1
|
Kinoshita T, Maruyama K, Katakami K, Sakiyama T. Effects of ubiquinol intake on improving menstrual symptoms among female healthcare workers: An open-label pilot study. J Obstet Gynaecol Res 2025; 51:e16279. [PMID: 40147024 DOI: 10.1111/jog.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
AIM This study aimed to investigate the effects of ubiquinol on menstrual symptoms. METHODS This open-label trial involved 86 female healthcare workers aged 21-48 years. The study design included an observation period and a ubiquinol intake period. During the intake period, the participants consumed two soft capsules containing 75 mg of ubiquinol daily (i.e., 150 mg/day). At baseline and after the observation and intake periods, the participants underwent blood testing and completed the Pittsburgh Sleep Quality Index to evaluate their sleep condition. In addition, the Menstrual Distress Questionnaire was completed before, during, and after each of the first seven menses. All statistical analyses were performed, stratified by the median age of the participants. RESULTS Regarding the Menstrual Distress Questionnaire, in the younger group (age: <36 years), a significant improvement was observed in menstrual "Control" (p = 0.049) by ubiquinol intake. In the older group (age: ≥36), the effects of ubiquinol on the improvement of premenstrual "Negative affect" and "Control" scores reached significance (p = 0.02 and p < 0.01, respectively); further, menstrual "Control" score was significantly improved (p = 0.03). In addition, the Pittsburgh Sleep Quality Index showed a significant effect of ubiquinol in the older group. CONCLUSIONS This pilot study indicated that ubiquinol alleviated menstrual symptoms among premenopausal female healthcare workers. In those aged ≥36 years, ubiquinol intake may reduce premenstrual irritability and improve sleep quality.
Collapse
Affiliation(s)
- Tetsu Kinoshita
- Special Course of Food and Health Science, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
- Institute of Community Life Sciences Co., Ltd., Matsuyama, Ehime, Japan
| | - Koutatsu Maruyama
- Special Course of Food and Health Science, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Kikumi Katakami
- Faculty of Nursing Sciences at Matsuyama, University of Human Environments, Okazaki, Aichi, Japan
| | - Takayo Sakiyama
- Department of Nursing, Faculty of Human Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|
2
|
Li Y, El-Sehrawy AAMA, Shankar A, Srivastava M, Mohammed JS, Hjazi A, Singh M, Sapaev IB, Mustafa YF, Abosaoda MK. Effects of Coenzyme Q10 Supplementation on Metabolic Indicators in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Clin Ther 2025; 47:235-243. [PMID: 39904656 DOI: 10.1016/j.clinthera.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) is a naturally occurring antioxidant that has been suggested to have beneficial effects on lipid profiles and blood pressure. This systematic review and meta-analysis aim to evaluate the effects of CoQ10 supplementation on these parameters in patients with Type 2 Diabetes (T2D). OBJECTIVE To assess the impact of CoQ10 supplementation on lipid profiles and blood pressure in individuals diagnosed with Type 2 Diabetes. METHODS A systematic literature search was conducted in databases such as PubMed, Cochrane Library, and Scopus for randomized controlled trials (RCTs) published up to July 2024. Studies included were those that examined the effects of CoQ10 supplementation on lipid profiles (total cholesterol, LDL, HDL, triglycerides) and blood pressure (systolic and diastolic) in T2D patients. RESULTS 16 studies were included. CoQ10supplementation reduced SBP (WMD: -3.86 mmHg, 95% CI: -6.01 to -1.71, P = 0.014, I2 = 83.7%; P < 0.001) and DBP (WMD: -2.70 mmHg, 95% CI: -4.50 to -0.91, P = 0.024, I2 = 92.1%; P < 0.001), but did not change lipid profile. Additionally, subgroup analysis indicated that the effects of CoQ10 on lipid profiles levels were more pronounced in studies where the daily dosage of CoQ10 was 100 mg or less, and the duration of the study was under 12 weeks. CONCLUSIONS Coenzyme Q10 supplementation appears to have a beneficial effect on lipid profiles and may contribute to lowering blood pressure in patients with Type 2 Diabetes. These findings suggest that CoQ10 could be a valuable adjunctive therapy for managing cardiovascular risk in this population. Additional in-depth research is needed to validate these findings and understand the underlying mechanisms in more detail.
Collapse
Affiliation(s)
- Yinshuang Li
- Institute of Medical Technology, Chuxiong Medical College, Chuxiong, Yunnan, China
| | | | - Amar Shankar
- Department of Food Technology, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Manish Srivastava
- Department of Endocrinology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mandeep Singh
- Directorate of Physical Education and Sports, University of Kashmir, Srinagar, India
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, Tashkent, Uzbekistan; Western Caspian University, Baku, Azerbaijan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Samimi F, Baazm M, Nadi Z, Dastghaib S, Rezaei M, Jalali-Mashayekhi F. Evaluation of Antioxidant Effects of Coenzyme Q10 against Hyperglycemia-Mediated Oxidative Stress by Focusing on Nrf2/Keap1/HO-1 Signaling Pathway in the Liver of Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:661-670. [PMID: 39449772 PMCID: PMC11497326 DOI: 10.30476/ijms.2023.100078.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/19/2023] [Indexed: 10/26/2024]
Abstract
Background Hyperglycemia-induced oxidative stress can damage the liver and lead to diabetes complications. Coenzyme Q10 (CoQ-10) reduces diabetes-related oxidative stress. However, its molecular mechanisms are still unclear. This study aimed to examine CoQ-10's antioxidant capabilities against hyperglycemia-induced oxidative stress in the livers of diabetic rats, specifically targeting the Nrf2/Keap1/ARE signaling pathway. Methods This study was conducted between 2020-2021 at Arak University of Medical Sciences. A total of 30 male adult Wistar rats (8 weeks old) weighing 220-250 g were randomly assigned to five groups (n=6 in each group): control healthy, sesame oil (CoQ-10 solvent), CoQ-10 (10 mg/Kg), diabetic, and diabetic+CoQ-10. Liver oxidative stress indicators, including malondialdehyde, catalase, glutathione peroxidase, and glutathione, were estimated using the spectrophotometry method. Nrf2, Keap1, HO-1, and NQO1 gene expressions were measured using real-time PCR tests in the liver tissue. All treatments were conducted for 6 weeks. Statistical analysis was performed using SPSS software. One-way ANOVA followed by LSD's or Tukey's post hoc tests were used to compare the results of different groups. P<0.05 was considered statistically significant. Results The findings showed that induction of diabetes significantly increased Keap1 expression (2.1±0.9 folds, P=0.01), and significantly inhibited the mRNA expression of Nrf2 (0.38±0.2 folds, P=0.009), HO-1 (0.27±0.1 folds, P=0.02), and NQO1 (0.26±0.1 folds P=0.01), compared with the healthy group. In the diabetic group, the activity of glutathione peroxidase, catalase enzymes, and glutathione levels was decreased with an increase in malondialdehyde level. CoQ-10 supplementation significantly up-regulated the expressions of Nrf2 (0.85±0.3, P=0.04), HO-1 (0.94±0.2, P=0.04), NQO1 (0.88±0.5, P=0.03) genes, and inhibited Keap1 expression (1.1±0.6, P=0.02). Furthermore, as compared to control diabetic rats, CoQ-10 ameliorated oxidative stress by decreasing malondialdehyde levels and increasing catalase, glutathione peroxidase activities, and glutathione levels in the liver tissues of the treated rats in the treatment group. Conclusion The findings of this study revealed that CoQ-10 could increase the antioxidant capacity of the liver tissue in diabetic rats by modulating the Nrf2/Keap1/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Samimi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Biochemistry and Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Nadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Rezaei
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farideh Jalali-Mashayekhi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
5
|
Samimi F, Namiranian N, Sharifi-Rigi A, Siri M, Abazari O, Dastghaib S. Coenzyme Q10: A Key Antioxidant in the Management of Diabetes-Induced Cardiovascular Complications-An Overview of Mechanisms and Clinical Evidence. Int J Endocrinol 2024; 2024:2247748. [PMID: 38524871 PMCID: PMC10959587 DOI: 10.1155/2024/2247748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Diabetes mellitus (DM) presents a significant global health challenge with considerable cardiovascular implications. Coenzyme Q10 (CoQ10) has gained recognition for its potential as a natural antioxidant supplement in the management of diabetes and its associated cardiovascular complications. Aim This comprehensive review systematically examines the scientific rationale underlying the therapeutic properties of CoQ10 in mitigating the impact of diabetes and its cardiovascular consequences. The analysis encompasses preclinical trials (in vitro and in vivo) and clinical studies evaluating the efficacy and mechanisms of action of CoQ10. Result & Discussion. Findings reveal that CoQ10, through its potent antioxidant and anti-inflammatory attributes, demonstrates significant potential in reducing oxidative stress, ameliorating lipid profiles, and regulating blood pressure, which are crucial aspects in managing diabetes-induced cardiovascular complications. CoQ10, chemically represented as C59H90O4, was administered in capsule form for human studies at doses of 50, 100, 150, 200, and 300 mg per day and at concentrations of 10 and 20 μM in sterile powder for experimental investigations and 10 mg/kg in powder for mouse studies, according to the published research. Clinical trials corroborate these preclinical findings, demonstrating improved glycemic control, lipid profiles, and blood pressure in patients supplemented with CoQ10. Conclusion In conclusion, CoQ10 emerges as a promising natural therapeutic intervention for the comprehensive management of diabetes and its associated cardiovascular complications. Its multifaceted impacts on the Nrf2/Keap1/ARE pathway, oxidative stress, and metabolic regulation highlight its potential as an adjunct in the treatment of diabetes and related cardiovascular disorders. However, further extensive clinical investigations are necessary to fully establish its therapeutic potential and assess potential synergistic effects with other compounds.
Collapse
Affiliation(s)
- Fatemeh Samimi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Namiranian
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Sharifi-Rigi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Yazdi A, Shirmohammadi K, Parvaneh E, Entezari-Maleki T, Hosseini SK, Ranjbar A, Mehrpooya M. Effects of coenzyme Q10 supplementation on oxidative stress biomarkers following reperfusion in STEMI patients undergoing primary percutaneous coronary intervention. J Cardiovasc Thorac Res 2023; 15:250-261. [PMID: 38357568 PMCID: PMC10862029 DOI: 10.34172/jcvtr.2023.31817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction It is well-established that oxidative stress is deeply involved in myocardial ischemia-reperfusion injury. Considering the potent antioxidant properties of coenzyme Q10 (CoQ10), we aimed to assess whether CoQ10 supplementation could exert beneficial effects on plasma levels of oxidative stress biomarkers in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPIC). Methods Seventy patients with the first attack of STEMI, eligible for PPCI were randomly assigned to receive either standard treatments plus CoQ10 (400 mg before PPCI and 200 mg twice daily for three days after PPCI) or standard treatments plus placebo. Plasma levels of oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured at 6, 24, and 72 hours after completion of PPCI. Results The changes in plasma levels of the studied biomarkers at 6 and 24 hours after PPCI were similar in the both groups (P values>0.05). This is while at 72 hours, the CoQ10- treated group exhibited significantly higher plasma levels of SOD (P value<0.001), CAT (P value=0.001), and TAC (P value<0.001), along with a lower plasma level of MDA (P value=0.002) compared to the placebo-treated group. The plasma activity of GPX showed no significant difference between the groups at all the study time points (P values>0.05). Conclusion This study showed that CoQ10 has the potential to modulate the balance between antioxidant and oxidant biomarkers after reperfusion therapy. Our results suggest that CoQ10, through its antioxidant capacity, may help reduce the reperfusion injury in ischemic myocardium.
Collapse
Affiliation(s)
- Amirhossein Yazdi
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kimia Shirmohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Erfan Parvaneh
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kianoosh Hosseini
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Martin BR, Woodruff J. Management of a Patient With Premenstrual Syndrome Using Acupuncture, Supplements, and Meditation: A Case Report. J Chiropr Med 2023; 22:222-229. [PMID: 37644997 PMCID: PMC10461168 DOI: 10.1016/j.jcm.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 08/31/2023] Open
Abstract
Objective The purpose of this case report was to describe a multimodal approach for the treatment of premenstrual syndrome (PMS). Clinical Features A 36-year-old nulliparous woman presented to a free clinic for veterans and their spouses. She received a PMS diagnosis at age 18. She was previously prescribed hormonal birth control and nonsteroidal anti-inflammatory drugs, which minimally affected her condition. She stopped using conventional medicine therapies at age 27. Laboratory results showed that her progesterone was below 0.5 ng/mL. Her symptom score was 50 out of 60 on the Treatment Strategies for PMS assessment tool. During her menses, she experienced low back pain and stiffness, bloating, swelling, weight gain, breast tenderness, swelling, and pain, and she felt overwhelmed and stressed. Intervention and Outcome Traditional Chinese medicine acupuncture was administered in conjunction with 100 mg of coenzyme Q10 (ubiquinol) and a B-100 complex once a day and 400 mg of magnesium citrate, 1000 mg of flaxseed oil (Linum usitatissimum), and 1000 mg of turmeric (Curcuma longa) twice a day. Five days before the onset of her menstrual period, she was to ingest a B-100 complex twice a day and 400 mg of magnesium citrate, 1000 mg of flaxseed oil, and 1000 mg of turmeric 3 times a day. Mindfulness meditation was encouraged twice a day for 10 minutes to reduce stress. After 12 treatments over 3 months, her symptom score decreased to 18 out of 60 and remained below 20 for an additional 32 weeks. Conclusion This patient with PMS symptoms positively responded to a multimodal approach using traditional Chinese medicine-style acupuncture, dietary supplements, and mindfulness meditation.
Collapse
Affiliation(s)
- Brett R. Martin
- Basic Science Department, National University of Health Sciences, Pinellas Park, Florida
| | - Jade Woodruff
- Basic Science Department, National University of Health Sciences, Pinellas Park, Florida
| |
Collapse
|
8
|
Shrivastav D, Dabla PK, Sharma J, Viswas A, Mir R. Insights on antioxidant therapeutic strategies in type 2 diabetes mellitus: A narrative review of randomized control trials. World J Diabetes 2023; 14:919-929. [PMID: 37383600 PMCID: PMC10294058 DOI: 10.4239/wjd.v14.i6.919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease of impaired glucose utilization. Imbalance in generation and elimination of free radicals generate oxidative stress which modulates glucose metabolism and insulin regulation, resulting in the occurrence and progression of diabetes and associated complications. Antioxidant supplements in T2DM can be seen as a potential preventive and effective therapeutic strategy. AIM To compare randomized controlled trials (RCTs) in which antioxidants have been shown to have a therapeutic effect in T2DM patients. METHODS We systematically searched the electronic database PubMed by keywords. RCTs evaluating the effect of antioxidant therapy on glycaemic control as well as oxidant and antioxidant status as primary outcomes were included. The outcomes considered were: A reduction in blood glucose; changes in oxidative stress and antioxidant markers. Full-length papers of the shortlisted articles were assessed for the eligibility criteria and 17 RCTs were included. RESULTS The administration of fixed-dose antioxidants significantly reduces fasting blood sugar and glycated hemoglobin and is associated with decreased malondialdehyde, advanced oxidation protein products, and increased total antioxidant capacity. CONCLUSION Antioxidant supplements can be a beneficial approach for the treatment of T2DM.
Collapse
Affiliation(s)
| | - Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi 110002, India
| | - Jitender Sharma
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi 110002, India
| | - Aroop Viswas
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi 110002, India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
9
|
Shrivastav D, Dabla PK, Sharma J, Viswas A, Mir R. Insights on antioxidant therapeutic strategies in type 2 diabetes mellitus: A narrative review of randomized control trials. World J Diabetes 2023; 14:919-929. [DOI: 10.4239/wjd.v14.i6.919 shrivastav d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
|
10
|
de Mello Barros Pimentel MV, Bertolami A, Fernandes LP, Barroso LP, Castro IA. Could a lipid oxidative biomarker be applied to improve risk stratification in the prevention of cardiovascular disease? Biomed Pharmacother 2023; 160:114345. [PMID: 36753953 DOI: 10.1016/j.biopha.2023.114345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
There is significant evidence demonstrating the influence of oxidative stress on atherosclerosis and cardiovascular diseases (CVD). However, oxidative biomarkers have not been applied to follow patients under primary or secondary prevention. Many factors can explain this paradox: the higher complexity of the methods applied to quantify oxidative markers, the high variability observed among the studies, the lack of reference values, and the weak correlation with clinical endpoints. This review presents the role of the major reactive oxygen species (ROS) involved in cardiovascular pathophysiology and how they can be neutralized by endogenous and exogenous antioxidants based on classical and recent studies, highlighting the importance of the secondary products of fatty acid oxidation as potential biomarkers. Furthermore, we discuss the great variability of oxidative stress biomarkers, using as an example data obtained from 55 studies. Among the molecules directly formed from lipid oxidation, such as malondialdehyde (MDA), oxidized LDL (oxLDL), and isoprostanes (F2-IsoP), and those associated with general oxidative conditions (ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD), glutathione (GSH)), MDA was the most lipid biomarker evaluated in the treatments and proved to be an independent factor compared with traditional markers used in the algorithms to stratify the patient's risk. Finally, this review suggests four steps to follow, aiming to include MDA in the algorithms applied to estimate CVD risk.
Collapse
Affiliation(s)
| | - Adriana Bertolami
- Dyslipidemia Medical Section, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Lígia Prestes Fernandes
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lúcia Pereira Barroso
- Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo 05468-140, Brazil.
| |
Collapse
|
11
|
Coenzyme Q10 and Endocrine Disorders: An Overview. Antioxidants (Basel) 2023; 12:antiox12020514. [PMID: 36830072 PMCID: PMC9952344 DOI: 10.3390/antiox12020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of a number of endocrine disorders; this, in turn, suggests a potential role for the vitamin-like substance coenzyme Q10 (CoQ10) in the pathogenesis and treatment of these disorders, on the basis of its key roles in mitochondrial function, and as an antioxidant. In this article we have therefore reviewed the role of CoQ10 deficiency and supplementation in disorders of the thyroid, pancreas, gonads, pituitary and adrenals, with a particular focus on hyperthyroidism, type II diabetes, male infertility and polycystic ovary syndrome.
Collapse
|
12
|
Liu Z, Tian Z, Zhao D, Liang Y, Dai S, Liu M, Hou S, Dong X, Zhaxinima, Yang Y. Effects of Coenzyme Q10 Supplementation on Lipid Profiles in Adults: A Meta-analysis of Randomized Controlled Trials. J Clin Endocrinol Metab 2022; 108:232-249. [PMID: 36337001 DOI: 10.1210/clinem/dgac585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/09/2022]
Abstract
CONTEXT Previous meta-analyses have suggested that the effects of coenzyme Q10 (CoQ10) on lipid profiles remain debatable. Additionally, no meta-analysis has explored the optimal intake of CoQ10 for attenuating lipid profiles in adults. OBJECTIVE This study conducted a meta-analysis to determine the effects of CoQ10 on lipid profiles and assess their dose-response relationships in adults. METHODS Databases (Web of Science, PubMed/Medline, Embase, and the Cochrane Library) were systematically searched until August 10, 2022. The random effects model was used to calculate the mean differences (MDs) and 95% CI for changes in circulating lipid profiles. The novel single-stage restricted cubic spline regression model was applied to explore nonlinear dose-response relationships. RESULTS Fifty randomized controlled trials with a total of 2794 participants were included in the qualitative synthesis. The pooled analysis revealed that CoQ10 supplementation significantly reduced total cholesterol (TC) (MD -5.53 mg/dL; 95% CI -8.40, -2.66; I2 = 70%), low-density lipoprotein cholesterol (LDL-C) (MD -3.03 mg/dL; 95% CI -5.25, -0.81; I2 = 54%), and triglycerides (TGs) (MD -9.06 mg/dL; 95% CI -14.04, -4.08; I2 = 65%) and increased high-density lipoprotein cholesterol (HDL-C) (MD 0.83 mg/dL; 95% CI 0.01, 1.65; I2 = 82%). The dose-response analysis showed an inverse J-shaped nonlinear pattern between CoQ10 supplementation and TC in which 400-500 mg/day CoQ10 largely reduced TC (χ2 = 48.54, P < .01). CONCLUSION CoQ10 supplementation decreased the TC, LDL-C, and TG levels, and increased HDL-C levels in adults, and the dosage of 400 to 500 mg/day achieved the greatest effect on TC.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxi Dong
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
| | - Zhaxinima
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
| |
Collapse
|
13
|
Tippairote T, Bjørklund G, Gasmi A, Semenova Y, Peana M, Chirumbolo S, Hangan T. Combined Supplementation of Coenzyme Q 10 and Other Nutrients in Specific Medical Conditions. Nutrients 2022; 14:4383. [PMID: 36297067 PMCID: PMC9609170 DOI: 10.3390/nu14204383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 07/23/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is a compound with a crucial role in mitochondrial bioenergetics and membrane antioxidant protection. Despite the ubiquitous endogenous biosynthesis, specific medical conditions are associated with low circulating CoQ10 levels. However, previous studies of oral CoQ10 supplementation yielded inconsistent outcomes. In this article, we reviewed previous CoQ10 trials, either single or in combination with other nutrients, and stratified the study participants according to their metabolic statuses and medical conditions. The CoQ10 supplementation trials in elders reported many favorable outcomes. However, the single intervention was less promising when the host metabolic statuses were worsening with the likelihood of multiple nutrient insufficiencies, as in patients with an established diagnosis of metabolic or immune-related disorders. On the contrary, the mixed CoQ10 supplementation with other interacting nutrients created more promising impacts in hosts with compromised nutrient reserves. Furthermore, the results of either single or combined intervention will be less promising in far-advanced conditions with established damage, such as neurodegenerative disorders or cancers. With the limited high-level evidence studies on each host metabolic category, we could only conclude that the considerations of whether to take supplementation varied by the individuals' metabolic status and their nutrient reserves. Further studies are warranted.
Collapse
Affiliation(s)
- Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| |
Collapse
|
14
|
Liang Y, Zhao D, Ji Q, Liu M, Dai S, Hou S, Liu Z, Mao Y, Tian Z, Yang Y. Effects of coenzyme Q10 supplementation on glycemic control: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. EClinicalMedicine 2022; 52:101602. [PMID: 35958521 PMCID: PMC9358422 DOI: 10.1016/j.eclinm.2022.101602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background Previous reviews reported that the effects of CoQ10 on glycemic control were inconsistent. There is no review exploring the optimal intake of CoQ10 for glycemic control. We aimed to investigate the efficacy of CoQ10 on glycemic control and evaluate the dose-response relationship via integrating the existing evidence from randomized control trials (RCTs). Methods Databases (PubMed, Embase, and Cochrane Library) were searched to identify RCTs for investigating the efficacy of CoQ10 on fasting glucose, fasting insulin, HbA1c, and HOMA-IR up to March 12, 2022. We performed a meta-analysis on 40 RCTs of CoQ10. Weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated for net changes. Evidence certainty was assessed using GRADE. Dose-response relationships were evaluated using 1-stage restricted cubic spline regression model. The protocol was registered in PROSPERO (CRD42021252933). Findings Forty studies (n = 2,424 participants) were included in this meta-analysis. CoQ10 significantly reduced fasting glucose (WMD: -5.22 [95% CI: -8.33, -2.11] mg/dl; P <0.001; I2 =95.10%), fasting insulin (-1.32 [-2.06, -0.58] μIU/ml; P < 0.001; I2 =78.86%), HbA1c (-0.12% [-0.23, -0.01]; P =0.04; I2 =49.10%), and HOMA-IR (-0.69 [-1.00, -0.38]; P <0.001; I2 =88.80%). The effect of CoQ10 on outcomes was greater in diabetes with lower heterogeneity. A "U" shape dose-response relationship curve revealed that 100-200 mg/day of CoQ10 largely decreased fasting glucose (χ 2 = 12.08, P nonlinearity =0.002), fasting insulin (χ 2 = 9.73, P nonlinearity =0.008), HbA1c (χ 2 = 6.00, P nonlinearity =0.049), HOMA-IR (χ 2 = 25.89, P nonlinearity <0.001). Interpretation CoQ10 supplementation has beneficial effects on glycemic control, especially in diabetes, and 100-200 mg/day of CoQ10 could achieve the greatest benefit, which could provide a basis for the dietary guidelines of CoQ10 in patients with glycemic disorders. Funding This work was supported by the National Natural Science Foundation of China (No. 82030098, 81872617 and 81730090), Shenzhen Science, Technology, and Innovation Commission (No. JCYJ20180307153228190), CNS Research Fund for DRI, and National innovation and entrepreneurship training program for undergraduate student (No. 202210558161).
Collapse
Affiliation(s)
- Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiuhua Ji
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee, Beijing 100000, China
| |
Collapse
|
15
|
Marhuenda-Muñoz M, Domínguez-López I, Laveriano-Santos EP, Parilli-Moser I, Razquin C, Ruiz-Canela M, Basterra-Gortari FJ, Corella D, Salas-Salvadó J, Fitó M, Lapetra J, Arós F, Fiol M, Serra-Majem L, Pintó X, Gómez-Gracia E, Ros E, Estruch R, Lamuela-Raventós RM. One-Year Changes in Urinary Microbial Phenolic Metabolites and the Risk of Type 2 Diabetes-A Case-Control Study. Antioxidants (Basel) 2022; 11:1540. [PMID: 36009259 PMCID: PMC9405292 DOI: 10.3390/antiox11081540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The intake of polyphenols has been associated with a risk reduction of type 2 diabetes. Nevertheless, to the best of our knowledge, the molecules that might be metabolically active after ingestion are only starting to be investigated regarding this metabolic disease. To investigate the association between one-year changes in urinary microbial phenolic metabolites (MPM) and the incidence of type 2 diabetes, we performed a case-control study using data and samples of the PREDIMED trial including 46 incident type 2 diabetes cases of 172 randomly selected participants. Eight urinary MPMs were quantified in urine by liquid chromatography coupled to mass spectrometry and used to assess their associations with type 2 diabetes risk by multivariable logistic regression models. Compared to participants in the lowest tertile of one-year changes in hydroxybenzoic acid glucuronide, those in the highest tertile had a significantly lowered probability of developing type 2 diabetes (OR [95% CI], 0.39 [0.23−0.64]; p < 0.001 for trend). However, when additionally adjusting for fasting plasma glucose, the statistical significance was lost. Changes in the dietary pattern can increase the concentrations of this compound, derived from many (poly)phenol-rich foods, and might be changing the gut microbial population as well, promoting the production of the metabolite.
Collapse
Affiliation(s)
- María Marhuenda-Muñoz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Inés Domínguez-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Emily P. Laveriano-Santos
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Isabella Parilli-Moser
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Cristina Razquin
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31008 Pamplona, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31008 Pamplona, Spain
| | - Francisco Javier Basterra-Gortari
- Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31008 Pamplona, Spain
- Department of Endocrinology and Nutrition, IdiSNA, Navarra Institute for Health Research, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08003 Barcelona, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, 41013 Sevilla, Spain
| | - Fernando Arós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cardiology, Hospital Txangorritxu, 01009 Vitoria, Spain
| | - Miquel Fiol
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), 07122 Palma de Mallorca, Spain
| | - Lluis Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department Clinical Sciences, University of Las Palmas de Gran Canaria, 35016 Palmas de Gran Canaria, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Lipid Unit, Department of Internal Medicine, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, FIPEC, 08908 Barcelona, Spain
| | - Enrique Gómez-Gracia
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Epidemiology, School of Medicine, University of Malaga, 29010 Málaga, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Internal Medicine Department, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
16
|
Chang PS, Chou HH, Lai TJ, Yen CH, Pan JC, Lin PT. Investigation of coenzyme Q10 status, serum amyloid-β, and tau protein in patients with dementia. Front Aging Neurosci 2022; 14:910289. [PMID: 35959290 PMCID: PMC9358012 DOI: 10.3389/fnagi.2022.910289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Dementia is an oxidative stress-related disease. Coenzyme Q10 is a nutrient that occurs naturally in the human body and acts as an antioxidant. The purpose of this study was to investigate the relationships of coenzyme Q10 status, biomarkers for dementia (amyloid β and tau protein), and antioxidant capacity in patients with dementia. Methods Eighty dementia patients aged ≥60 years and with a mini mental state examination (MMSE) score ≤ 26 were enrolled. The levels of coenzyme Q10, total antioxidant capacity (TAC), amyloid β, and tau protein were measured. Results A total of 73% of patients had a low coenzyme Q10 status. Patients with low coenzyme Q10 status had a significantly higher level of serum amyloid β-42 and amyloid β-42/40 ratio (p < 0.05). Coenzyme Q10 status was significantly correlated with the values of TAC, MMSE score, amyloid β-42, and amyloid β-42/40 ratio (p < 0.05) but not with tau protein. Additionally, a high proportion of moderate dementia patients were found to have low coenzyme Q10 status (p = 0.07). Conclusion Patients with dementia suffered from coenzyme Q10 deficiency, and the degree of deficiency was related to the level of amyloid-β and antioxidant capacity. Since adequate level of coenzyme Q10 may delay the progression of dementia, monitoring coenzyme Q10 status in patients with dementia is necessary.
Collapse
Affiliation(s)
- Po-Sheng Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Graduate Program in Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Hsi-Hsien Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Hua Yen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ji-Cyun Pan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
- *Correspondence: Ping-Ting Lin,
| |
Collapse
|
17
|
Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, Hou S, Yang Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2022; 11:antiox11071360. [PMID: 35883851 PMCID: PMC9311997 DOI: 10.3390/antiox11071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence shows that exogenous CoQ10 supplementation may potentially attenuate oxidative stress status. However, its effective dose and evidence certainty require further evaluation in the general population via more updated randomized controlled trials (RCTs). Databases (PubMed, Embase and Cochrane Library) were searched up to 30 March 2022. Evidence certainty was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Thirty-four RCTs containing 2012 participants were included in this review. Pooled effects of significant increase in total antioxidant capacity (TAC) (standardized mean difference: 1.83, 95%CI: [1.07, 2.59], p < 0.001) and significant reduction in malondialdehyde (MDA) concentrations (−0.77, [−1.06, −0.47], p < 0.001) were shown after CoQ10 supplementation compared to placebo. However, we could not determine that there was a significant increase in circulating superoxide dismutase (SOD) levels yet (0.47, [0.00, 0.94], p = 0.05). Subgroup analyses implied that CoQ10 supplementation was more beneficial to people with coronary artery disease or type 2 diabetes. Additionally, taking 100−150 mg/day CoQ10 supplement had better benefits for the levels of TAC, MDA and SOD (all p < 0.01). These results to a statistically significant extent lent support to the efficacy and optimal dose of CoQ10 supplementation on attenuating oxidative stress status in adults.
Collapse
Affiliation(s)
- Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
18
|
Alehagen U, Johansson P, Svensson E, Aaseth J, Alexander J. Improved cardiovascular health by supplementation with selenium and coenzyme Q10: applying structural equation modelling (SEM) to clinical outcomes and biomarkers to explore underlying mechanisms in a prospective randomized double-blind placebo-controlled intervention project in Sweden. Eur J Nutr 2022; 61:3135-3148. [PMID: 35381849 PMCID: PMC9363287 DOI: 10.1007/s00394-022-02876-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Purpose Selenium and coenzyme Q10 have synergistic antioxidant functions. In a four-year supplemental trial in elderly Swedes with a low selenium status, we found improved cardiac function, less cardiac wall tension and reduced cardiovascular mortality up to 12 years of follow-up. Here we briefly review the main results, including those from studies on biomarkers related to cardiovascular risk that were subsequently conducted. In an effort, to explain underlying mechanisms, we conducted a structured analysis of the inter-relationship between biomarkers. Methods Selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/ day), or placebo was given to 443 elderly community-living persons, for 48 months. Structural Equation Modelling (SEM) was used to investigate the statistical inter-relationships between biomarkers related to inflammation, oxidative stress, insulin-like growth factor 1, expression of microRNA, fibrosis, and endothelial dysfunction and their impact on the clinical effects. The main study was registered at Clinicaltrials.gov at 30th of September 2011, and has the identifier NCT01443780. Results In addition to positive clinical effects, the intervention with selenium and coenzyme Q10 was also associated with favourable effects on biomarkers of cardiovascular risk. Using these results in the SEM model, we showed that the weights of the first-order factors inflammation and oxidative stress were high, together forming a second-order factor inflammation/oxidative stress influencing the factors, fibrosis (β = 0.74; p < 0.001) and myocardium (β = 0.65; p < 0.001). According to the model, the intervention impacted fibrosis and myocardium through these factors, resulting in improved cardiac function and reduced CV mortality. Conclusion Selenium reduced inflammation and oxidative stress. According to the SEM analysis, these effects reduced fibrosis and improved myocardial function pointing to the importance of supplementation in those low on selenium and coenzyme Q10.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85, Linköping, Sweden.
| | - Peter Johansson
- Department of Health, Medicine and Caring Sciences, Linköping University, 601 74, Norrköping, Sweden
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2381, Brumunddal, Norway.,Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, 2418, Elverum, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, 0403, Oslo, Norway
| |
Collapse
|
19
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021; 78:7491-7503. [PMID: 34718826 PMCID: PMC11072988 DOI: 10.1007/s00018-021-04007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy.
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, 46010, Valencia, Spain
| | - Alex Lyakhovich
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, 60121, Ancona, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy
| |
Collapse
|
20
|
Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102422. [PMID: 34175455 DOI: 10.1016/j.nano.2021.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
As mitochondria network together to act as the master sensors and effectors of apoptosis, ATP production, reactive oxygen species management, mitophagy/autophagy, and homeostasis; this organelle is an ideal target for pharmaceutical manipulation. Mitochondrial dysfunction contributes to many diseases, for example, β-amyloid has been shown to interfere with mitochondrial protein import and induce apoptosis in Alzheimer's Disease while some forms of Parkinson's Disease are associated with dysfunctional mitochondrial PINK1 and Parkin proteins. Mitochondrial medicine has applications in the treatment of an array of pathologies from cancer to cardiovascular disease. A challenge of mitochondrial medicine is directing therapies to a subcellular target. Nanotechnology based approaches combined with mitochondrial targeting strategies can greatly improve the clinical translation and effectiveness of mitochondrial medicine. This review discusses mitochondrial drug delivery approaches and applications of mitochondrial nanomedicines. Nanomedicine approaches have the potential to drive the success of mitochondrial therapies into the clinic.
Collapse
Affiliation(s)
- Lara Milane
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA.
| | - Saket Dolare
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Tanjheela Jahan
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Mansoor Amiji
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| |
Collapse
|
21
|
Rabanal-Ruiz Y, Llanos-González E, Alcain FJ. The Use of Coenzyme Q10 in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10050755. [PMID: 34068578 PMCID: PMC8151454 DOI: 10.3390/antiox10050755] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
CoQ10 is an endogenous antioxidant produced in all cells that plays an essential role in energy metabolism and antioxidant protection. CoQ10 distribution is not uniform among different organs, and the highest concentration is observed in the heart, though its levels decrease with age. Advanced age is the major risk factor for cardiovascular disease and endothelial dysfunction triggered by oxidative stress that impairs mitochondrial bioenergetic and reduces NO bioavailability, thus affecting vasodilatation. The rationale of the use of CoQ10 in cardiovascular diseases is that the loss of contractile function due to an energy depletion status in the mitochondria and reduced levels of NO for vasodilatation has been associated with low endogenous CoQ10 levels. Clinical evidence shows that CoQ10 supplementation for prolonged periods is safe, well-tolerated and significantly increases the concentration of CoQ10 in plasma up to 3–5 µg/mL. CoQ10 supplementation reduces oxidative stress and mortality from cardiovascular causes and improves clinical outcome in patients undergoing coronary artery bypass graft surgery, prevents the accumulation of oxLDL in arteries, decreases vascular stiffness and hypertension, improves endothelial dysfunction by reducing the source of ROS in the vascular system and increases the NO levels for vasodilation.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| |
Collapse
|
22
|
Tang KS. Antioxidant and Anti-inflammatory Properties of Yttrium Oxide Nanoparticles: New Insights into Alleviating Diabetes. Curr Diabetes Rev 2021; 17:496-502. [PMID: 33045978 DOI: 10.2174/1573399816999201012201111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is a metabolic disease that requires immediate attention. Oxidative stress that leads to the generation of reactive oxygen species is a contributing factor to the disease progression. Yttrium oxide nanoparticles (Y2O3 NPs) have a profound effect on alleviating oxidative damage. METHODS The literature related to Y2O3 NPs and oxidative stress has been thoroughly searched using PubMed and Scopus databases and relevant studies from inception until August 2020 were included in this scoping review. RESULTS Y2O3 NPs altered oxidative stress-related biochemical parameters in different disease models including diabetes. CONCLUSION Although Y2O3 NPs are a promising antidiabetic agent due to their antioxidant and anti- inflammatory properties, more studies are required to further elucidate the pharmacological and toxicological properties of these nanoparticles.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Ho CC, Chang PS, Chen HW, Lee PF, Chang YC, Tseng CY, Lin PT. Ubiquinone Supplementation with 300 mg on Glycemic Control and Antioxidant Status in Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Antioxidants (Basel) 2020; 9:antiox9090823. [PMID: 32899227 PMCID: PMC7555239 DOI: 10.3390/antiox9090823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to investigate the glycemic profile, oxidative stress, and antioxidant capacity in athletes after 12 weeks of ubiquinone supplementation. It was a double-blinded, randomized, parallel, placebo-controlled study. Thirty-one well-trained college athletes were randomly assigned to ubiquinone (300 mg/d, n = 17) or placebo group (n = 14). The glycemic profile [fasting glucose, glycated hemoglobin (HbA1c), homeostatic model assessment-insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI)], plasma and erythrocyte malondialdehyde (MDA), total antioxidant capacity (TAC), and ubiquinone status were measured. After supplementation, the plasma ubiquinone concentration was significantly increased (p < 0.05) and the level of erythrocyte MDA was significantly lower in the ubiquinone group than in the placebo group (p < 0.01). There was a significant correlation between white blood cell (WBC) ubiquinone and glycemic parameters [HbA1c, r = −0.46, p < 0.05; HOMA-IR, r = −0.67, p < 0.01; QUICKI, r = 0.67, p < 0.01]. In addition, athletes with higher WBC ubiquinone level (≥0.5 nmol/g) showed higher erythrocyte TAC and QUICKI and lower HOMA-IR. In conclusion, we demonstrated that athletes may show a better antioxidant capacity with higher ubiquinone status after 12 weeks of supplementation, which may further improve glycemic control.
Collapse
Affiliation(s)
- Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei City 242304, Taiwan; (C.-C.H.); (P.-F.L.); (Y.-C.C.); (C.-Y.T.)
- Research and Development Center for Physical Education, Health, and Information Technology, College of Education, Fu Jen Catholic University, New Taipei City 242304, Taiwan
| | - Po-Sheng Chang
- Department of Nutrition, Chung Shan Medical University, Taichung 402367, Taiwan; (P.-S.C.); (H.-W.C.)
- Graduate Program in Nutrition, Chung Shan Medical University, Taichung 402367, Taiwan
| | - Hung-Wun Chen
- Department of Nutrition, Chung Shan Medical University, Taichung 402367, Taiwan; (P.-S.C.); (H.-W.C.)
| | - Po-Fu Lee
- Department of Physical Education, Fu Jen Catholic University, New Taipei City 242304, Taiwan; (C.-C.H.); (P.-F.L.); (Y.-C.C.); (C.-Y.T.)
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei City 111396, Taiwan
| | - Yun-Chi Chang
- Department of Physical Education, Fu Jen Catholic University, New Taipei City 242304, Taiwan; (C.-C.H.); (P.-F.L.); (Y.-C.C.); (C.-Y.T.)
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei City 112304, Taiwan
| | - Ching-Yu Tseng
- Department of Physical Education, Fu Jen Catholic University, New Taipei City 242304, Taiwan; (C.-C.H.); (P.-F.L.); (Y.-C.C.); (C.-Y.T.)
- Research and Development Center for Physical Education, Health, and Information Technology, College of Education, Fu Jen Catholic University, New Taipei City 242304, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung 402367, Taiwan; (P.-S.C.); (H.-W.C.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 402367, Taiwan
- Correspondence: ; Tel.: +886-4-24730022 (ext. 12187); Fax: +886-4-2324-8175
| |
Collapse
|
24
|
Kawashima C, Matsuzawa Y, Konishi M, Akiyama E, Suzuki H, Sato R, Nakahashi H, Kikuchi S, Kimura Y, Maejima N, Iwahashi N, Hibi K, Kosuge M, Ebina T, Tamura K, Kimura K. Ubiquinol Improves Endothelial Function in Patients with Heart Failure with Reduced Ejection Fraction: A Single-Center, Randomized Double-Blind Placebo-Controlled Crossover Pilot Study. Am J Cardiovasc Drugs 2020; 20:363-372. [PMID: 31713723 DOI: 10.1007/s40256-019-00384-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endothelial dysfunction is reportedly associated with worse outcomes in patients with chronic heart failure. Ubiquinol is a reduced form of coenzyme Q10 (CoQ10) that may improve endothelial function. OBJECTIVE We assessed the hypothesis that ubiquinol improves peripheral endothelial function in patients with heart failure with reduced ejection fraction (HFrEF). METHODS In this randomized, double-blind, placebo-controlled, crossover pilot study, 14 patients with stable HFrEF were randomly and blindly allocated to ubiquinol 400 mg/day or placebo for 3 months. After a 1-month washout period, patients were crossed over to the alternative treatment. Before and after each treatment, we assessed peripheral endothelial function using the reactive hyperemia index (RHI) and analyzed it using the natural logarithm of RHI (LnRHI). RESULTS Peripheral endothelial function as assessed by LnRHI tended to improve with ubiquinol 400 mg/day for 3 months (p = 0.076). Original RHI values were also compared, and RHI significantly improved with ubiquinol treatment (pre-RHI 1.57 [interquartile range (IQR) 1.39-1.80], post-RHI 1.74 [IQR 1.63-2.02], p = 0.026), but not with placebo (pre-RHI 1.67 [IQR 1.53-1.85], post-RHI 1.51 [IQR 1.39-2.11], p = 0.198). CONCLUSIONS Ubiquinol 400 mg/day for 3 months led to significant improvement in peripheral endothelial function in patients with HFrEF. Ubiquinol may be a therapeutic option for individuals with HFrEF. Large-scale randomized controlled trials of CoQ10 supplementation in patients with HFrEF are needed. CLINICAL TRIAL REGISTRATION Japanese University Hospital Medical Information Network (UMIN-ICDR). Clinical Trial identifier number UMIN000012604.
Collapse
Affiliation(s)
- Chika Kawashima
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan.
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan.
| | - Masaaki Konishi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Eiichi Akiyama
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Hiroyuki Suzuki
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Ryosuke Sato
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Hidefumi Nakahashi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Shinnosuke Kikuchi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Yuichiro Kimura
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Nobuhiko Maejima
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Noriaki Iwahashi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Toshiaki Ebina
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| |
Collapse
|
25
|
Xie T, Wang C, Jin Y, Meng Q, Liu Q, Wu J, Sun H. CoenzymeQ10-Induced Activation of AMPK-YAP-OPA1 Pathway Alleviates Atherosclerosis by Improving Mitochondrial Function, Inhibiting Oxidative Stress and Promoting Energy Metabolism. Front Pharmacol 2020; 11:1034. [PMID: 32792941 PMCID: PMC7387644 DOI: 10.3389/fphar.2020.01034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is an excessive chronic inflammatory hyperplasia caused by the damage of vascular endothelial cell morphology and function. Changes in mitochondrial internal conformation and increase of reactive oxygen species (ROS) can lead to energy metabolism disorders in mitochondria, which further affects the occurrence of atherosclerosis by impairing vascular endothelial function. Coenzyme Q10 (CoQ10) is one of the components of mitochondrial respiratory chain, which has the functions of electron transfer, reducing oxidative stress damage, improving mitochondrial function and promoting energy metabolism. The main purpose of this study is to investigate the protective effects of CoQ10 against AS by improving mitochondrial energy metabolism. Both in high fat diet (HFD) fed APOE -/- mice and in ox-LDL-treated HAECs, CoQ10 significantly decreased the levels of TG, TC and LDL-C and increased the levels of HDL-C, thus playing a role in regulating lipid homeostasis. Meanwhile, CoQ10 decreased the levels of LDH and MDA and increased the levels of SOD and GSH, thus playing a role in regulating oxidation level. CoQ10 also inhibited the over-release of ROS and increased ATP content to improve mitochondrial function. CoQ10 also decreased the levels of related inflammatory factors (ICAM-1, VCAM-1, IL-6, TNF-α and NLRP3). In order to study the mechanism of the experiment, AMPK and YAP were silenced in vitro. The further study suggested AMPK small interfering RNA (siRNA) and YAP small interfering RNA (siRNA) affected the expression of OPA1, a crucial protein regulating the balance of mitochondrial fusion and division and decreased the therapeutic effects of CoQ10. These results indicated that CoQ10 improved mitochondrial function, inhibited ROS production, promoted energy metabolism and attenuated AS by activating AMPK-YAP-OPA1 pathway. This study provides a possible new mechanism for CoQ10 in the treatment of AS and may bring a new hope for the prevention and treatment of AS in the future.
Collapse
Affiliation(s)
- Tianqi Xie
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Temova Rakuša Ž, Kristl A, Roškar R. Quantification of reduced and oxidized coenzyme Q10 in supplements and medicines by HPLC-UV. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2580-2589. [PMID: 32930284 DOI: 10.1039/d0ay00683a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coenzyme Q10 (CoQ10) supplements are widely used because of their antioxidant and anti-inflammatory effects, especially in the management of cardiovascular diseases. The latest pharmaceutical approach to increase CoQ10 bioavailability and efficiency is the formulation of its reduced form. Regardless of the growing number and usage of CoQ10 preparations, their analytics and quality control is inadequate, neglecting interconversion between the two CoQ10 forms. Therefore, this study proposes a HPLC-UV method for the simultaneous quantification of both reduced and oxidized coenzyme Q10, as well as total CoQ10, as a sum of its individual forms. The suitability of the developed method was confirmed by two additional approaches for total CoQ10 determination - its total reduction and oxidation, differing from the proposed procedure only in the final stage of sample preparation. The results for total CoQ10 content were consistent between the three procedures and also with the official USP method for total CoQ10 determination. The proposed method was applied to 13 dietary supplements and medicines in the form of soft- and hard-shell capsules, revealing the co-existence of both CoQ10 forms in 85% of the tested preparations. CoQ10 forms that were undeclared accounted for up to 75% of the CoQ10 content, which is overlooked by current official methods that evaluate only the total CoQ10 content. This validated HPLC-UV method for the unequivocal quantification of reduced and oxidized CoQ10 is therefore appropriate for the routine analysis of CoQ10 preparations in quality control laboratories, as well as for stability studies, and is suggested to be adopted as an official method.
Collapse
Affiliation(s)
- Žane Temova Rakuša
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Albin Kristl
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Chan MY, Lee BJ, Chang PS, Hsiao HY, Hsu LP, Chang CH, Lin PT. The risks of ubiquinone and β-carotene deficiency and metabolic disorders in patients with oral cancer. BMC Cancer 2020; 20:310. [PMID: 32293339 PMCID: PMC7161249 DOI: 10.1186/s12885-020-06839-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer development is mediated by oxidative stress and inflammation, which may correlate with metabolic disorders. The aim of this study was to evaluate antioxidant vitamins status and metabolic parameters in patients with oral cancer according to tumor-node-metastasis (TNM) stages. Methods A total of 194 patients with oral cancer were enrolled in this study. The patients were stratified for four groups according to cancer stages and that the statistics are comparisons across these groups. The levels of antioxidant vitamins (ubiquinone, β-carotene, vitamin A and E), metabolic parameters, oxidative stress, antioxidant enzymes activity, and inflammatory markers were measured. Results More than half of the subjects had high blood pressure, central obesity, hyperglycemia, and hyperlipidemia regardless of TNM stage. With regard to antioxidant vitamins status, 46 and 94% of patients had β-carotene and ubiquinone deficiency, respectively. Patients in T3 and T4 stages had significantly lower antioxidant enzyme (catalase, p = 0.03) activity and higher inflammatory markers levels (high sensitivity C-reactive protein and interleukin-6, p < 0.01) than patients in the other stages. In addition, the level of β-carotene was negatively associated with waist circumference, and ubiquinone was positively associated with the level of high-density lipoprotein cholesterol (p < 0.05). Higher β-carotene and ubiquinone levels were negatively associated with hypertriglyceridemia and the risk of metabolic syndrome (p < 0.05). Conclusions A high proportion of patients with oral cancer had ubiquinone or β-carotene deficiency and metabolic disorders. The level of ubiquinone or β-carotene was negatively associated with the risk of central obesity, hypertriglyceridemia, and metabolic syndrome. Since patients with oral cancer suffer from high oxidative stress and inflammation (particularly in the T3 and T4 stages), supplementation with antioxidant vitamins such as ubiquinone or β-carotene could be preferentially applied.
Collapse
Affiliation(s)
- Man-Yee Chan
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taichung Veterans General Hospital, Taichung, 407204, Taiwan.,School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, 402367, Taiwan
| | - Bor-Jen Lee
- Department of Internal Medicine, Tungs' Taichung Metro-Harbor Hospital, Taichung, 433402, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, 402367, Taiwan
| | - Po-Sheng Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, 402367, Taiwan.,Graduate Program in Nutrition, Chung Shan Medical University, Taichung, 402367, Taiwan
| | - Han-Yu Hsiao
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taichung Veterans General Hospital, Taichung, 407204, Taiwan
| | - Li-Ping Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, 402367, Taiwan
| | - Chia-Hua Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, 402367, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung, 402367, Taiwan. .,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402367, Taiwan.
| |
Collapse
|
28
|
Dludla PV, Nyambuya TM, Orlando P, Silvestri S, Mxinwa V, Mokgalaboni K, Nkambule BB, Louw J, Muller CJF, Tiano L. The impact of coenzyme Q 10 on metabolic and cardiovascular disease profiles in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Endocrinol Diabetes Metab 2020; 3:e00118. [PMID: 32318636 PMCID: PMC7170462 DOI: 10.1002/edm2.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS Coenzyme Q10 (CoQ10) is well known for its beneficial effects in cardiovascular disease (CVD); however, reported evidence has not been precisely synthesized to better inform on its impact in protecting against cardiovascular-related complications in diabetic patients. MATERIALS AND METHODOLOGY The current meta-analysis included randomized controlled trials published in the past 5 years reporting on the effect of CoQ10 on metabolic and CVD-related risk profiles in individuals with diabetes or metabolic syndrome. We searched electronic databases such as MEDLINE, Cochrane Library, Scopus and EMBASE for eligible studies. In addition to assessing the risk of bias and quality of evidence, the random and fixed-effect models were used to calculate the standardized mean difference and 95% confidence intervals for metabolic parameters and CVD outcomes. RESULTS Overall, 12 studies met the inclusion criteria, enrolling a total of 650 patients. Although CoQ10 supplementation did not statistically affect all metabolic profiles measured, it significantly reduced CVD-risk-related indexes such as total cholesterol and low-density lipoprotein (LDL) levels in diabetic patients when compared to those on placebo [SMD = 0.13, 95% CI (0.03; 0.23), Chi2 = 43.62 and I 2 = 29%, P = .07]. CONCLUSIONS The overall results demonstrated that supplementation with CoQ10 shows an enhanced potential to lower CVD risk in diabetic patients by reducing total cholesterol and LDL. Moreover, the beneficial effects of CoQ10 in lowering the CVD risk are associated with its ameliorative properties against oxidative stress and improving endothelial health.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilTygerbergSouth Africa
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of Health SciencesFaculty of Health and Applied SciencesNamibia University of Science and TechnologyWindhoekNamibia
| | - Patrick Orlando
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Sonia Silvestri
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Johan Louw
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilTygerbergSouth Africa
- Department of Biochemistry and MicrobiologyUniversity of ZululandKwaDlangezwaSouth Africa
| | - Christo J. F. Muller
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilTygerbergSouth Africa
- Department of Biochemistry and MicrobiologyUniversity of ZululandKwaDlangezwaSouth Africa
- Division of Medical PhysiologyFaculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Luca Tiano
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| |
Collapse
|
29
|
Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr 2020; 8:1766-1776. [PMID: 32328242 PMCID: PMC7174219 DOI: 10.1002/fsn3.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Some evidence exists in supporting the beneficial effects of coenzyme Q10 (CoQ10) on oxidative stress. Since the findings of studies over the impact of CoQ10 supplementation on oxidative stress are contradictory, this study was conducted. The aim was to evaluate CoQ10 supplementation effect on total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) levels using data collected from randomized controlled trials (RCTs). Several databases including PubMed, Web of Science, Google Scholar, and Scopus were comprehensively searched up to 23 January 2019 to identify RCTs. A random-effects model, standardized mean difference (SMD), and 95% confidence interval (CI) were applied for data analysis. According to the meta-analysis results on 19 eligible studies, CoQ10 increased the levels of TAC (SMD = 1.29; 95% CI = 0.35-2.23; p = .007), GPX (SMD = 0.45; 95% CI = 0.17-0.74; p = .002), SOD (SMD = 0.63; 95% CI = 0.29-0.97; p < .0001), and CAT (SMD = 1.67; 95% CI = 0.29-3.10; p = .018) significantly. This supplementation also caused a significant reduction in MDA levels (SMD = -1.12; 95% CI = -1.58 to -0.65; p < .0001). However, the results of SOD and CAT should be stated carefully due to the publication bias. In conclusion, this research indicated that CoQ10 supplementation had beneficial effects on oxidative stress markers. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zohreh Sadat Sangsefidi
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fatemeh Yaghoubi
- Department of BiochemistryShahid Sadoughi University of Medical SciencesYazdIran
| | - Salimeh Hajiahmadi
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
30
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
31
|
Ho CC, Tseng CY, Chen HW, Chiu YW, Tsai MC, Chang PS, Lin PT. Coenzyme Q10 status, glucose parameters, and antioxidative capacity in college athletes. J Int Soc Sports Nutr 2020; 17:5. [PMID: 31924223 PMCID: PMC6954618 DOI: 10.1186/s12970-020-0334-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/03/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Glycemia is related to energy production during exercise. Coenzyme Q10 is an antioxidant that participates in adenosine triphosphate synthesis in mitochondria. The aim of this study was to investigate the level of coenzyme Q10, glucose parameters, and antioxidant capacity in athletes. METHODS This study was designed as a cross-sectional study. Well-trained college athletes (n = 43) and age-gender matched healthy subjects (n = 25) were recruited from a college. The levels of glucose parameters, oxidative stress, antioxidant enzymes activity, Trolox equivalent antioxidant capacity (TAC), and coenzyme Q10 status were measured in the present study. RESULTS The athletes had a significantly lower level of white blood cells (WBC) coenzyme Q10 than the healthy subjects (0.34 ± 0.24 vs. 0.65 ± 0.43 nmol/g, p < 0.01); however, no significant difference was detected in plasma coenzyme Q10 between the two groups. Regarding the glucose parameters, the athletes had significantly higher values for HbA1c (5.5 ± 0.3 vs. 5.3 ± 0.3%, p < 0.05) and quantitative insulin sensitivity check index (QUICKI, 0.37 ± 0.03 vs. 0.34 ± 0.03, p < 0.05), and lower homeostatic model assessment-insulin resistance (HOMA-IR, 1.5 ± 0.8 vs. 2.9 ± 3.8, p < 0.05) than the healthy subjects. A higher level of TAC was found in the athletes (serum, 5.7 ± 0.3 vs. 5.4 ± 0.2 mM Trolox; erythrocyte, 10.5 ± 0.6 vs. 10.0 ± 0.5 mM Trolox, p < 0.05). In addition, WBC coenzyme Q10 status was significantly correlated with catalase activity (r = 0.56, p < 0.01), GPx activity (r = 0.56, p < 0.01), serum TAC (r = 0.54, p < 0.01), fasting glucose (β = - 1.10, p < 0.01), HbA1c (β = - 0.82, p < 0.01), HOMA-IR (β = - 1.81, p < 0.01), and QUICK (β = 0.08, p < 0.01). CONCLUSIONS Athletes may suffer from a marginal coenzyme Q10 deficiency, and the level was related to glycemic control and antioxidant capacity. Further interventional studies are needed to clarify an adequate dose of coenzyme Q10 supplementation in athletes to optimize their coenzyme Q10 status and athletic performance or recovery during exercise.
Collapse
Affiliation(s)
- Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei, 24205, Taiwan.,Research and Development Center for Physical Education, Health and Information Technology, College of Education, Fu Jen Catholic University, New Taipei, 24205, Taiwan
| | - Ching-Yu Tseng
- Department of Physical Education, Fu Jen Catholic University, New Taipei, 24205, Taiwan
| | - Hung-Wun Chen
- Department of Nutrition, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Wen Chiu
- Department of Physical Education, Fu Jen Catholic University, New Taipei, 24205, Taiwan
| | - Ming-Chih Tsai
- Department of Physical Education, Fu Jen Catholic University, New Taipei, 24205, Taiwan
| | - Po-Sheng Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, 40201, Taiwan.,Graduate Program in Nutrition, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung, 40201, Taiwan. .,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|
32
|
Luo K, Yu JH, Quan Y, Shin YJ, Lee KE, Kim HL, Ko EJ, Chung BH, Lim SW, Yang CW. Therapeutic potential of coenzyme Q 10 in mitochondrial dysfunction during tacrolimus-induced beta cell injury. Sci Rep 2019; 9:7995. [PMID: 31142763 PMCID: PMC6541596 DOI: 10.1038/s41598-019-44475-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
We previously reported that oxidative stress induced by long-term tacrolimus treatment impairs mitochondrial function in pancreatic beta cells. In this study, we aimed to investigate the therapeutic potential of coenzyme Q10, which is known to be a powerful antioxidant, in mitochondrial dysfunction in tacrolimus-induced diabetic rats. In a rat model of tacrolimus-induced diabetes mellitus, coenzyme Q10 treatment improved pancreatic beta cell function. The administration of coenzyme Q10 improved insulin immunoreactivity within islets, which was accompanied by reductions in oxidative stress and apoptosis. Assessment of the mitochondrial ultrastructure by electron microscopy revealed that coenzyme Q10 treatment increased the size, number, and volume of mitochondria, as well as the number of insulin granules compared with that induced by tacrolimus treatment alone. An in vitro study using a pancreatic beta cell line showed that tacrolimus treatment increased apoptosis and the production of mitochondrial reactive oxygen species, while cotreatment with coenzyme Q10 effectively attenuated these alterations. At the subcellular level, tacrolimus-induced impairment of mitochondrial respiration was significantly improved by coenzyme Q10, as evidenced by the increased mitochondrial oxygen consumption and ATP production. Our data indicate that coenzyme Q10 plays an important role in reducing tacrolimus-induced oxidative stress and protects the mitochondria in pancreatic beta cells. These findings suggest that supplementation with coenzyme Q10 has beneficial effects in tacrolimus-induced diabetes mellitus.
Collapse
Affiliation(s)
- Kang Luo
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Yu
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Korea
| | - Yi Quan
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Shin
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Korea
| | - Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea. .,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Mantle D, Hargreaves I. Coenzyme Q10 and Degenerative Disorders Affecting Longevity: An Overview. Antioxidants (Basel) 2019; 8:antiox8020044. [PMID: 30781472 PMCID: PMC6406788 DOI: 10.3390/antiox8020044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Longevity is determined by a number of factors, including genetic, environmental and lifestyle factors. A major factor affecting longevity is the development of degenerative disorders such as cardiovascular disease, diabetes, kidney disease and liver disease, particularly where these occur as co-morbidities. In this article, we review the potential role of supplementation with coenzyme Q10 (CoQ10) for the prevention or management of these disorders. Thus, randomised controlled clinical trials have shown supplementation with CoQ10 or CoQ10 plus selenium reduces mortality by approximately 50% in patients with cardiovascular disease, or in the normal elderly population, respectively. Similarly, CoQ10 supplementation improves glycaemic control and vascular dysfunction in type II diabetes, improves renal function in patients with chronic kidney disease, and reduces liver inflammation in patients with non-alcoholic fatty liver disease. The beneficial role of supplemental CoQ10 in the above disorders is considered to result from a combination of its roles in cellular energy generation, as an antioxidant and as an anti-inflammatory agent.
Collapse
Affiliation(s)
- David Mantle
- Pharma Nord (UK) Ltd., Telford Court, Morpeth, NE61 2DB Northumberland, UK.
| | - Iain Hargreaves
- School of Pharmacy, Liverpool John Moores University, L3 5UA Liverpool, UK.
| |
Collapse
|
34
|
Fallah M, Askari G, Soleimani A, Feizi A, Asemi Z. Clinical Trial of the Effects of Coenzyme Q10 Supplementation on Biomarkers of Inflammation and Oxidative Stress in Diabetic Hemodialysis Patients. Int J Prev Med 2019; 10:12. [PMID: 30774846 PMCID: PMC6360842 DOI: 10.4103/ijpvm.ijpvm_418_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/01/2018] [Indexed: 11/04/2022] Open
Abstract
Background The aim of the study was to determine the effects of coenzyme Q10 (CoQ10) supplementation on biomarkers of inflammation and oxidative stress among diabetic hemodialysis (HD) patients. Methods Sixty diabetic HD patients participated in the randomized, double blind, placebo-controlled clinical trial. They were randomly assigned into two groups to intake either 60 mg CoQ10 supplements (n = 30) or placebo (n = 30) twice a day for 12 weeks. Results After 12 weeks of intervention, CoQ10 supplementation significantly increased total antioxidant (TAC) (54.921 ± 26.437 vs. -126.781 ± 26.437, P < 0.001) and nitric oxide (NO) levels (4.121 ± 1.314 vs. -1.427 ± 1.314, P = 0.006) and decreased C-reactive protein (CRP) (-1.302 ± 0.583 vs. 0.345 ± 0.583, 0.042) levels compared with the placebo. We did not observe any significant effect of CoQ10 supplementation on malondialdehyde (MDA) and glutathione (GSH) levels compared with the placebo. Conclusions Overall, our study showed that CoQ10 supplementation to diabetic HD patients for 12 weeks was associated with increased levels of TAC and NO levels and decreased level of high-sensitivity CRP (hs-CRP) levels, but did not have any beneficial effects on MDA and GSH.
Collapse
Affiliation(s)
- Melika Fallah
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Awat Feizi
- Isfahan Endocrine and Metabolism Research Center, Isfahan, Iran.,Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|