1
|
Liu N, He Y, Zhao F, Li X, Chen Y, Jiang B, Wei M, Li D, Cai L. Association between maternal erythrocyte PUFAs during pregnancy and neurodevelopment in children at 2 years of age: a birth cohort study. Food Funct 2023; 14:7938-7945. [PMID: 37552113 DOI: 10.1039/d3fo01853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Previous studies on prenatal polyunsaturated fatty acids (PUFAs) and children's neurodevelopment have shown inconsistent results, and evidence from the Asian population is scarce. Objective: To investigate the association between maternal erythrocyte PUFAs and neurodevelopment in children in the Chinese population. Methods: We included 242 mother-child pairs from the Yuexiu birth cohort. The composition of maternal erythrocyte fatty acids during pregnancy was measured by gas chromatography. Each PUFA was divided into 3 tertiles. Neurodevelopment in children was evaluated with the Ages and Stages Questionnaire at 2 years of age, including 5 domains of development: communication, gross motor, fine motor, problem solving, and personal-social skills. Results: Maternal eicosapentaenoic acid (EPA) [OR (95% CI): 0.34 (0.15, 0.74) for tertile 2, and 0.31 (0.13, 0.70) for tertile 3] was associated with a reduced risk of potential developmental delay in gross motor skills. Conversely, arachidonic acid (AA) [OR (95% CI): 2.54 (1.17, 5.70) for tertile 3] was associated with an increased risk of potential developmental delay in personal-social skills. The ratio of AA/EPA [OR (95% CI): 2.64 (1.18, 6.15) for tertile 3] was associated with an increased risk of potential developmental delay in gross motor skills. No significant association was found between other PUFAs and neurodevelopment. Conclusion: This birth cohort has first shown a beneficial association between maternal EPA and gross motor skills of children. Meanwhile, maternal AA and the ratio of AA/EPA have negative associations with neurodevelopment in children.
Collapse
Affiliation(s)
- Nan Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- Shenzhen Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yannan He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Feng Zhao
- Center of Lipid & Chronic Diseases, Suzhou Industrial Technology Research Institute, Zhejiang University, Hangzhou, China
| | - Xiaoxu Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yujing Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Bibo Jiang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Min Wei
- Shenzhen Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
de Oliveira Otto MC, Wu JHY, Thacker EL, Lai HTM, Lemaitre RN, Padhye N, Song X, King IB, Lopez O, Siscovick DS, Mozaffarian D. Circulating Omega-3 and Omega-6 Fatty Acids, Cognitive Decline, and Dementia in Older Adults. J Alzheimers Dis 2023; 95:965-979. [PMID: 37638432 PMCID: PMC10765383 DOI: 10.3233/jad-230083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Comprising nearly 35% of brain lipids, polyunsaturated fatty acids (PUFA) are essential for optimal brain function. However, the role of PUFA on cognitive health outcomes later in life is largely unknown. OBJECTIVE We investigated prospective associations of plasma phospholipid omega-3 (ALA [18 : 3], EPA [20 : 5], DPA [22 : 5], DHA [22 : 6]) and omega-6 (LA [18 : 2], AA [20 : 4]) PUFA with cognitive decline, risk of cognitive impairment and dementia among adults aged≥65 years in the Cardiovascular Health Study. METHODS Circulating fatty acid concentrations were measured serially at baseline (1992/1993), 6 years, and 13 years later. Cognitive decline and impairment were assessed using the 100-point Modified Mini-Mental State Examination (3MSE) up to 7 times. Clinical dementia was identified using adjudicated neuropsychological tests, and ICD-9 codes. RESULTS Among 3,564 older adults free of stroke and dementia at baseline, cognitive function declined annually by approximately -0.5 3MSE points; 507 participants developed cognitive impairment and 499 dementia over up to 23 years of follow-up. In multivariable models, higher circulating arachidonic acid (AA) concentrations were associated with slower cognitive decline and lower dementia risk, with associations growing stronger with greater length of follow-up (hazard ratio [HR,95% CI] of dementia per interquintile range, 0.74 [0.56-0.97] at 5 years, and 0.53 [0.37-0.77] at 15 years). Circulating docosapentaenoic (DPA) concentrations were associated with slower cognitive decline and lower risk of cognitive impairment (extreme-quintile HR, 0.72 [95% CI: 0.55, 0.95]). Findings were generally null or inconsistent for other omega-3 or omega-6 PUFA. CONCLUSION Circulating AA and DPA, but not other PUFA, are associated with slower rate of cognitive decline and lower risk of dementia or cognitive impairment later in life.
Collapse
Affiliation(s)
- Marcia C de Oliveira Otto
- Division of Epidemiology, Human Genetics and Environmental Science, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Jason H Y Wu
- The George Institute for Global Health and the Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Evan L Thacker
- Department of Public Health, Brigham Young University, Provo, UT, USA
| | - Heidi Tsz Mung Lai
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nikhil Padhye
- Center for Nursing Research, The University of Texas Health Science Center, School of Nursing, Houston, TX, USA
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburg School of Medicine, Pittsburg, PA, USA
| | | | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
3
|
Burdge GC. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022; 57:267-287. [PMID: 35908848 DOI: 10.1002/lipd.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
α-linolenic acid (αLNA) conversion into the functionally important ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has been regarded as inadequate for meeting nutritional requirements for these PUFA. This view is based on findings of small αLNA supplementation trials and stable isotope tracer studies that have been interpreted as indicating human capacity for EPA and, in particular, DHA synthesis is limited. The purpose of this review is to re-evaluate this interpretation. Markedly differing study designs, inconsistent findings and lack of trial replication preclude robust consensus regarding the nutritional adequacy of αLNA as a source of EPC and DHA. The conclusion that αLNA conversion in humans is constrained is inaccurate because it presupposes the existence of an unspecified, higher level of metabolic activity. Since capacity for EPA and DHA synthesis is the product of evolution it may be argued that the levels of EPA and DHA it maintains are nutritionally appropriate. Dietary and supra-dietary EPA plus DHA intakes confer health benefits. Paradoxically, such health benefits are also found amongst vegetarians who do not consume EPA and DHA, and for whom αLNA conversion is the primary source of ω-3 PUFA. Since there are no reported adverse effects on health or cognitive development of diets that exclude EPA and DHA, their synthesis from αLNA appears to be nutritionally adequate. This is consistent with the dietary essentiality of αLNA and has implications for developing sustainable nutritional recommendations for ω-3 PUFA.
Collapse
Affiliation(s)
- Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
4
|
Murray R, Kitaba N, Antoun E, Titcombe P, Barton S, Cooper C, Inskip HM, Burdge GC, Mahon PA, Deanfield J, Halcox JP, Ellins EA, Bryant J, Peebles C, Lillycrop K, Godfrey KM, Hanson MA. Influence of Maternal Lifestyle and Diet on Perinatal DNA Methylation Signatures Associated With Childhood Arterial Stiffness at 8 to 9 Years. Hypertension 2021; 78:787-800. [PMID: 34275334 PMCID: PMC8357051 DOI: 10.1161/hypertensionaha.121.17396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Increases in aortic pulse wave velocity, a measure of arterial stiffness, can lead to elevated systolic blood pressure and increased cardiac afterload in adulthood. These changes are detectable in childhood and potentially originate in utero, where an adverse early life environment can alter DNA methylation patterns detectable at birth. Here, analysis of epigenome-wide methylation patterns using umbilical cord blood DNA from 470 participants in the Southampton’s Women’s Survey identified differential methylation patterns associated with systolic blood pressure, pulse pressure, arterial distensibility, and descending aorta pulse wave velocity measured by magnetic resonance imaging at 8 to 9 years. Perinatal methylation levels at 16 CpG loci were associated with descending aorta pulse wave velocity, with identified CpG sites enriched in pathways involved in DNA repair (P=9.03×10−11). The most significant association was with cg20793626 methylation (within protein phosphatase, Mg2+/Mn2+ dependent 1D; β=−0.05 m/s/1% methylation change, [95% CI, −0.09 to −0.02]). Genetic variation was also examined but had a minor influence on these observations. Eight pulse wave velocity-linked dmCpGs were associated with prenatal modifiable risk factors, with cg08509237 methylation (within palmitoyl-protein thioesterase-2) associated with maternal oily fish consumption in early and late pregnancy. Lower oily fish consumption in early pregnancy modified the relationship between methylation and pulse wave velocity, with lower consumption strengthening the association between cg08509237 methylation and increased pulse wave velocity. In conclusion, measurement of perinatal DNA methylation signatures has utility in identifying infants who might benefit from preventive interventions to reduce risk of later cardiovascular disease, and modifiable maternal factors can reduce this risk in the child.
Collapse
Affiliation(s)
- Robert Murray
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom
| | - Negusse Kitaba
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom
| | - Elie Antoun
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom.,Centre for Biological Sciences, Faculty of Natural and Environmental Sciences (E.A., K.L.), University of Southampton, United Kingdom
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - Sheila Barton
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | - Graham C Burdge
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom
| | - Pamela A Mahon
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - John Deanfield
- Institute of Cardiovascular Sciences, University College London, United Kingdom (J.D.)
| | - Julian P Halcox
- Swansea University Medical School, Swansea University, United Kingdom (J.P.H., E.A.E.)
| | - Elizabeth A Ellins
- Swansea University Medical School, Swansea University, United Kingdom (J.P.H., E.A.E.)
| | - Jennifer Bryant
- Department of Cardiac Magnetic Resonance Imaging, National Heart Centre Singapore (J.B.)
| | - Charles Peebles
- Wessex Cardiothoracic Centre, Southampton University Hospitals NHS Trust, United Kingdom (C.P.)
| | - Karen Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences (E.A., K.L.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | - Keith M Godfrey
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom.,MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | - Mark A Hanson
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | | |
Collapse
|
5
|
West AL, Miles EA, Lillycrop KA, Napier JA, Calder PC, Burdge GC. Genetically modified plants are an alternative to oily fish for providing n-3 polyunsaturated fatty acids in the human diet: A summary of the findings of a Biotechnology and Biological Sciences Research Council funded project. NUTR BULL 2021; 46:60-68. [PMID: 33776584 PMCID: PMC7986926 DOI: 10.1111/nbu.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The n-3 polyunsaturated fatty acids (PUFA) present primarily in oily fish, namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important components of cell membranes and that are needed for normal development and cell function. Humans have very limited capacity for EPA and DHA synthesis from α-linolenic acid and so they must be obtained pre-formed from the diet. However, perceived unpalatability of oily fish and fish oil concerns about contamination with environmental pollutants, dietary choices that exclude fish and animal products, and price limit the effectiveness of recommendations for EPA and DHA intakes. Moreover, marine sources of EPA and DHA are diminishing in the face of increasing demands. Therefore, an alternative source of EPA and DHA is needed that is broadly acceptable, can be upscaled and is sustainable. This review discusses these challenges and, using findings from recent nutritional trials, explains how they may be overcome by seed oils from transgenic plants engineered to produce EPA and DHA. Trials in healthy men and women assessed the acute uptake and appearance in blood over 8 hours of EPA and DHA from transgenic Camelina sativa compared to fish oil, and the incorporation of these PUFA into blood lipids after dietary supplementation. The findings showed that postprandial EPA and DHA incorporation into blood lipids and accumulation in plasma lipids after dietary supplementation was as good as that achieved with fish oil. The oil derived from this transgenic plant was well tolerated. This review also discusses the implications for human nutrition, marine ecology and agriculture.
Collapse
Affiliation(s)
- A. L. West
- Faculty of MedicineSchool of Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - E. A. Miles
- Faculty of MedicineSchool of Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - K. A. Lillycrop
- Faculty of Natural and Environmental SciencesCentre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - J. A. Napier
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - P. C. Calder
- Faculty of MedicineSchool of Human Development and HealthUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustUniversity of SouthamptonSouthamptonUK
| | - G. C. Burdge
- Faculty of MedicineSchool of Human Development and HealthUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
6
|
Crozier SR, Godfrey KM, Calder PC, Robinson SM, Inskip HM, Baird J, Gale CR, Cooper C, Sibbons CM, Fisk HL, Burdge GC. Vegetarian Diet during Pregnancy Is Not Associated with Poorer Cognitive Performance in Children at Age 6-7 Years. Nutrients 2019; 11:nu11123029. [PMID: 31835868 PMCID: PMC6949927 DOI: 10.3390/nu11123029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Compared with omnivorous mothers, vegetarian mothers have lower intakes of some nutrients required for neurological development. However, there is a lack of information about the impact of vegetarianism during pregnancy on subsequent cognitive function in children. The aim of this study was to investigate whether vegetarianism during pregnancy is associated with altered maternal nutritional status and with cognitive function in children at six to seven years of age. Women aged 20–34 years participating in a prospective observational study who provided dietary data and blood samples in early pregnancy (11 weeks; 78 vegetarians and 2144 omnivores) or late pregnancy (34 weeks; 91 vegetarians and 2552 omnivores). Compared with omnivorous women, vegetarian women had lower blood concentrations of arachidonic acid, docosahexaenoic acid, and cobalamin in early and late pregnancy. Vegetarianism in pregnancy was linked to higher maternal educational attainment, longer breastfeeding duration, lower incidence of smoking during pregnancy and a tendency towards higher IQ in the mothers. Concentrations of some nutrients required for neurodevelopment were lower in maternal blood during gestation; however, after controlling for confounders consuming a vegetarian diet during pregnancy was not associated with poorer neurocognitive development of the children in this study.
Collapse
Affiliation(s)
- Sarah R. Crozier
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Philip C. Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Sian M. Robinson
- AGE Research Group, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Hazel M. Inskip
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Janis Baird
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Catharine R. Gale
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9AZ, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Charlene M. Sibbons
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helena L. Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Correspondence: ; Tel.: +44-(0)23-812-05259
| |
Collapse
|
7
|
Choline and DHA in Maternal and Infant Nutrition: Synergistic Implications in Brain and Eye Health. Nutrients 2019; 11:nu11051125. [PMID: 31117180 PMCID: PMC6566660 DOI: 10.3390/nu11051125] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to highlight current insights into the roles of choline and docosahexaenoic acid (DHA) in maternal and infant nutrition, with special emphasis on dietary recommendations, gaps in dietary intake, and synergistic implications of both nutrients in infant brain and eye development. Adequate choline and DHA intakes are not being met by the vast majority of US adults, and even more so by women of child-bearing age. Choline and DHA play a significant role in infant brain and eye development, with inadequate intakes leading to visual and neurocognitive deficits. Emerging findings illustrate synergistic interactions between choline and DHA, indicating that insufficient intakes of one or both could have lifelong deleterious impacts on both maternal and infant health.
Collapse
|
8
|
Abstract
AbstractHumans can obtain pre-formed long-chain PUFA from the diet and are also able to convert essential fatty acids (EFA) to longer-chain PUFA. The metabolic pathway responsible for EFA interconversion involves alternating desaturation and carbon chain elongation reactions, and carbon chain shortening by peroxisomal β-oxidation. Studies using stable isotope tracers or diets supplemented with EFA show that capacity for PUFA synthesis is limited in humans, such that DHA (22 : 6n-3) synthesis in men is negligible. PUFA synthesis is higher in women of reproductive age compared with men. However, the magnitude of the contribution of hepatic PUFA synthesis to whole-body PUFA status remains unclear. A number of extra-hepatic tissues have been shown to synthesise PUFA or to express genes for enzymes involved in this pathway. The precise function of extra-hepatic PUFA synthesis is largely unknown, although in T lymphocytes PUFA synthesis is involved in the regulation of cell activation and proliferation. Local PUFA synthesis may also be important for spermatogenesis and fertility. One possible role of extra-hepatic PUFA synthesis is that it may provide PUFA in a timely manner to facilitate specific cell functions. If so, this may suggest novel insights into the effect of dietary PUFA and/or polymorphisms in genes involved in PUFA synthesis on health and tissue function.
Collapse
|