1
|
Wei F, Wu X, Wang H, Zhang Y, Xie L. Methimazole disrupted skeletal ossification and muscle fiber transition in Bufo gargarizans larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117684. [PMID: 39793290 DOI: 10.1016/j.ecoenv.2025.117684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Methimazole (MMI) is an emerging endocrine disrupting chemical (EDC) due to its increasing use in the treatment of thyrotoxicosis (hyperthyroidism), but its potential impact on amphibian development remains largely unexplored. In the present study, the effects of 8 mg/L MMI and 1 μg/L thyroxine (T4) exposure on skeletal ossification and muscle development in Bufo gargarizans tadpoles were comprehensively investigated by double skeletal staining, histological analysis and RNA sequencing. Our results indicated that MMI treatment down-regulated the expression levels of ossification-related genes (e.g., BMPs, MMPs, and Wnt9a) in cartilage, thereby delaying chondrocyte apoptosis and inhibiting hindlimb ossification. Muscle sarcomere was elongated in both the MMI and T4 treatment groups, which may lead to muscle weakness and consequently affect land motion. Additionally, we evaluated the expression levels of fast muscle-related genes (TNNI2 and TNNT3) and slow muscle-related genes (TNNI1 and TNNT1), revealing an opposite trend in the transition from fast to slow muscle after T4 and MMI exposures. In conclusion, these findings fill the data gap regarding MMI contamination in aquatic environments by revealing the negative effects of MMI on amphibian bone and muscle development. Future studies should address the toxicity of EDCs to wildlife and inform aquatic ecosystem conservation strategies.
Collapse
Affiliation(s)
- Fei Wei
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China; College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xueyi Wu
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yongpu Zhang
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China.
| | - Lei Xie
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China.
| |
Collapse
|
2
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
3
|
Khan MZ, Chen W, Huang B, Liu X, Wang X, Liu Y, Chai W, Wang C. Advancements in Genetic Marker Exploration for Livestock Vertebral Traits with a Focus on China. Animals (Basel) 2024; 14:594. [PMID: 38396562 PMCID: PMC10885964 DOI: 10.3390/ani14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | | | | | | | | | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
4
|
Hower CC, Minaev AA, Amundson LA, Crenshaw TD, Henak CR. Effect of mineral diets on the development of cartilage material properties. J Biomech 2023; 157:111708. [PMID: 37423118 DOI: 10.1016/j.jbiomech.2023.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Vitamin D and minerals, including zinc (Zn) and manganese (Mn), are vital in the development of bones, but their roles in the development of articular cartilage material behavior are not well understood. In this study, articular cartilage material properties from a hypovitaminosis D porcine model were evaluated. Pigs were produced by sows fed vitamin D deficient diets during gestation and lactation, and the offspring were subsequently fed vitamin D deficient diets for 3 weeks during the nursery period. Pigs were then assigned to dietary treatment groups with inorganic minerals only or inorganic plus organic (chelated) minerals. Humeral heads were harvested from pigs at 24 weeks of age. Linear elastic modulus and dissipated energy were measured under compression to 15% engineering strain at 1 Hz. Anatomical location within the humeral head affected elastic modulus. Diet significantly affected linear modulus and dissipated energy. The largest modulus and highest energy dissipation was in the inorganic zinc and manganese group; the lowest modulus and the least energy dissipation was in the organic (chelated) zinc and manganese group. Pairwise results between the control group and all vitamin D deficient groups were not statistically significant. Overall, these results suggest that mineral availability during rapid growth subsequent to a vitamin-D deficiency during gestation and lactation had minimal effects on articular cartilage material properties in young growing pigs. Though not statistically significant, some of the numerical differences between mineral sources suggest the potential importance of mineral availability during cartilage formation and warrant further study.
Collapse
Affiliation(s)
- Charles C Hower
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexey A Minaev
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura A Amundson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States; Research and Discovery, Zinpro Corporation, Eden Prairie, MN, United States
| | - Thomas D Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Corinne R Henak
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
5
|
Jiang TM. Unveiling the Time Course Mechanism of Bone Fracture Healing by Transcriptional Profiles. Comb Chem High Throughput Screen 2023; 26:149-162. [PMID: 35418283 DOI: 10.2174/1386207325666220412134311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bone fracture healing is a time-consuming and high-priority orthopedic problem worldwide. OBJECTIVE Discovering the potential mechanism of bone healing at a time course and transcriptional level may better help manage bone fracture. METHODS In this study, we analyze a time-course bone fracture healing transcriptional dataset in a rat model (GSE592, GSE594, and GSE1371) of Gene Expression Omnibus (GEO). RNA was obtained from female Sprague-Dawley rats with a femoral fracture at the initial time (day 3) as well as early (week 1), middle (week 2), and late (week 4) time periods, with nonfracture rats used as control. Gene Ontology (GO) functional analysis and pathway examinations were performed for further measurements of GSEA and hub genes. RESULTS Results indicated that the four stages of bone fracture healing at the initial, early, middle, and late time periods represent the phases of hematoma formation, callus formation, callus molding, and mature lamellar bone formation, respectively. Extracellular organization was positively employed throughout the four stages. At the hematoma formation phase, the muscle contraction process was downregulated. Antibacterial peptide pathway was downregulated at all phases. The upregulation of Fn1 (initial, early, middle, and late time periods), Col3a1 (initial, early, and middle time periods), Col11a1 (initial and early time periods), Mmp9 (middle and late time periods), Mmp13 (early, middle, and late time periods) and the downregulation of RatNP-3b (initial, early, middle, and late time periods) were possible symbols for bone fracture healing and may be used as therapeutic targets. CONCLUSION These findings suggest some new potential pathways and genes in the process of bone fracture healing and further provide insights that can be used in targeted molecular therapy for bone fracture healing.
Collapse
Affiliation(s)
- Tong-Meng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Dong W, Postlethwaite BC, Wheller PA, Brand D, Jiao Y, Li W, Myers LK, Gu W. Beta-caryophyllene prevents the defects in trabecular bone caused by Vitamin D deficiency through pathways instated by increased expression of klotho. Bone Joint Res 2022; 11:528-540. [PMID: 35920089 PMCID: PMC9396919 DOI: 10.1302/2046-3758.118.bjr-2021-0392.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aims This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. Methods A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay. Results Under these conditions, the D-deficient diet enhanced the length of femur and tibia bones (p < 0.050), and increased bone volume (BV; p < 0.010) and trabecular bone volume fraction (BV/TV; p < 0.010) compared to D+ diet. With a diet containing BCP, the mice exhibited higher BV and bone mineral density (BMD; p < 0.050) than control group. The trabecular and cortical bone were also affected by vitamin D and BCP. In addition, inclusion of dietary BCP improved the serum concentrations of klotho (p < 0.050). In mice, klotho regulates the expression level of cannabinoid type 2 receptor (Cnr2) and fibroblast growth factor 23 (Fgf23) through CD300a. In humans, data suggest that klotho is connected to BMD. The expression of klotho is also associated with bone markers. Conclusion These data indicate that BCP enhances the serum level of klotho, leading to improved bone properties and mineralization in an experimental mouse model. Cite this article: Bone Joint Res 2022;11(8):528–540.
Collapse
Affiliation(s)
- Wei Dong
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bradley C Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patricia A Wheller
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Yan Jiao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Linda K Myers
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Gozalo-Marcilla M, Buntjer J, Johnsson M, Batista L, Diez F, Werner CR, Chen CY, Gorjanc G, Mellanby RJ, Hickey JM, Ros-Freixedes R. Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds. Genet Sel Evol 2021; 53:76. [PMID: 34551713 PMCID: PMC8459476 DOI: 10.1186/s12711-021-00671-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Background Backfat thickness is an important carcass composition trait for pork production and is commonly included in swine breeding programmes. In this paper, we report the results of a large genome-wide association study for backfat thickness using data from eight lines of diverse genetic backgrounds. Methods Data comprised 275,590 pigs from eight lines with diverse genetic backgrounds (breeds included Large White, Landrace, Pietrain, Hampshire, Duroc, and synthetic lines) genotyped and imputed for 71,324 single-nucleotide polymorphisms (SNPs). For each line, we estimated SNP associations using a univariate linear mixed model that accounted for genomic relationships. SNPs with significant associations were identified using a threshold of p < 10–6 and used to define genomic regions of interest. The proportion of genetic variance explained by a genomic region was estimated using a ridge regression model. Results We found significant associations with backfat thickness for 264 SNPs across 27 genomic regions. Six genomic regions were detected in three or more lines. The average estimate of the SNP-based heritability was 0.48, with estimates by line ranging from 0.30 to 0.58. The genomic regions jointly explained from 3.2 to 19.5% of the additive genetic variance of backfat thickness within a line. Individual genomic regions explained up to 8.0% of the additive genetic variance of backfat thickness within a line. Some of these 27 genomic regions also explained up to 1.6% of the additive genetic variance in lines for which the genomic region was not statistically significant. We identified 64 candidate genes with annotated functions that can be related to fat metabolism, including well-studied genes such as MC4R, IGF2, and LEPR, and more novel candidate genes such as DHCR7, FGF23, MEDAG, DGKI, and PTN. Conclusions Our results confirm the polygenic architecture of backfat thickness and the role of genes involved in energy homeostasis, adipogenesis, fatty acid metabolism, and insulin signalling pathways for fat deposition in pigs. The results also suggest that several less well-understood metabolic pathways contribute to backfat development, such as those of phosphate, calcium, and vitamin D homeostasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00671-w.
Collapse
Affiliation(s)
- Miguel Gozalo-Marcilla
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Jaap Buntjer
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Martin Johnsson
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lorena Batista
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Federico Diez
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | - Ching-Yi Chen
- The Pig Improvement Company, Genus plc, Hendersonville, TN, USA
| | - Gregor Gorjanc
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - John M Hickey
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Roger Ros-Freixedes
- The Roslin Institute, The University of Edinburgh, Midlothian, UK. .,Departament de Ciència Animal, Universitat de Lleida - Agrotecnio-CERCA Center, Lleida, Spain.
| |
Collapse
|
8
|
Amundson LA, Crenshaw TD. Lessons learned from the hypovitaminosis D kyphotic pig model. J Anim Sci 2020; 98:S52-S57. [PMID: 32810238 DOI: 10.1093/jas/skaa146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Laura A Amundson
- Department of Animal Sciences, University of Wisconsin Madison, Madison, WI.,Research and Nutritional Services, Zinpro Corporation, Eden Prairie, MN
| | - Thomas D Crenshaw
- Department of Animal Sciences, University of Wisconsin Madison, Madison, WI
| |
Collapse
|
9
|
Circular RNA circ_001621 promotes osteosarcoma cells proliferation and migration by sponging miR-578 and regulating VEGF expression. Cell Death Dis 2020; 11:18. [PMID: 31907361 PMCID: PMC6944700 DOI: 10.1038/s41419-019-2204-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022]
Abstract
Strategies targeted vascular endothelial growth factor (VEGF)-dependent osteosarcoma progression are limited although important progress has been made in illustrating the mechanisms. Here we identified circ_001621 as one of the significantly upregulated circular RNAs (circRNAs) by circRNAs microarrays. We found that patients with high circ_001621 expression had a shorter survival time. Moreover, we found several potential sponge micro RNAs (miRNA) of circ_001621 with Circular RNA Interactome database. Among the candidate sponge, we elucidated the association of circ_001621 and miR-578. In addition, we demonstrated that miR-578 targeted circ_001621 directly. Functionally, we set up the experimental system to investigate the effects of circ_001621/miR-578/VEGF interaction in vitro and in vivo. Results indicated circ_001621-promoted osteosarcoma proliferation and migration via attenuating the inhibition of cyclin-dependent kinase 4 (CDK4) and matrix metallopeptidase 9 (MMP9) by miR-578, respectively. Nude mice experiment was further performed to estimate the promotion of metastasis by circ_001621. The present study evaluated the mechanisms underlying circ_001621 enhanced osteosarcoma progression and provided novel therapeutic targets for advanced osteosarcoma.
Collapse
|
10
|
McCue M, Reichert JL, Crenshaw TD. Impact of dietary vitamin D3 supplements in nursery diets on subsequent growth and bone responses of pigs during an immune challenge. J Anim Sci 2019; 97:4895-4903. [PMID: 31701141 PMCID: PMC6915220 DOI: 10.1093/jas/skz347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Limited evidence is available to validate beneficial responses from extra nutrient supplements for mediation of growth suppression that results from immune challenges. Extrarenal roles of vitamin D metabolites in immune function implicate vitamin D3 supplements as a nutrient for potential beneficial effects. The current objective was to assess growth and bone ash responses to dietary vitamin D3 (D) supplements for growing pigs undergoing an immune challenge. At weaning, 216 crossbred pigs (4 pigs/pen, 6 pens/treatment) were randomly allotted within sex and weight blocks to 1 of the 9 treatments. Treatments included D supplements (0, 100, or 800 IU/kg) in a factorial arrangement with 3 vaccine (V) protocols; no injection (0 × V), a single 2 mL injection of a Lawsonia intracellularis vaccine at day 14 (1 × V), or 2 mL injections of the same vaccine at days 0 and 7 (2 × V). An adjustment diet with no supplemental D was fed for 1 wk, then assigned D diets for 2 wk (P2). After P2, all pigs were phase-fed standard diets (D = 280 IU/kg) to assess subsequent growth to 115 kg. No differences due to D supplements or vaccination protocol were detected in ADG (0.233 ± 0.021 kg/d) or GF (0.642 ± 0.028 kg/d) over the 21-d nursery trial; however, ADFI was lower (P < 0.10) in pigs fed D levels of 0 vs. 100 and 800 (0.340 vs. 0.375, 0.372 ± 0.027 kg/d). Bone mineral content (g) from whole-body dual energy X-ray absorptiometry scans at 9 wk (n = 4 pigs/treatment) was lower in pigs fed 0 vs. 100 and 800 IU of D (287 vs. 325, 323 ± 34.1 g/pig). Growth from nursery to 115 kg was lower (P < 0.01) in pigs fed D levels of 0 vs.100 and 800 (0.828 vs. 0.876, 0.889 ± 0.021 kg/d). At market, approximately two-thirds of pigs showed positive L. intracellularis serology titers regardless of treatment. Limited evidence for D-mediation of an immune challenge using the vaccination protocols may be a consequence of limited vaccine effects on growth in the nursery and seroconversion of most pigs to L. intracellularis by market.
Collapse
Affiliation(s)
- Morgan McCue
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| | - Jamie L Reichert
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| | - Thomas D Crenshaw
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|