1
|
Yang ZH, Gorusupudi A, Lydic TA, Mondal AK, Sato S, Yamazaki I, Yamaguchi H, Tang J, Rojulpote KV, Lin AB, Decot H, Koch H, Brock DC, Arunkumar R, Shi ZD, Yu ZX, Pryor M, Kun JF, Swenson RE, Swaroop A, Bernstein PS, Remaley AT. Dietary fish oil enriched in very-long-chain polyunsaturated fatty acid reduces cardiometabolic risk factors and improves retinal function. iScience 2023; 26:108411. [PMID: 38047069 PMCID: PMC10692724 DOI: 10.1016/j.isci.2023.108411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Very-long-chain polyunsaturated fatty acids (VLCPUFAs; C24-38) constitute a unique class of PUFA that have important biological roles, but the lack of a suitable dietary source has limited research in this field. We produced an n-3 C24-28-rich VLCPUFA-oil concentrated from fish oil to study its bioavailability and physiological functions in C57BL/6J mice. The serum and retinal C24:5 levels increased significantly compared to control after a single-dose gavage, and VLCPUFAs were incorporated into the liver, brain, and eyes after 8-week supplementation. Dietary VLCPUFAs resulted in favorable cardiometabolic changes, and improved electroretinography responses and visual performance. VLCPUFA supplementation changed the expression of genes involved in PPAR signaling pathways. Further in vitro studies demonstrated that the VLCPUFA-oil and chemically synthesized C24:5 are potent agonists for PPARs. The multiple potential beneficial effects of fish oil-derived VLCPUFAs on cardiometabolic risk and eye health in mice support future efforts to develop VLCPUFA-oil into a supplemental therapy.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Todd A. Lydic
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Anupam K. Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Seizo Sato
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Isao Yamazaki
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Hideaki Yamaguchi
- Central Research Laboratory, Nissui Corporation, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan
| | - Jingrong Tang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krishna Vamsi Rojulpote
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna B. Lin
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Decot
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Koch
- Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel C. Brock
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Julia F. Kun
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Torrissen M, Ytteborg E, Svensen H, Stoknes I, Nilsson A, Østbye TK, Berge GM, Bou M, Ruyter B. Investigation of the functions of n-3 very-long-chain PUFAs in skin using in vivo Atlantic salmon and in vitro human and fish skin models. Br J Nutr 2023; 130:1915-1931. [PMID: 37169355 PMCID: PMC10630148 DOI: 10.1017/s0007114523001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
The purpose of this study was to investigate the effect of dietary n-3 very-long-chain PUFA (n-3 VLC-PUFA) on the maturation and development of skin tissue in juvenile Atlantic salmon (Salmo salar) in vivo, as well as their effects on skin keratocyte and human skin fibroblast cell migration in vitro. Atlantic salmon were fed different dietary levels of n-3 VLC-PUFA from an initial weight of 6 g to a final weight of 11 g. Changes in skin morphology were analysed at two time points during the experiment, and the effects on skin tissue fatty acid composition were determined. Additionally, in vitro experiments using human dermal fibroblasts and primary Atlantic salmon keratocytes were conducted to investigate the effect of VLC-PUFA on the migration capacity of the cells. The results demonstrated that increased dietary levels of n-3 VLC-PUFA led to an increased epidermis thickness and more rapid scale maturation in Atlantic salmon skin in vivo, leading to a more mature skin morphology, and possibly more robust skin, at an earlier life stage. Additionally, human skin fibroblasts and salmon skin keratocytes supplemented with n-3 VLC-PUFA in vitro showed more rapid migration, indicating potentially beneficial effects of VLC-PUFA in wound healing. In conclusion, VLC-PUFA may have beneficial effects on skin tissue development, function and integrity.
Collapse
Affiliation(s)
- Martina Torrissen
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
- Epax Norway, 6006Ålesund, Norway
- NMBU (Norwegian University of Life Sciences), 1433Ås, Norway
| | - Elisabeth Ytteborg
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | | | | | - Astrid Nilsson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Gerd Marit Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432Ås, Norway
- NMBU (Norwegian University of Life Sciences), 1433Ås, Norway
| |
Collapse
|
3
|
Nwagbo U, Bernstein PS. Understanding the Roles of Very-Long-Chain Polyunsaturated Fatty Acids (VLC-PUFAs) in Eye Health. Nutrients 2023; 15:3096. [PMID: 37513514 PMCID: PMC10383069 DOI: 10.3390/nu15143096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Lipids serve many roles in the neural system, from synaptic stabilization and signaling to DNA regulation and neuroprotection. They also regulate inflammatory responses, maintain cellular membrane structure, and regulate the homeostatic balance of ions and signaling molecules. An imbalance of lipid subgroups is implicated in the progression of many retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, and diet can play a key role in influencing these diseases' onset, progression, and severity. A special class of lipids termed very-long-chain polyunsaturated fatty acids (VLC-PUFAs) is found exclusively in mammalian vertebrate retinas and a few other tissues. They comprise <2% of fatty acids in the retina and are depleted in the retinas of patients with diseases like diabetic retinopathy and AMD. However, the implications of the reduction in VLC-PUFA levels are poorly understood. Dietary supplementation studies and ELOVL4 transgene studies have had positive outcomes. However, much remains to be understood about their role in retinal health and the potential for targeted therapies against retinal disease.
Collapse
Affiliation(s)
- Uzoamaka Nwagbo
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S. Bernstein
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
4
|
Lutfi E, Berge GM, Bæverfjord G, Sigholt T, Bou M, Larsson T, Mørkøre T, Evensen Ø, Sissener NH, Rosenlund G, Sveen L, Østbye TK, Ruyter B. Increasing dietary levels of the n-3 long-chain PUFA, EPA and DHA, improves the growth, welfare, robustness and fillet quality of Atlantic salmon in sea cages. Br J Nutr 2023; 129:10-28. [PMID: 35236527 PMCID: PMC9816656 DOI: 10.1017/s0007114522000642] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
The present study evaluated the effects of increasing the dietary levels of EPA and DHA in Atlantic salmon (Salmo salar) reared in sea cages, in terms of growth performance, welfare, robustness and overall quality. Fish with an average starting weight of 275 g were fed one of four different diets containing 10, 13, 16 and 35 g/kg of EPA and DHA (designated as 1·0, 1·3, 1·6 and 3·5 % EPA and DHA) until they reached approximately 5 kg. The 3·5 % EPA and DHA diet showed a significantly beneficial effect on growth performance and fillet quality compared with all other diets, particularly the 1 % EPA and DHA diet. Fish fed the diet containing 3·5 % EPA and DHA showed 400-600 g higher final weights, improved internal organ health scores and external welfare indicators, better fillet quality in terms of higher visual colour score and lower occurrence of dark spots and higher EPA and DHA content in tissues at the end of the feeding trial. Moreover, fish fed the 3·5 % EPA and DHA diet showed lower mortality during a naturally occurring cardiomyopathy syndrome outbreak, although this did not reach statistical significance. Altogether, our findings emphasise the importance of dietary EPA and DHA to maintain good growth, robustness, welfare and fillet quality of Atlantic salmon reared in sea cages.
Collapse
Affiliation(s)
- Esmail Lutfi
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | | | | | | | - Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Thomas Larsson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Turid Mørkøre
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Lene Sveen
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), ÅsN-1432, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Kyselová L, Vítová M, Řezanka T. Very long chain fatty acids. Prog Lipid Res 2022; 87:101180. [PMID: 35810824 DOI: 10.1016/j.plipres.2022.101180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Very long chain fatty acids (VLCFAs) are important components of various lipid classes in most organisms, from bacteria to higher plants and mammals, including humans. VLCFAs, or very long chain polyunsaturated fatty acids (VLCPUFAs), can be defined as fatty acids with 23 or more carbon atoms in the molecule. The main emphasis in this review is on the analysis of these acids, including obtaining standards from natural sources or their synthesis. Furthermore, the occurrence and analysis of these compounds in both lower (bacteria, invertebrates) and higher organisms (flowering plants or mammals) are discussed in detail. Attention is paid to their biosynthesis, especially the elongation of very long chain fatty acids protein (ELOVL4). This review deals with papers describing these very interesting compounds, whose chemical, biochemical and biological properties have not been fully explored.
Collapse
Affiliation(s)
- Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic.
| | - Milada Vítová
- Institute of Botany, Czech Academy of Sciences, Centre for Phycology, Dukelská 135, 379 01 Třeboň, Czech Republic.
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|