metabolic stress. Q10 supplementation also stabilized electrolytes, particularly K+ and Na+. CONCLUSION The Q10 supplementation supported metabolic balance, improved oxygen transport, and stabilized acid-base levels during HIIT. It reduced lactate accumulation, enhanced glucose availability, and alleviated metabolic stress, thereby improving recovery efficiency and physiological adaptation.
Collapse
Affiliation(s)
- Yavuz Yasul
- Bafra Vocational School, Ondokuz Mayıs University, 55400, Bafra, Samsun, Türkiye.
| | - Büşra Yılmaz
- Faculty of Sport Sciences, Gazi University, Ankara, Türkiye
| | - Ömer Şenel
- Faculty of Sport Sciences, Gazi University, Ankara, Türkiye
| | - Dursun Kurt
- Bafra Vocational School, Ondokuz Mayıs University, 55400, Bafra, Samsun, Türkiye
| | - Taner Akbulut
- Faculty of Sport Sciences, Fırat University, Elazığ, Türkiye
| | | | - Elvan Anadol
- Laboratory Animals Breeding and Experimental Researches Center, Gazi University, Ankara, Türkiye
| | - Canan Yılmaz
- Faculty of Medicine, Department of Medical Biochemistry, Gazi University, Ankara, Türkiye
| |
Collapse
|
3
|
Haferanke J, Baumgartner L, Willinger L, Schulz T, Mühlbauer F, Engl T, Weberruß H, Hofmann H, Wasserfurth P, Köhler K, Oberhoffer-Fritz R. The MuCAYA plus Study-Influence of Physical Activity and Metabolic Parameters on the Structure and Function of the Cardiovascular System in Young Athletes. CJC Open 2024; 6:1549-1557. [PMID: 39735949 PMCID: PMC11681355 DOI: 10.1016/j.cjco.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/16/2024] [Indexed: 12/31/2024] Open
Abstract
Exercise has a significant impact on the cardiovascular (CV) health of children and adolescents, with resultant alterations in CV structure and function being evident, even at an early age. Engagement in regular, moderate physical activity (PA) is associated with long-term CV health benefits and a reduced risk of CV disease and mortality later in life. However, competitive sports often involve PA training intensities that are beyond recommended levels for young athletes, potentially leading to adverse CV outcomes. This situation emphasizes the importance of early monitoring of CV status, to prevent detrimental adaptations to intense physical exercise. The Munich Cardiovascular Adaptations in Young Athletes Study (MuCAYAplus; NCT06259617) aims to investigate the as-yet-unclear adaptations to intense exercise that occur in young athletes. The study focuses on various factors, including CV health, PA, cardiopulmonary performance, body composition, eating habits, and biochemical markers. In this longitudinal, prospective study, a sample of 250 young competitive athletes (aged 10-17 years) will undergo yearly examinations at the Institute of Preventive Pediatrics at the Technical University of Munich (TUM), over the span of 3 years. The testing protocol includes the following: anthropometric measurements; basic medical examinations; electrocardiography, with blood-pressure and pulse-wave analysis; echocardiography; sonography of the carotid artery; blood sampling for laboratory analysis; cardiopulmonary exercise testing on a bicycle ergometer; and participant completion of questionnaires regarding PA (the Motorik-Modul Longitudinal Study PA Questionnaire [MoMo-PAQ]) and nutrition. Areas that are not yet fully understood are how exercise influences cardiac and vascular remodeling during long-term exercise, and how different biochemical and metabolic parameters, body composition, and nutrition impact such adaptations. The MuCAYAplus study seeks to address these gaps in knowledge and provide comprehensive evidence on the longitudinal effects of exercise on the CV system of young athletes.
Collapse
Affiliation(s)
- Jonas Haferanke
- Department of Health and Sport Sciences, Institute of Preventive Pediatrics, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Lisa Baumgartner
- Department of Health and Sport Sciences, Institute of Preventive Pediatrics, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Laura Willinger
- Department of Health and Sport Sciences, Institute of Preventive Pediatrics, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Thorsten Schulz
- Department of Health and Sport Sciences, Institute of Preventive Pediatrics, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Frauke Mühlbauer
- Department of Health and Sport Sciences, Institute of Preventive Pediatrics, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Tobias Engl
- Department of Health and Sport Sciences, Institute of Preventive Pediatrics, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Heidi Weberruß
- Clinic for Children and Adolescents, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Hande Hofmann
- Department Health and Sport Sciences, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Paulina Wasserfurth
- Department Health and Sport Sciences, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Karsten Köhler
- Department Health and Sport Sciences, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| | - Renate Oberhoffer-Fritz
- Department of Health and Sport Sciences, Institute of Preventive Pediatrics, Technical University of Munich (TUM) School of Medicine and Health, TUM, Munich, Germany
| |
Collapse
|
4
|
Talebi S, Pourgharib Shahi MH, Zeraattalab-Motlagh S, Asoudeh F, Ranjbar M, Hemmati A, Talebi A, Wong A, Mohammadi H. The effects of coenzyme Q10 supplementation on biomarkers of exercise-induced muscle damage, physical performance, and oxidative stress: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 60:122-134. [PMID: 38479900 DOI: 10.1016/j.clnesp.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE This study aims to elucidate the dose-dependent effect of coenzyme Q10 supplementation (CoQ10) on exercise-induced muscle damage (EIMD), physical performance, and oxidative stress in adults. METHODS A systematic search was conducted through PubMed, Scopus, and ISI Web of Science databases up to August 2023, focusing on randomized control trials (RCTs) that investigated the effects of CoQ10 supplementation on EIMD recovery, physical performance and oxidative stress mitigation in adults. The weighted mean difference (WMD) and 95 % confidence interval (95 %CI) were estimated using the random-effects model. RESULTS The meta-analysis incorporated 28 RCTs, encompassing 830 subjects. CoQ10 supplementation significantly decreased creatine kinase (CK) (WMD: -50.64 IU/L; 95 %CI: -74.75, -26.53, P < 0.001), lactate dehydrogenase (LDH) (WMD: -52.10 IU/L; 95 %CI: -74.01, -30.19, P < 0.001), myoglobin (Mb) (WMD: -21.77 ng/ml; 95 %CI: -32.59, -10.94, P < 0.001), and Malondialdehyde (MDA) (WMD: -0.73 μmol/l; 95 %CI: -1.26, -0.20, P = 0.007) levels. No significant alteration in total antioxidant capacity was observed post-CoQ10 treatment. Each 100 mg/day increase in CoQ10 supplementation was correlated with a significant reduction in CK (MD: -23.07 IU/L, 95 %CI: -34.27, -11.86), LDH (WMD: -27.21 IU/L, 95 %CI: -28.23, -14.32), Mb (MD: -7.09 ng/ml; 95 %CI: -11.35, -2.83) and MDA (WMD: -0.17 μmol/l, 95 %CI: -0.29, -0.05) serum levels. Using SMD analysis, "very large" effects on LDH and "moderate" effects on CK and MDA were noted, albeit nonsignificant for other outcomes. CONCLUSION CoQ10 supplementation may be effective in reducing biomarkers of EIMD and oxidative stress in adults. Nevertheless, given the preponderance of studies conducted in Asia, the generalizability of these findings warrants caution. Further RCTs, particularly in non-Asian populations with large sample sizes and extended supplementation durations, are essential to substantiate these observations.
Collapse
Affiliation(s)
- Sepide Talebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Asoudeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mahsa Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hemmati
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Bjørklund G, Semenova Y, Gasmi A, Indika NLR, Hrynovets I, Lysiuk R, Lenchyk L, Uryr T, Yeromina H, Peana M. Coenzyme Q 10 for Enhancing Physical Activity and Extending the Human Life Cycle. Curr Med Chem 2024; 31:1804-1817. [PMID: 36852817 DOI: 10.2174/0929867330666230228103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Coenzyme Q (CoQ) is an enzyme family that plays a crucial role in maintaining the electron transport chain and antioxidant defense. CoQ10 is the most common form of CoQ in humans. A deficiency of CoQ10 occurs naturally with aging and may contribute to the development or progression of many diseases. Besides, certain drugs, in particular, statins and bisphosphonates, interfere with the enzymes responsible for CoQ10 biosynthesis and, thus, lead to CoQ10 deficiency. OBJECTIVES This article aims to evaluate the cumulative studies and insights on the topic of CoQ10 functions in human health, focusing on a potential role in maintaining physical activity and extending the life cycle. RESULTS Although supplementation with CoQ10 offers many benefits to patients with cardiovascular disease, it appears to add little value to patients suffering from statin-associated muscular symptoms. This may be attributed to substantial heterogeneity in doses and treatment regimens used. CONCLUSION Therefore, there is a need for further studies involving a greater number of patients to clarify the benefits of adjuvant therapy with CoQ10 in a range of health conditions and diseases.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Yuliya Semenova
- Department of Surgery, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Ihor Hrynovets
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Larysa Lenchyk
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Uryr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Hanna Yeromina
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
6
|
Fernandes MSDS, Fidelis DEDS, Aidar FJ, Badicu G, Greco G, Cataldi S, Santos GCJ, de Souza RF, Ardigò LP. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients 2023; 15:3990. [PMID: 37764774 PMCID: PMC10535924 DOI: 10.3390/nu15183990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND To summarize available evidence in the literature on the impacts of CoQ10 supplementation on metabolic, biochemical, and performance outcomes in athletes. METHODS Six databases, Cochrane Library (33 articles), PubMed (90 articles), Scopus (55 articles), Embase (60 articles), SPORTDiscus (1056 articles), and Science Direct (165 articles), were researched. After applying the eligibility criteria, articles were selected for peer review independently as they were identified by June 2022. The protocol for this systematic review was registered on PROSPERO (CRD42022357750). RESULTS Of the 1409 articles found, 16 were selected for this systematic review. After CoQ10 supplementation, a decrease in oxidative stress markers was observed, followed by higher antioxidant activity. On the other hand, lower levels of liver damage markers (ALT); Aspartate aminotransferase (AST); and Gamma-glutamyl transpeptidase (γGT) were identified. Finally, we found a reduction in fatigue indicators such as Creatine Kinase (CK) and an increase in anaerobic performance. CONCLUSIONS This systematic review concludes that supplementation with orally administered CoQ10 (30-300 mg) was able to potentiate plasma antioxidant activity and anaerobic performance, reducing markers linked to oxidative stress and liver damage in athletes from different modalities aged 17 years old and older.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife 50740-600, Pernambuco, Brazil;
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Débora Eduarda da Silvia Fidelis
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Braşov, Romania
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | | | - Raphael Frabrício de Souza
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 5812 Oslo, Norway;
| |
Collapse
|
7
|
Moreno-Fernandez J, Puche-Juarez M, Toledano JM, Chirosa I, Chirosa LJ, Pulido-Moran M, Kajarabille N, Guisado IM, Guisado R, Diaz-Castro J, Ochoa JJ. Ubiquinol Short-Term Supplementation Prior to Strenuous Exercise Improves Physical Performance and Diminishes Muscle Damage. Antioxidants (Basel) 2023; 12:1193. [PMID: 37371923 DOI: 10.3390/antiox12061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The benefits of physical exercise on health are diminished when it is non-planned, strenuous, or vigorous, which causes an increase in oxygen consumption and production of free radicals, particularly serious at the muscular level. Ubiquinol could help achieve an antioxidant, anti-inflammatory, and ergogenic effect. The aim of this study is to evaluate whether a supplementation of ubiquinol during a short period could have a positive effect on muscle aggression, physical performance, and fatigue perception in non-elite athletes after high intensity circuit weight training. One hundred healthy and well-trained men, (firemen of the Fire Department of Granada) were enrolled in a placebo-controlled, double-blinded, and randomized study, and separated into two groups: the placebo group (PG, n = 50); and the ubiquinol group (UG, n = 50), supplemented with an oral dose. Before and after the intervention, data related to the number of repetitions, muscle strength, and perceived exertion, as well as blood samples were collected. An increase was observed in the UG regarding average load and repetitions, revealing an improvement in muscle performance. Ubiquinol supplementation also reduced muscle damage markers, showing a protective effect on muscle fibers. Therefore, this study provides evidence that ubiquinol supplementation improves muscle performance and prevents muscle damage after strenuous exercise in a population of well-trained individuals who are not elite athletes.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Juan M Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Ignacio Chirosa
- Department of Physical Education, University of Granada, 18071 Granada, Spain
| | - Luis J Chirosa
- Department of Physical Education, University of Granada, 18071 Granada, Spain
| | - Mario Pulido-Moran
- Pharmaceutical Laboratory Farmacia Perpetuo Socorro, 18001 Granada, Spain
| | - Naroa Kajarabille
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Lucio Lascaray Research Institute, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
| | - Isabel M Guisado
- Group of Preventive Activities in the University Field of Health Sciences, Albacete Faculty of Nursing, University of Castilla-La Mancha (Universidad de Castilla-La Mancha/UCLM), 13001 Ciudad Real, Spain
| | - Rafael Guisado
- Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| |
Collapse
|
8
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
9
|
Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis? J Cardiovasc Transl Res 2023; 16:51-62. [PMID: 35921051 DOI: 10.1007/s12265-022-10297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.
Collapse
|
10
|
Tippairote T, Bjørklund G, Gasmi A, Semenova Y, Peana M, Chirumbolo S, Hangan T. Combined Supplementation of Coenzyme Q 10 and Other Nutrients in Specific Medical Conditions. Nutrients 2022; 14:4383. [PMID: 36297067 PMCID: PMC9609170 DOI: 10.3390/nu14204383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 07/23/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is a compound with a crucial role in mitochondrial bioenergetics and membrane antioxidant protection. Despite the ubiquitous endogenous biosynthesis, specific medical conditions are associated with low circulating CoQ10 levels. However, previous studies of oral CoQ10 supplementation yielded inconsistent outcomes. In this article, we reviewed previous CoQ10 trials, either single or in combination with other nutrients, and stratified the study participants according to their metabolic statuses and medical conditions. The CoQ10 supplementation trials in elders reported many favorable outcomes. However, the single intervention was less promising when the host metabolic statuses were worsening with the likelihood of multiple nutrient insufficiencies, as in patients with an established diagnosis of metabolic or immune-related disorders. On the contrary, the mixed CoQ10 supplementation with other interacting nutrients created more promising impacts in hosts with compromised nutrient reserves. Furthermore, the results of either single or combined intervention will be less promising in far-advanced conditions with established damage, such as neurodegenerative disorders or cancers. With the limited high-level evidence studies on each host metabolic category, we could only conclude that the considerations of whether to take supplementation varied by the individuals' metabolic status and their nutrient reserves. Further studies are warranted.
Collapse
Affiliation(s)
- Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| |
Collapse
|
11
|
Roriz M, Brito P, Teixeira FJ, Brito J, Teixeira VH. Performance effects of internal pre- and per-cooling across different exercise and environmental conditions: A systematic review. Front Nutr 2022; 9:959516. [PMID: 36337635 PMCID: PMC9632747 DOI: 10.3389/fnut.2022.959516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise in a hot and humid environment may endanger athlete's health and affect physical performance. This systematic review aimed to examine whether internal administration of ice, cold beverages or menthol solutions may be beneficial for physical performance when exercising in different environmental conditions and sports backgrounds. A systematic search was performed in PubMed, Web of Science, Scopus and SPORTDiscus databases, from inception to April 2022, to identify studies meeting the following inclusion criteria: healthy male and female physically active individuals or athletes (aged ≥18 years); an intervention consisting in the internal administration (i.e., ingestion or mouth rinse) of ice slush, ice slurry or crushed ice and/or cold beverages and/or menthol solutions before and/or during exercise; a randomized crossover design with a control or placebo condition; the report of at least one physical performance outcome; and to be written in English. Our search retrieved 2,714 articles in total; after selection, 43 studies were considered, including 472 participants, 408 men and 64 women, aged 18-42 years, with a VO2max ranging from 46.2 to 67.2 mL⋅kg-1⋅min-1. Average ambient temperature and relative humidity during the exercise tasks were 32.4 ± 3.5°C (ranging from 22°C to 38°C) and 50.8 ± 13.4% (varying from 20.0% to 80.0%), respectively. Across the 43 studies, 7 exclusively included a menthol solution mouth rinse, 30 exclusively involved ice slurry/ice slush/crushed ice/cold beverages intake, and 6 examined both the effect of thermal and non-thermal internal techniques in the same protocol. Rinsing a menthol solution (0.01%) improved physical performance during continuous endurance exercise in the heat. Conversely, the ingestion of ice or cold beverages did not seem to consistently increase performance, being more likely to improve performance in continuous endurance trials, especially when consumed during exercises. Co-administration of menthol with or within ice beverages seems to exert a synergistic effect by improving physical performance. Even in environmental conditions that are not extreme, internal cooling strategies may have an ergogenic effect. Further studies exploring both intermittent and outdoor exercise protocols, involving elite male and female athletes and performed under not extreme environmental conditions are warranted. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021268197], identifier [CRD42021268197].
Collapse
Affiliation(s)
- Maria Roriz
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal
- Futebol Clube do Porto, Porto, Portugal
| | - Pedro Brito
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, ISMAI, Maia, Portugal
| | - Filipe J. Teixeira
- Interdisciplinary Center for the Study of Human Performance (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada, Portugal
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, Barcarena, Portugal
- Bettery Lifelab, Bettery S.A., Lisbon, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal
- Futebol Clube do Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
12
|
Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, Hou S, Yang Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2022; 11:antiox11071360. [PMID: 35883851 PMCID: PMC9311997 DOI: 10.3390/antiox11071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence shows that exogenous CoQ10 supplementation may potentially attenuate oxidative stress status. However, its effective dose and evidence certainty require further evaluation in the general population via more updated randomized controlled trials (RCTs). Databases (PubMed, Embase and Cochrane Library) were searched up to 30 March 2022. Evidence certainty was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Thirty-four RCTs containing 2012 participants were included in this review. Pooled effects of significant increase in total antioxidant capacity (TAC) (standardized mean difference: 1.83, 95%CI: [1.07, 2.59], p < 0.001) and significant reduction in malondialdehyde (MDA) concentrations (−0.77, [−1.06, −0.47], p < 0.001) were shown after CoQ10 supplementation compared to placebo. However, we could not determine that there was a significant increase in circulating superoxide dismutase (SOD) levels yet (0.47, [0.00, 0.94], p = 0.05). Subgroup analyses implied that CoQ10 supplementation was more beneficial to people with coronary artery disease or type 2 diabetes. Additionally, taking 100−150 mg/day CoQ10 supplement had better benefits for the levels of TAC, MDA and SOD (all p < 0.01). These results to a statistically significant extent lent support to the efficacy and optimal dose of CoQ10 supplementation on attenuating oxidative stress status in adults.
Collapse
Affiliation(s)
- Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
13
|
Ovchinnikov AN, Paoli A, Seleznev VV, Deryugina AV. Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: a randomized, double-blind, placebo-controlled pilot trial. J Int Soc Sports Nutr 2022; 19:239-257. [PMID: 35813842 PMCID: PMC9261740 DOI: 10.1080/15502783.2022.2086015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Excessive production of free radicals caused by many types of exercise results in oxidative stress, which leads to muscle damage, fatigue, and impaired performance. Supplementation with royal jelly (RJ) or coenzyme Q10 (CoQ10) has been shown to attenuate exercise-induced oxidant stress in damaged muscle and improve various aspects of exercise performance in many but not all studies. Nevertheless, the effects of treatments based on RJ plus CoQ10 supplementation, which may be potentially beneficial for reducing oxidative stress and enhancing athletic performance, remain unexplored. This study aimed to examine whether oral RJ and CoQ10 co-supplementation could improve high-intensity interval exercise (HIIE) performance in swimmers, inhibiting exercise-induced oxidative stress and muscle damage. Methods Twenty high-level swimmers were randomly allocated to receive either 400 mg of RJ and 60 mg of CoQ10 (RJQ) or matching placebo (PLA) once daily for 10 days. Exercise performance was evaluated at baseline, and then reassessed at day 10 of intervention, using a HIIE protocol. Diene conjugates (DC), Schiff bases (SB), and creatine kinase (CK) were also measured in blood plasma and saliva before and immediately after HIIE in both groups. Results HIIE performance expressed as number of points according to a single assessment system developed and approved by the International Swimming Federation (FINA points) significantly improved in RJQ group (p = 0.013) compared to PLA group. Exercise-induced increase in DC, SB, and CK levels in plasma and saliva significantly diminished only in RJQ group (p < 0.05). Regression analysis showed that oral RJQ administration for 10 days was significantly associated with reductions in HIIE-induced increases in plasmatic and salivary DC, SB, and CK levels compared to PLA. Principal component analysis revealed that swimmers treated with RJQ are grouped by both plasmatic and salivary principal components (PC) into a separate cluster compared to PLA. Strong negative correlation between the number of FINA points and plasmatic and salivary PC1 values was observed in both intervention groups. Conclusion The improvements in swimmers’ HIIE performance were due in significant part to RJQ-induced reducing in lipid peroxidation and muscle damage in response to exercise. These findings suggest that RJQ supplementation for 10 days is potentially effective for enhancing HIIE performance and alleviating oxidant stress. Abbreviations RJ, royal jelly; CoQ10, coenzyme Q10; HIIE, high-intensity interval exercise; DC, diene conjugates; SB, Schiff bases; CK, creatine kinase; RJQ, royal jelly plus coenzyme Q10; PLA, placebo; FINA points, points according to a single assessment system developed and approved by the International Swimming Federation; ROS, reactive oxygen species; 10H2DA, 10-hydroxy-2-decenoic acid; AMPK, 5′-AMP-activated protein kinase; FoxO3, forkhead box O3; MnSOD, manganese-superoxide dismutase; CAT, catalase; E, optical densities; PCA, principal component analysis; PC, principal component; MCFAs, medium-chain fatty acids; CaMKKβ, Ca2+/calmodulin-dependent protein kinase β; TBARS, thiobarbituric acid reactive substances; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Aleksandr N. Ovchinnikov
- Department of Sports Medicine and Psychology, Lobachevsky University, Nizhny Novgorod, Russia
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
| | - Antonio Paoli
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vladislav V. Seleznev
- Department of Theory and Methodology of Sport Training, Lobachevsky University, Nizhny Novgorod, Russia
| | - Anna V. Deryugina
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Physiology and Anatomy, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
14
|
Drobnic F, Lizarraga MA, Caballero-García A, Cordova A. Coenzyme Q 10 Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule? Nutrients 2022; 14:1811. [PMID: 35565783 PMCID: PMC9104583 DOI: 10.3390/nu14091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Evidence exists to suggest that ROS induce muscular injury with a subsequent decrease in physical performance. Supplementation with certain antioxidants is important for physically active individuals to hasten recovery from fatigue and to prevent exercise damage. The use of nutritional supplements associated with exercise, with the aim of improving health, optimizing training or improving sports performance, is a scientific concern that not only drives many research projects but also generates great expectations in the field of their application in pathology. Since its discovery in the 1970s, coenzyme Q10 (CoQ10) has been one of the most controversial molecules. The interest in determining its true value as a bioenergetic supplement in muscle contraction, antioxidant or in the inflammatory process as a muscle protector in relation to exercise has been studied at different population levels of age, level of physical fitness or sporting aptitude, using different methodologies of effort and with the contribution of data corresponding to very diverse variables. Overall, in the papers reviewed, although the data are inconclusive, they suggest that CoQ10 supplementation may be an interesting molecule in health or disease in individuals without a pathological deficiency and when used for optimising exercise performance. Considering the results observed in the literature, and as a conclusion of this systematic review, we could say that it is an interesting molecule in sports performance. However, clear approaches should be considered when conducting future research.
Collapse
Affiliation(s)
| | | | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| | - Alfredo Cordova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| |
Collapse
|
15
|
Sánchez-Cuesta A, Cortés-Rodríguez AB, Navas-Enamorado I, Lekue JA, Viar T, Axpe M, Navas P, López-Lluch G. High coenzyme Q10 plasma levels improve stress and damage markers in professional soccer players during competition. INT J VITAM NUTR RES 2020; 92:192-203. [PMID: 32639220 DOI: 10.1024/0300-9831/a000659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ubiquinol, the reduced form of Coenzyme Q10 (CoQ10), is a key factor in bioenergetics and antioxidant protection. During competition, professional soccer players suffer from considerable physical stress causing high risk of muscle damage. For athletes, supplementation with several antioxidants, including CoQ10, is widely recommended to avoid oxidative stress and muscle damage. We performed an observational study of plasma parameters associated with CoQ10 levels in professional soccer players of the Spanish First League team Athletic Club de Bilbao over two consecutive seasons (n = 24-25) in order determine their relationship with damage, stress and performance during competition. We analyzed three different moments of the competition: preterm, initial phase and mid phase. Metabolites and factors related with stress (testosterone/cortisol) and muscle damage (creatine kinase) were determined. Physical activity during matches was analyzed over the 2015/16 season in those players participating in complete matches. In the mid phase of competition, CoQ10 levels were higher in 2015/16 (906.8 ± 307.9 vs. 584.3 ± 196.3 pmol/mL, p = 0.0006) High levels of CoQ10 in the hardest phase of competition were associated with a reduction in the levels of the muscle-damage marker creatine kinase (Pearsons' correlation coefficient (r) = - 0.460, p = 0.00168) and a trend for the stress marker cortisol (r = -0.252, p = 0.150). Plasma ubiquinol was also associated with better kidney function (r = -0.287, p = 0.0443 for uric acid). Furthermore, high CoQ10 levels were associated with higher muscle performance during matches. Our results suggest that high levels of plasma CoQ10 can prevent muscle damage, improve kidney function and are associated with higher performance in professional soccer players during competition.
Collapse
Affiliation(s)
- Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ana Belén Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ignacio Navas-Enamorado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | | | | | | | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
16
|
Petrangolini G, Ronchi M, Frattini E, De Combarieu E, Allegrini P, Riva A. A New Food-grade Coenzyme Q10 Formulation Improves Bioavailability: Single and Repeated Pharmacokinetic Studies in Healthy Volunteers. Curr Drug Deliv 2020; 16:759-767. [PMID: 31475897 DOI: 10.2174/1567201816666190902123147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coenzyme Q10 is a fundamental endogenous factor involved in cell energy production that shows protective properties in oxidative stress, mainly in skeletal and heart muscle. Coenzyme Q10 supplementation appears to benefit athletes in strenuous training and in the elderly, demonstrating ant-inflammatory properties by reducing inflammatory cytokines. Improved absorption of coenzyme Q10 via a new delivery system would represent an important step forward in the use of coenzyme Q10 as a dietary supplement. OBJECTIVE The aim of the study was to evaluate the solubility and oral absorption in human healthy volunteers of a new food grade coenzyme Q10 phytosome formulation. METHODS Solubility studies were performed in vitro in simulated gastrointestinal fluids; human studies were conducted in healthy volunteers to evaluate oral absorption in a Single dose study, in comparison with the coenzyme Q10 capsules, and in a repeated study at two increasing doses. RESULTS The highest solubility shown by coenzyme Q10 phytosome in simulated intestinal fluids results in an improvement in oral absorption of coenzyme Q10 in healthy volunteers, three times more than the coenzyme Q10 according to AUC (area under the time/concentration curve) values. When two increasing doses (one and two capsules) were administered to healthy volunteers within a two-week schedule, the plasmatic levels of coenzyme Q10 resulted in 0.864±0.200 μg/ml (Mean±S.D.+41%) and 1.321±0.400 μg/ml (+116%), respectively versus baseline (0.614±0.120 μg/ml one capsule, 0.614±0.160 μg/ml two capsules). This detected dose-related bioavailability of coenzyme Q10 phytosome was even observed with no alterations in vital signs, neither in the physical examination nor in ECG, and no changes of clinical and biochemical parameters were observed. CONCLUSION These findings, taken together, support the safety profile and significantly improved coenzyme Q10 oral absorption in humans with this new phytosome delivery formulation.
Collapse
Affiliation(s)
| | - Massimo Ronchi
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | | | | | - Pietro Allegrini
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Antonella Riva
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| |
Collapse
|
17
|
Coenzyme Q10 Protects Astrocytes from Ultraviolet B-Induced Damage Through Inhibition of ERK 1/2 Pathway Overexpression. Neurochem Res 2019; 44:1755-1763. [PMID: 31093903 DOI: 10.1007/s11064-019-02812-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/04/2023]
Abstract
Overexpression of extracellular signal-regulated kinase ½ (ERK ½) signaling pathway leads to overproduction of reactive oxygen species (ROS) which induces oxidative stress. Coenzyme Q10 (CoQ10) scavenges ROS and protects cells against oxidative stress. The present study was designed to examine whether the protection of Coenzyme Q10 against oxidative damage in astrocytes is through regulating ERK 1/2 pathway. Ultraviolet B (UVB) irradiation was chosen as a tool to induce oxidative stress. Murine astrocytes were treated with 10 μg/ml and 25 μg/ml of CoQ10 for 24 h prior to UVB and maintained during UVB and 24 h post-UVB. Cell viability was evaluated by counting viable cells and MTT conversion assay. ROS production was measured using fluorescent probes. Levels of p-ERK 1/2, ERK 1/2, p-PKA, PKA were detected using immunocytochemistry and/or Western blotting. The results showed that UVB irradiation decreased the number of viable cells. This damaging effect was associated with accumulation of ROS and elevations of p-ERK 1/2 and p-PKA. Treatment with CoQ10 at 25 μg/ml significantly increased the number of viable cells and prevented the UVB-induced increases of ROS, p-ERK 1/2, and p-PKA. It is concluded that suppression of the PKA-ERK 1/2 signaling pathway may be one of the important mechanisms by which CoQ10 protects astrocytes from UVB-induced oxidative damage.
Collapse
|