1
|
Suchanecka M, Grzelak J, Farzaneh M, Azizidoost S, Dari MAG, Józkowiak M, Data K, Domagała D, Niebora J, Kotrych K, Czerny B, Kamiński A, Torlińska-Walkowiak N, Bieniek A, Szepietowski J, Piotrowska-Kempisty H, Dzięgiel P, Mozdziak P, Kempisty B. Adipose derived stem cells - Sources, differentiation capacity and a new target for reconstructive and regenerative medicine. Biomed Pharmacother 2025; 186:118036. [PMID: 40194335 DOI: 10.1016/j.biopha.2025.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells (MSCs) derived from adipose tissue with mesenchymal lineage differentiation potential and remarkable potential in regenerative medicine. ADSCs are easily sourced from adipose tissue, share regenerative characteristics akin to other MSCs. Their convenient adherence to plastic culture flasks, coupled with their capacity for in vitro expansion and multi-lineage differentiation, underscores their promise as a robust tool for tissue repair and enhancement. The accessibility of human adipose tissue and the development of minimally invasive isolation protocols have further propelled the autologous use of ADSCs, fueling excitement in both organ repair and regenerative medicine. Consequently, research in ADSCsis experiencing rapid growth. A detailed overview of the current landscape of ADSCs isolation and differentiation capacity including the latest advancements in ADSCs usage, encompassing ongoing clinical investigations are important considerations to understand their potential to shape the landscape of regenerative medicine.
Collapse
Affiliation(s)
- Małgorzata Suchanecka
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznań 61-631, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Katarzyna Kotrych
- Department of General and Dental Radiology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin 70-111, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, Szczecin 71-230, Poland; Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, Plewiska 62-064, Poland
| | - Adam Kamiński
- Department of Pediatric Orthopedics and Musculosceletal Oncology, Pomeranian Medical University
| | | | - Andrzej Bieniek
- University Center for General and Oncological Dermatology, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Jacek Szepietowski
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland; Department of Dermato-Venereology, 4th Military Hospital, Wroclaw, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznań 61-631, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno 625 00, Czech Republic; Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Chen C, Zhang D, Ye M, You Y, Song Y, Chen X. Effects of various exercise types on inflammatory response in individuals with overweight and obesity: a systematic review and network meta-analysis of randomized controlled trials. Int J Obes (Lond) 2025; 49:214-225. [PMID: 39420086 DOI: 10.1038/s41366-024-01649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To explore effective exercise types for reducing chronic inflammation in individuals with overweight and obesity (IOO) while accounting for confounders. METHODS A systematic search for RCTs in English between January 2000 and August 2023 was conducted to evaluating exercise effects on inflammatory biomarkers in IOO. A network meta-analysis conducted. RESULTS A total of 123 RCTs were analyzed. Different exercise type yielded distinct effects on various inflammatory biomarkers. Specifically, aerobic exercise combined with resistance training (COM) and aerobic exercise (AE) were the most effective for improving leptin levels. AE exhibited the greatest effectiveness in reducing CRP and increasing adiponectin. High-intensity interval training (HIIT) was identified as the most effective exercise modality for ameliorating IL-6, TNF-α, and IL-10. Resistance training (RT) had the least effect compared to other exercise types. Meta regression and subgroup analyses revealed that high-intensity AE demonstrated a greater effect size compared to moderate-intensity AE. The impact of AE on IL-10 was positively associated with both the training period and the age of participants. Positive correlations were observed between reductions in body fat and the effect sizes of CRP, TNF-α, and IL-10. Gender influenced AE effects on IL-6 and TNF-α, with females responding better. CONCLUSION This study highlights the potential of exercise in alleviating the inflammatory status in IOO, with different exercise types showing various effects on specific inflammatory biomarkers. The intensity and duration of exercise had a dose-response relationship with intervention effectiveness. Changes in body composition correlated with the effectiveness of the intervention. COM, AE, and HIIT are recommended exercise approaches.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Physical Education, Tsinghua University, 100084, Beijing, China
| | - Dong Zhang
- Institute of Sports Artificial Intelligence, Capital University of Physical Education and Sports, 100084, Beijing, China
| | - Mingyi Ye
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yanwei You
- Department of Physical Education, Tsinghua University, 100084, Beijing, China
| | - Yiling Song
- Department of Physical Education, Tsinghua University, 100084, Beijing, China
| | - Xiaoke Chen
- Department of Physical Education, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
3
|
Lai X, Liu S, Miao J, Shen R, Wang Z, Zhang Z, Gong H, Li M, Pan Y, Wang Q. Eubacterium siraeum suppresses fat deposition via decreasing the tyrosine-mediated PI3K/AKT signaling pathway in high-fat diet-induced obesity. MICROBIOME 2024; 12:223. [PMID: 39478562 PMCID: PMC11526712 DOI: 10.1186/s40168-024-01944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Obesity in humans can lead to chronic diseases such as diabetes and cardiovascular disease. Similarly, subcutaneous fat (SCF) in pigs affects feed utilization, and excessive SCF can reduce the feed efficiency of pigs. Therefore, identifying factors that suppress fat deposition is particularly important. Numerous studies have implicated the gut microbiome in pigs' fat deposition, but research into its suppression remains scarce. The Lulai black pig (LL) is a hybrid breed derived from the Laiwu pig (LW) and the Yorkshire pig, with lower levels of SCF compared to the LW. In this study, we focused on these breeds to identify microbiota that regulate fat deposition. The key questions were: Which microbial populations reduce fat in LL pigs compared to LW pigs, and what is the underlying regulatory mechanism? RESULTS In this study, we identified four different microbial strains, Eubacterium siraeum, Treponema bryantii, Clostridium sp. CAG:413, and Jeotgalibaca dankookensis, prevalent in both LW and LL pigs. Blood metabolome analysis revealed 49 differential metabolites, including tanshinone IIA and royal jelly acid, known for their anti-adipogenic properties. E. siraeum was strongly correlated with these metabolites, and its genes and metabolites were enriched in pathways linked to fatty acid degradation, glycerophospholipid, and glycerolipid metabolism. In vivo mouse experiments confirmed that E. siraeum metabolites curb weight gain, reduce SCF adipocyte size, increase the number of brown adipocytes, and regulate leptin, IL-6, and insulin secretion. Finally, we found that one important pathway through which E. siraeum inhibits fat deposition is by suppressing the phosphorylation of key proteins in the PI3K/AKT signaling pathway through the reduction of tyrosine. CONCLUSIONS We compared LW and LL pigs using fecal metagenomics, metabolomics, and blood metabolomics, identifying E. siraeum as a strain linked to fat deposition. Oral administration experiments in mice demonstrated that E. siraeum effectively inhibits fat accumulation, primarily through the suppression of the PI3K/AKT signaling pathway, a critical regulator of lipid metabolism. These findings provide a valuable theoretical basis for improving pork quality and offer insights relevant to the study of human obesity and related chronic metabolic diseases. Video Abstract.
Collapse
Affiliation(s)
- Xueshuang Lai
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Shuang Liu
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Jian Miao
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Ran Shen
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhen Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Huanfa Gong
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Meng Li
- Jinan Laiwu Pig Industry Technology Research Institute Co., Ltd, Jinan, 271100, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan Institute, Zhejiang University, Sanya, 310014, PR China.
| | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan Institute, Zhejiang University, Sanya, 310014, PR China.
| |
Collapse
|
4
|
Arias C, Álvarez-Indo J, Cifuentes M, Morselli E, Kerr B, Burgos PV. Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. Biol Res 2024; 57:51. [PMID: 39118171 PMCID: PMC11312694 DOI: 10.1186/s40659-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, 7500922, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
5
|
Hao X, Liu M, Zhang X, Yu H, Fang Z, Gao X, Chen M, Shao Q, Gao W, Lei L, Song Y, Li X, Liu G, Du X. Thioredoxin-2 suppresses hydrogen peroxide-activated nuclear factor kappa B signaling via alleviating oxidative stress in bovine adipocytes. J Dairy Sci 2024; 107:4045-4055. [PMID: 38246558 DOI: 10.3168/jds.2023-23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024]
Abstract
During the periparturient period, both oxidative stress, and inflammation of adipose tissue are considered high risk factors for metabolic disorder of dairy cows. Oxidative stress can activate transcription factor nuclear factor kappa B (NF-κB), which lead to the upregulation of genes involved in inflammatory pathways. Thioredoxin-2 (TXN2) is a mitochondrial protein that regulates cellular redox by suppressing mitochondrial reactive oxygen species (ROS) generation in nonruminant, whereas the function of TXN2 in bovine adipocytes was unclear. Thus, the objective of this study was to evaluate how or by which mechanisms TXN2 regulates oxidative stress and NF-κB signaling pathway in bovine adipocytes. Bovine pre-adipocytes isolated from 5 healthy Holstein cows were differentiated and used for (1) treatment with different concentrations of hydrogen peroxide (H2O2; 0, 25, 50, 100, 200, or 400 μM) for 2 h; (2) transfection with or without TXN2 small interfering RNA (si-TXN2) for 48 h and then treated with or without 200 μM H2O2 for 2 h; (3) transfection with scrambled negative control siRNA (si-control) or si-TXN2 for 48 h, and then treatment with or without 10 mM N-acetylcysteine (NAC) for 2 h; (4) transfection with or without TXN2-overexpressing plasmid for 48 h and then treatment with or without 200 μM H2O2 for 2 h. High concentrations of H2O2 (200 and 400 μM) decreased protein and mRNA abundance of TXN2, reduced total antioxidant capacity (T-AOC) and ATP content in adipocytes. Moreover, 200 and 400 μM H2O2 reduced protein abundance of inhibitor of kappa B α (IκBα), increased phosphorylation of NF-κB and upregulated mRNA abundance of tumor necrosis factor-α (TNFA) and interleukin-1B (IL-1B), suggesting that H2O2-induced oxidative stress and activated NF-κB signaling pathway. Silencing of TXN2 increased intracellular ROS content, phosphorylation of NF-κB and mRNA abundance of TNFA and IL-1B, decreased ATP content and protein abundance of IκBα in bovine adipocytes. Knockdown of TXN2 aggravated H2O2-induced oxidative stress and inflammation. In addition, treatment with antioxidant NAC ameliorated oxidative stress and inhibited NF-κB signaling pathway in adipocytes transfected with si-TXN2. In bovine adipocytes treated with H2O2, overexpression of TXN2 reduced the content of ROS and elevated the content of ATP and T-AOC. Overexpression of TXN2 alleviated H2O2-induced inflammatory response in adipocytes, as demonstrated by decreased expression of phosphorylated NF-κB, TNFA, IL-1B, as well as increased expression of IκBα. Furthermore, the protein and mRNA abundance of TXN2 was lower in adipose tissue of dairy cows with clinical ketosis. Overall, our studies contribute to the understanding of the role of TXN2 in adipocyte oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Xue Hao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hao Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xinxing Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Meng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Guo S, Qing G, Chen Q, Yang G. The relationship between weight-adjusted-waist index and suicidal ideation: evidence from NHANES. Eat Weight Disord 2024; 29:37. [PMID: 38743203 PMCID: PMC11093856 DOI: 10.1007/s40519-024-01666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Amidst growing evidence of the intricate link between physical and mental health, this study aims to dissect the relationship between the waist-to-weight index (WWI) and suicidal ideation within a representative sample of the US population, proposing WWI as a novel metric for suicide risk assessment. METHODS The study engaged a sample of 9500 participants in a cross-sectional design. It employed multivariate logistic and linear regression analyses to probe the association between WWI and suicidal ideation. It further examined potential nonlinear dynamics using a weighted generalized additive model alongside stratified analyses to test the relationship's consistency across diverse demographic and health variables. RESULTS Our analysis revealed a significant positive correlation between increased WWI and heightened suicidal ideation, characterized by a nonlinear relationship that persisted in the adjusted model. Subgroup analysis sustained the association's uniformity across varied population segments. CONCLUSIONS The study elucidates WWI's effectiveness as a predictive tool for suicidal ideation, underscoring its relevance in mental health evaluations. By highlighting the predictive value of WWI, our findings advocate for the integration of body composition considerations into mental health risk assessments, thereby broadening the scope of suicide prevention strategies.
Collapse
Affiliation(s)
- Shijie Guo
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Guangwei Qing
- Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Third Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Qiqi Chen
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, Zhejiang, China
| | - Guang Yang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, Zhejiang, China.
| |
Collapse
|
7
|
Qiu Y, Liu Q, Luo Y, Chen J, Zheng Q, Xie Y, Cao Y. Causal association between obesity and hypothyroidism: a two-sample bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 14:1287463. [PMID: 38260160 PMCID: PMC10801094 DOI: 10.3389/fendo.2023.1287463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Previous observational studies have reported a positive correlation between obesity and susceptibility to hypothyroidism; however, there is limited evidence from alternative methodologies to establish a causal link. Methods We investigated the causal relationship between obesity and hypothyroidism using a two-sample bidirectional Mendelian randomization (MR) analysis. Single-nucleotide polymorphisms (SNPs) associated with obesity-related traits were extracted from a published genome-wide association study (GWAS) of European individuals. Summarized diagnostic data of hypothyroidism were obtained from the UK Biobank. Primary analyses were conducted using the inverse variance-weighted (IVW) method with a random-effects model as well as three complementary approaches. Sensitivity analyses were performed to ascertain the correlation between obesity and hypothyroidism. Results MR analyses of the IVW method and the analyses of hypothyroidism/myxedema indicated that body mass index (BMI) and waist circumference (WC) were significantly associated with higher odds and risk of hypothyroidism. Reverse MR analysis demonstrated that a genetic predisposition to hypothyroidism was associated with an increased risk of elevated BMI and WC, which was not observed between WC adjusted for BMI (WCadjBMI) and hypothyroidism. Discussion Our current study indicates that obesity is a risk factor for hypothyroidism, suggesting that individuals with higher BMI/WC have an increased risk of developing hypothyroidism and indicating the importance of weight loss in reducing the risk of hypothyroidism.
Collapse
Affiliation(s)
- Yingkun Qiu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinyu Liu
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yinghua Luo
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qingzhu Zheng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuping Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
8
|
Spezani R, Marcondes-de-Castro IA, Marinho TS, Reis-Barbosa PH, Cardoso LEM, Aguila MB, Mandarim-de-Lacerda CA. Cotadutide improves brown adipose tissue thermogenesis in obese mice. Biochem Pharmacol 2023; 217:115852. [PMID: 37832793 DOI: 10.1016/j.bcp.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
We studied the effect of cotadutide, a dual agonist glucagon-like peptide 1 (GLP1)/Glucagon, on interscapular brown adipose tissue (iBAT) remodeling and thermogenesis of obese mice. Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Then, animals were redivided, adding cotadutide treatment: C, CC, HF, and HFC for four additional weeks. The multilocular brown adipocyte structure showed fat conversion (whitening), hypertrophy, and structural disarray in the HF group, which was reverted in cotadutide-treated animals. Cotadutide enhances the body temperature, thermogenesis, and sympathetic innervation (peroxisome proliferator-activated receptor-α, β3 adrenergic receptor, interleukin 6, and uncoupled protein 1), reduces pro-inflammatory markers (disintegrin and metallopeptidase domain, morphogenetic protein 8a, and neuregulin 4), and improves angiogenesis (vascular endothelial growth factor A, and perlecan). In addition, cotadutide enhances lipolysis (perilipin and cell death-inducing DNA fragmentation factor α), mitochondrial biogenesis (nuclear respiratory factor 1, transcription factor A mitochondrial, mitochondrial dynamin-like GTPase, and peroxisome proliferator-activated receptor gamma coactivator 1α), and mitochondrial fusion/fission (dynamin-related protein 1, mitochondrial fission protein 1, and parkin RBR E3 ubiquitin protein ligase). Cotadutide reduces endoplasmic reticulum stress (activating transcription factor 4, C/EBP homologous protein, and growth arrest and DNA-damage inducible), and extracellular matrix markers (lysyl oxidase, collagen type I α1, collagen type VI α3, matrix metallopeptidases 2 and 9, and hyaluronan synthases 1 and 2). In conclusion, the experimental evidence is compelling in demonstrating cotadutide's thermogenic effect on obese mice's iBAT, contributing to unraveling its action mechanisms and the possible translational benefits.
Collapse
Affiliation(s)
- Renata Spezani
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ilitch A Marcondes-de-Castro
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany S Marinho
- Metabolism Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H Reis-Barbosa
- Metabolism Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E M Cardoso
- Extracellular Matrix Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Nutrition Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-de-Lacerda
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Nutrition Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Li LY, Liu SF, Zhuang JL, Li MM, Huang ZP, Chen YH, Chen XR, Chen CN, Lin S, Ye LC. Recent research progress on metabolic syndrome and risk of Parkinson's disease. Rev Neurosci 2023; 34:719-735. [PMID: 36450297 DOI: 10.1515/revneuro-2022-0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/06/2022] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. PD is associated with progressive loss of substantia nigra dopaminergic neurons, including various motor symptoms (e.g., bradykinesia, rigidity, and resting tremor), as well as non-motor symptoms (e.g., cognitive impairment, constipation, fatigue, sleep disturbance, and depression). PD involves multiple biological processes, including mitochondrial or lysosomal dysfunction, oxidative stress, insulin resistance, and neuroinflammation. Metabolic syndrome (MetS), a collection of numerous connected cerebral cardiovascular conditions, is a common and growing public health problem associated with many chronic diseases worldwide. MetS components include central/abdominal obesity, systemic hypertension, diabetes, and atherogenic dyslipidemia. MetS and PD share multiple pathophysiological processes, including insulin resistance, oxidative stress, and chronic inflammation. In recent years, MetS has been linked to an increased risk of PD, according to studies; however, the specific mechanism remains unclear. Researchers also found that some related metabolic therapies are potential therapeutic strategies to prevent and improve PD. This article reviews the epidemiological relationship between components of MetS and the risk of PD and discusses the potentially relevant mechanisms and recent progress of MetS as a risk factor for PD. Furthermore, we conclude that MetS-related therapies are beneficial for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou 362000, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW, Australia
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
10
|
Zhou C, Huang YQ, Da MX, Jin WL, Zhou FH. Adipocyte-derived extracellular vesicles: bridging the communications between obesity and tumor microenvironment. Discov Oncol 2023; 14:92. [PMID: 37289328 PMCID: PMC10250291 DOI: 10.1007/s12672-023-00704-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
By the year 2035 more than 4 billion people might be affected by obesity and being overweight. Adipocyte-derived Extracellular Vesicles (ADEVs/ADEV-singular) are essential for communication between the tumor microenvironment (TME) and obesity, emerging as a prominent mechanism of tumor progression. Adipose tissue (AT) becomes hypertrophic and hyperplastic in an obese state resulting in insulin resistance in the body. This modifies the energy supply to tumor cells and simultaneously stimulates the production of pro-inflammatory adipokines. In addition, obese AT has a dysregulated cargo content of discharged ADEVs, leading to elevated amounts of pro-inflammatory proteins, fatty acids, and carcinogenic microRNAs. ADEVs are strongly associated with hallmarks of cancer (proliferation and resistance to cell death, angiogenesis, invasion, metastasis, immunological response) and may be useful as biomarkers and antitumor therapy strategy. Given the present developments in obesity and cancer-related research, we conclude by outlining significant challenges and significant advances that must be addressed expeditiously to promote ADEVs research and clinical applications.
Collapse
Affiliation(s)
- Chuan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Yu-Qian Huang
- Department of Center of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu, 610017 People’s Republic of China
| | - Ming-Xu Da
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Feng-Hai Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Urology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
11
|
Englisz A, Smycz-Kubańska M, Mielczarek-Palacz A. Evaluation of the Potential Diagnostic Utility of the Determination of Selected Immunological and Molecular Parameters in Patients with Ovarian Cancer. Diagnostics (Basel) 2023; 13:diagnostics13101714. [PMID: 37238197 DOI: 10.3390/diagnostics13101714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ovarian cancer is one of the most serious challenges in modern gynaecological oncology. Due to its non-specific symptoms and the lack of an effective screening procedure to detect the disease at an early stage, ovarian cancer is still marked by a high mortality rate among women. For this reason, a great deal of research is being carried out to find new markers that can be used in the detection of ovarian cancer to improve early diagnosis and survival rates of women with ovarian cancer. Our study focuses on presenting the currently used diagnostic markers and the latest selected immunological and molecular parameters being currently investigated for their potential use in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Englisz
- The Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
12
|
Cacciatore I, Spalletta S, Di Rienzo A, Flati V, Fornasari E, Pierdomenico L, Del Boccio P, Valentinuzzi S, Costantini E, Toniato E, Martinotti S, Conte C, Di Stefano A, Robuffo I. Anti-Obesity and Anti-Inflammatory Effects of Novel Carvacrol Derivatives on 3T3-L1 and WJ-MSCs Cells. Pharmaceuticals (Basel) 2023; 16:340. [PMID: 36986440 PMCID: PMC10055808 DOI: 10.3390/ph16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3-obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol-have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative-obtained by a direct linkage between carvacrol and naproxen-resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sonia Spalletta
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Erika Fornasari
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Erica Costantini
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Iole Robuffo
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute of Molecular Genetics “Luigi Luca Cavalli Sforza”, National Research Council, Section of Chieti, 66100 Chieti, Italy
| |
Collapse
|
13
|
Pan J, Yin J, Gan L, Xue J. Two-sided roles of adipose tissue: Rethinking the obesity paradox in various human diseases from a new perspective. Obes Rev 2023; 24:e13521. [PMID: 36349390 DOI: 10.1111/obr.13521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Overweight and obesity, as a result of excess fat accumulation, have become a worldwide public health issue. Recent studies have shown that obesity is closely related to many human diseases, such as cancer, cardiovascular diseases, and type 2 diabetes mellitus, in which adipose tissue plays a dual role. In addition to thermal and mechanical insulation and a critical role in energy storage and heat production, adipose tissue is also a highly plastic endocrine and signaling organ that secretes multiple bioactive molecules for inter-organ crosstalk. The phenotypic and biological changes of adipose tissue under pathological conditions, especially in obesity, increase the challenge of deciphering the positive or negative effects of adipose tissue in disease. Despite numerous studies on obesity and adipose tissue, the ambiguous role of adipose tissue on specific organs or tissues in different diseases is not fully understood, and the definite mechanisms remain obscure. In this review, we first summarize the basic biological characteristics of adipose tissue in the physiological state and the abnormal remodeling of adipose tissue during obesity. We then discuss the complex and disparate effects of obesity on various human diseases, with a particular focus on the dual roles and underlying mechanisms of adipose tissue, a quintessential player in obesity, in this process. More importantly, rethinking the causes of the "obesity paradox" phenomenon in diseases from the perspective of adipose homeostasis and dysfunction provides a novel strategy for disease treatment by intervening in fat function.
Collapse
Affiliation(s)
- Jing Pan
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianqiong Yin
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Scherbakov VI, Skosyreva GA, Ryabichenko TI, Obukhova OO. Cytokines and regulation of glucose and lipid metabolism in the obesity. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The article presents data of the influence of cytokines of different directions of glucose and lipid metabolism in obesity. A change of the basic paradigm regarding adipose tissue has contributed to a number of recent discoveries. This concerns such basic concepts as healthy and diseased adipocytes, and, as a consequence, changes of their metabolism under the influence of cytokins. Distinguishing the concept of organokines demonstrates that despite the common features of cytokine regulation, each organ has its own specifics features of cytokine regulation, each organ has its own specific an important section of this concept is the idea of the heterogeneity of adipose tissue. Knowledge of the function of adipose tissue localized in different compartments of the body is expanding. There are date about the possibility of transition of one type of adipose tissue to another. A possible mechanism linking adipose tissue inflammation and the formation of insulin resistance (IR) is presented in this paper. The mechanism of IR development is closely connected with to proinflammatory cytokins disordering the insulin signal, accompanied by a decrease of the work of glucose transporters. A decrease of the income of glucose into cells leads to a change of glycolysis level to an increase of the fatty acids oxidation. Cytokins are able to participate in the process of the collaboration of some cells with others, that occurs both during physiological and pathological process.
Collapse
Affiliation(s)
- V. I. Scherbakov
- Federal Research Center of Fundamental and Translational Medicine
| | - G. A. Skosyreva
- Federal Research Center of Fundamental and Translational Medicine
| | | | - O. O. Obukhova
- Federal Research Center of Fundamental and Translational Medicine
| |
Collapse
|
15
|
Huang X, Wang YJ, Xiang Y. Bidirectional communication between brain and visceral white adipose tissue: Its potential impact on Alzheimer's disease. EBioMedicine 2022; 84:104263. [PMID: 36122553 PMCID: PMC9490488 DOI: 10.1016/j.ebiom.2022.104263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A variety of axes between brain and abdominal organs have been reported, but the interaction between brain and visceral white adipose tissue (vWAT) remains unclear. In this review, we summarized human studies on the association between brain and vWAT, and generalized their interaction and the underlying mechanisms according to animal and cell experiments. On that basis, we come up with the concept of the brain-vWAT axis (BVA). Furthermore, we analyzed the potential mechanisms of involvement of BVA in the pathogenesis of Alzheimer's disease (AD), including vWAT-derived fatty acids, immunological properties of vWAT, vWAT-derived retinoic acid and vWAT-regulated insulin resistance. The proposal of BVA may expand our understanding to some extent of how the vWAT impacts on brain health and diseases, and provide a novel approach to study the pathogenesis and treatment strategies of neurodegenerative disorders.
Collapse
|