1
|
Guedes LM, Meli C, Ortiz J, de Lima JF, Nobrega LP, Aguilera N. Functional compartmentalization of oxidative stress and antioxidant defense in Nothofagus obliqua galls induced by Espinosa nothofagi. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112559. [PMID: 40383393 DOI: 10.1016/j.plantsci.2025.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/20/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Galls induced by Espinosa nothofagi (Hymenoptera) on Nothofagus obliqua (Nothofagaceae) buds exhibit tissue compartmentalization, with an inner compartment (IC) specialized for larval nutrition and an outer compartment (OC) associated with defense and protection. Although previous studies have linked reactive oxygen species (ROS) to functional specialization in galls, comprehensive analyses of oxidative stress and antioxidant systems in distinct gall compartments are still limited. Additionally, N. obliqua is a deciduous species with active secondary growth in spring, which coincides with gall development and potentially influences host redox dynamics. This study evaluated ROS production, lipid peroxidation (MDA), and the activity of enzymatic and nonenzymatic antioxidant systems in gall compartments and nongalled stems (NGS). We hypothesized that ROS and antioxidant systems in galls are compartmentalized according to their function and that secondary growth in NGS leads to ROS accumulation, which is counteracted by antioxidant defenses. Both histochemical and quantitative analyses revealed low oxidative stress in the IC, which was supported by elevated dehydroascorbate reductase activity. The OC presented increased H₂O₂ levels and superoxide dismutase and glutathione reductase activities, indicating exposure to environmental stressors. NGS resulted in the highest ROS levels, which were associated with intense cambial activity, along with strong enzymatic antioxidant responses. The colocalization of H₂O₂ and flavonoids suggests that these compounds act as effective ROS scavengers in both galls and NGS. Although each organ relies on distinct strategies, all effectively prevent membrane damage through efficient enzymatic and flavonoid-based antioxidant mechanisms. These findings demonstrate the functional compartmentalization of oxidative stress and defense, highlighting the role of redox balance during secondary growth and gall development.
Collapse
Affiliation(s)
- Lubia M Guedes
- Universidad de Concepción, Facultad de Ciencias Forestales, Laboratorio de Semioquímica Aplicada, Casilla 160-C, Concepción CP 4030000, Chile
| | - Constanza Meli
- Universidad de Concepción, Facultad de Ciencias Forestales, Laboratorio de Semioquímica Aplicada, Casilla 160-C, Concepción CP 4030000, Chile
| | - José Ortiz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción CP 4030000, Chile
| | - Jéssica Ferreira de Lima
- Instituto de Biologia, Laboratório de Fisiologia Vegetal, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais CEP 38402-020, Brazil
| | - Leticia Ponticel Nobrega
- Programa de Pós-Graduação em Ciências Biológicas (Botânica), Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Narciso Aguilera
- Universidad de Concepción, Facultad de Ciencias Forestales, Laboratorio de Semioquímica Aplicada, Casilla 160-C, Concepción CP 4030000, Chile.
| |
Collapse
|
2
|
Bellows E, Heatley M, Shah N, Archer N, Giles T, Fray R. Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:798-810. [PMID: 38864838 DOI: 10.1111/plb.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development, and physical appearance are controlled by the inducer. The underlying molecular mechanisms of gall formation, by which one or a small number of cells are reprogrammed and commit to a novel developmental path, are poorly understood. In this study, we sought a deeper insight into the molecular underpinnings of this process. Oak gall wasps have two generations each year, one sexual, and one asexual. Galls formed by these two generations exhibit a markedly different appearance. We sequenced transcriptomes of both the asexual and sexual generations of Neuroterus quercusbaccarum and Neuroterus numismalis. We then deployed Nanopore sequencing to generate long-read sequences to test the hypothesis that gall wasps introduce DNA insertions to determine gall development. We detected potential genome rearrangements but did not uncover any non-host DNA insertions. Transcriptome analysis revealed that transcriptomes of the sexual generations of distinct species of wasp are more similar than inter-generational comparisons from the same species of wasp. Our results highlight the intricate interplay between the host leaves and gall development, suggesting that season and requirements of the gall structure play a larger role than species in controlling gall development and structure.
Collapse
Affiliation(s)
- E Bellows
- School of Biosciences, The University of Nottingham, Nottingham, UK
| | - M Heatley
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Shah
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Archer
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham, UK
| | - T Giles
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - R Fray
- School of Biosciences, The University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Markel K, Novak V, Bowen BP, Tian Y, Chen YC, Sirirungruang S, Zhou A, Louie KB, Northen TR, Eudes A, Scheller HV, Shih PM. Cynipid wasps systematically reprogram host metabolism and restructure cell walls in developing galls. PLANT PHYSIOLOGY 2024; 195:698-712. [PMID: 38236304 PMCID: PMC11181936 DOI: 10.1093/plphys/kiae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.
Collapse
Affiliation(s)
- Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Vlastimil Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Yi-Chun Chen
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Andy Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Katherine B Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94608, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Terletskaya NV, Mamirova A, Ashimuly K, Vibe YP, Krekova YA. Anatomical and Metabolome Features of Haloxylon aphyllum and Haloxylon persicum Elucidate the Resilience against Gall-Forming Insects. Int J Mol Sci 2024; 25:4738. [PMID: 38731957 PMCID: PMC11084765 DOI: 10.3390/ijms25094738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Globally, gall-forming insects significantly contribute to the degradation of desert ecosystems. Recent studies have demonstrated that Haloxylon persicum suffers less damage from gall-formers compared to Haloxylon aphyllum. However, the mechanisms driving the long-term metabolic responses of these species to gall-forming biotic stress in their natural environment remain unclear. The current study comparatively analyzes the anatomical features and metabolomic changes in H. aphyllum and H. persicum damaged by gall-forming insects. This research aimed to uncover potential metabolic tolerance mechanisms through GC-MS analysis. The study findings indicate that gall-forming insects cause a reduction in nearly all the anatomical structures of Haloxylon shoots, with the effects being less severe in H. persicum than in H. aphyllum. Thus, the metabolic pathways responsible for the biosynthesis of biologically active substances that enhance resistance to gall inducers were different, specifically in H. aphyllum-the biosynthesis of fatty acids (+their derivatives) and γ-tocopherol (vitamin E) and H. persicum-the biosynthesis of fatty acids (+their derivatives), dialkyl ethers, carbohydrates (+their derivatives), aromatic acid derivatives, phytosterols, γ-tocopherol (vitamin E), phenols, and terpenoids. The results suggest that the modulation of metabolic pathways under biotic stress plays a crucial role in the enhanced survival and growth of H. persicum.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim Mamirova
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Kazhybek Ashimuly
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Yekaterina P. Vibe
- A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Kirov 58, Shchuchinsk 021704, Kazakhstan; (Y.P.V.); (Y.A.K.)
| | - Yana A. Krekova
- A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Kirov 58, Shchuchinsk 021704, Kazakhstan; (Y.P.V.); (Y.A.K.)
| |
Collapse
|
5
|
Yang M, Li J, Qiao H, Guo K, Xu R, Wei H, Wei J, Liu S, Xu C. Feeding-induced plant metabolite responses to a phoretic gall mite, its carrier psyllid and both, after detachment. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:381-403. [PMID: 37882995 DOI: 10.1007/s10493-023-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Phoresy is one of the most distinctive relationships between mites and insects, and the off-host interaction between phoretic mites and their carriers is the most critical factor sustaining the phoretic association. As phoretic associations commonly occur in temporary habitats, little is known about off-host interactions between phoronts and carriers. However, an off-host interaction has been reported, in which the plant-mediated competition between a phoretic gall mite, Aceria pallida, and its psyllid vector, Bactericera gobica, after detachment decreases leaf abscission caused by B. gobica and then directly facilitates their phoretic association. In this obligate phoresy, A. pallida seasonally attaches to B. gobica for overwinter survival and they share the same host plant, Lycium barbarum, during the growing season. It is unknown how the host plant responds to these two herbivores and what plant metabolites are involved in their interspecific interaction. Here, effects of A. pallida and B. gobica on the host plant's transcriptome and metabolome, and on enzymes involved in plant defence, at various infestation stages were studied by inoculating A. pallida and B. gobica either separately or simultaneously on leaves of L. barbarum. Our results showed that (a) A. pallida significantly promoted primary and secondary metabolite accumulation, (b) B. gobica markedly inhibited primary and secondary metabolite accumulation and had little influence on defence enzyme activity, and (c) under simultaneous A. pallida and B. gobica infestation, an intermediate response was predicted. These findings indicate that A. pallida and B. gobica have different effects on host plants, A. pallida inhibits B. gobica mainly by increasing the secondary metabolism of L. barbarum, whereas B. gobica inhibits A. pallida mainly by decreasing the primary metabolism of L. barbarum. In conjunction with our previous research, we speculate that this trade-off in host plant metabolite response between A. pallida and B. gobica after detachment promotes a stable phoretic association.
Collapse
Affiliation(s)
- Mengke Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
- Qinghai Academy of Agriculture and Forestry Sciences, 253 Ningda Road, Chengbei District, Xining, Qinghai Province, 810016, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
6
|
Giertych MJ, Łukowski A, Karolewski P. Cynipid galls on oak leaves are resilient to leaf vein disruption. JOURNAL OF PLANT RESEARCH 2023:10.1007/s10265-023-01462-8. [PMID: 37133571 DOI: 10.1007/s10265-023-01462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Oaks serve as host plants for numerous insects, including those forming galls. Galls induced on oaks are completely dependent on leaf resources. Many other folivores damage veins of leaves, which may result in cutting galls off from sources of assimilates, nutrients and water. We hypothesised that the disruption of the continuity of leaf vascular tissues stops gall development, leading to the death of the larva. Leaves of sessile oak (Quercus petraea) with Cynips quercusfolii galls in the initial stage of development were marked. The diameter of the galls was measured, and the vein on which the gall was present was cut. Four experimental treatments were established: control - with no cutting, cutting the vein distal to the gall relative to the petiole, cutting the vein basal to the gall and cutting both sides. The average survival rate (live galls at the end of the experiment including healthy larvae, pupae or imagines inside) - was 28.9%. The rate varied depending on the treatment and was 13.6% in the treatment with the vein cut on both sides and about 30% in the remaining treatments. However, this difference was not statistically significant. The growth dynamics of galls are highly dependent on the experimental treatment. The largest galls grew in the control treatment, and the smallest galls were in the treatments with the veins cut on both sides. Unexpectedly, even cutting veins on both sides did not result in the immediate dieback of the galls. The results suggest that the galls are very strong nutrient and water sinks. The functions of the cut vein are likely taken over by other lower-order veins, allowing nourishment of the gall to complete larva development.
Collapse
Affiliation(s)
- Marian J Giertych
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
- Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, Zielona Góra, 65-516, Poland.
| | - Adrian Łukowski
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71c, Poznań, 60-625, Poland
| | - Piotr Karolewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland
| |
Collapse
|
7
|
Caterino S, Pajer N, Crestini C. Iron-galls inks: preparation, structure and characterisation. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Comparison of Auxin and Cytokinins Concentrations, and the Structure of Bacterial Community between Host Twigs and Lithosaphonecrus arcoverticus Galls. INSECTS 2021; 12:insects12110982. [PMID: 34821783 PMCID: PMC8618787 DOI: 10.3390/insects12110982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary Insect galls are characterized by high concentrations of auxins and cytokinins. We calculated the correlation between the concentrations of indoleacetic acid (IAA), trans-zeatin riboside (tZR) and isopentenyladenine (iP) and the bacterial community structure of Lithosaphonecrus arcoverticus galls. Our results indicated the concentrations of IAA, tZR and iP were positively correlated with the bacterial community structure of L. arcoverticus galls. We suggest the high concentrations of IAA, tZR and iP may affect the bacterial community structure of L. arcoverticus galls. Abstract Insect galls are the abnormal growth of plant tissues induced by a wide variety of galling insects and characterized by high concentrations of auxins and cytokinins. It remains unclear whether the auxins and cytokinins affect the bacterial community structure of insect galls. We determined the concentrations of indoleacetic acid (IAA) as an example of auxin, trans-zeatin riboside (tZR) and isopentenyladenine (iP) as cytokinins in Lithosaphonecrus arcoverticus (Hymenoptera: Cynipidae) galls and the galled twigs of Lithocarpus glaber (Fagaceae) using liquid chromatography–tandem mass spectrometry. Moreover, for the first time, we compared the bacterial community structure of L. arcoverticus galls and galled twigs by high-throughput sequencing, and calculated the Spearman correlation and associated degree of significance between the IAA, tZR and iP concentrations and the bacterial community structure. Our results indicated the concentrations of IAA, tZR and iP were higher in L. arcoverticus galls than in galled twigs, and positively correlated with the bacterial community structure of L. arcoverticus galls. We suggest the high concentrations of IAA, tZR and iP may affect the bacterial community structure of L. arcoverticus galls.
Collapse
|
9
|
Chen PY, Shih TH, Chang KC, Wang JS, Yang CM, Chang YS. Potential of galled leaves of Goji ( Lycium chinense) as functional food. BMC Nutr 2020; 6:26. [PMID: 32655873 PMCID: PMC7339520 DOI: 10.1186/s40795-020-00351-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/18/2020] [Indexed: 01/18/2023] Open
Abstract
Background Goji (Lycium) is a popular traditional health food, and its fruit and root extracts have been found to possess antioxidant, anti-inflammatory, and hypocholesterolemia-inducing abilities. Goji leaves also contain high amounts of phenolic compounds, similar to its fruit, and their extracts also exhibit several pharmaceutical effects. The induction of galls on Goji leaves reduces their photosynthetic ability and fruit yield, which raise their farming costs, thereby leading to economic loss. However, the defense mechanisms induced by infection may elevate the secondary metabolite content of the leaves, which might provide more nutritive compounds. Method Content of chlorophyll, carotenoids, polyphenols, and flavonoids in the extracts of normal and infected Goji leaves (L. chinense) were analyzed. The relative content of chlorogenic acid and rutin, two major phenolic compounds in Goji leaves, were determined by LC-MS/MS. Antioxidant activity was presented by demonstrating the DPPH scavenging percentage. The extract of Goji fruit (L. barbarum) was also analyzed to show a comparative result. Results In this study, we found that in infected Goji leaves, the polyphenol content was significantly increased. The level of chlorogenic acid was increased by 36% in galled leaves. The content of rutin in galled leaves was also elevated. Testing the antioxidant activities also showed that the extracts of galled leaves have higher DPPH scavenging abilities. Conclusions Our results demonstrated that galled Goji leaves have higher functional value, and may have potential as being consumed as health food.
Collapse
Affiliation(s)
- Po-Yen Chen
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, 115 Taiwan.,Department of Horticulture and Landscape Architecture, National Taiwan University, Daan, 106 Taipei, Taiwan
| | - Tin-Han Shih
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Kai-Chieh Chang
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Jhin-Syuan Wang
- Miaoli District Agricultural Research and Extension Station, Guannan, Miaoli County, 363 Taiwan
| | - Chi-Ming Yang
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Yu-Sen Chang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Daan, 106 Taipei, Taiwan
| |
Collapse
|
10
|
Kot I, Sempruch C, Rubinowska K, Michałek W. Effect of Neuroterus quercusbaccarum (L.) galls on physiological and biochemical response of Quercus robur leaves. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:34-43. [PMID: 31190653 DOI: 10.1017/s0007485319000221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gall formation is associated with multiple changes in plant cells, which still requires a better understanding. In this study, galls caused by sexual generation (♀♂) of Neuroterus quercusbaccarum (L.) (Hymenoptera: Cynipidae) on pedunculate oak trees (Quercus robur L.) were used as a model. Cytoplasmic membrane condition, concentration of hydrogen peroxide (H2O2), the activity of antioxidant enzymes and amino acid decarboxylase as well as chlorophyll fluorescence parameters were determined. Changes in physiological and biochemical parameters were analyzed in foliar tissues with galls and gall tissues themselves and compared to control. The presence of galls on oak leaves caused an increase of lipid peroxidation level. A significant decline in H2O2 and TBARS content with the reduction of guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) activity were observed in gall tissues. The activity amino acid decarboxylase, i.e., LDC, ODC and TyDC varied between samples, which may affect the content of amino acids. The presence of N. quercusbaccarum galls caused an insignificant increase of the chlorophylls, carotenoids and anthocyanin contents, while the content of pigments and their ratios in gall tissues was extremely low. Moreover, photosynthetic parameters (F0, Fm, Fv/Fm, Y, qP) were significantly decreased. Data generated in this study indicate that the development of N. quercusbaccarum galls on pedunculate oak leaves has a negative effect on host plant related to the disruption of cell membrane integrity, disturbance of photosynthesis and reduction of the antioxidant potential of the host plant.
Collapse
Affiliation(s)
- I Kot
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - C Sempruch
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
| | - K Rubinowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - W Michałek
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| |
Collapse
|
11
|
Ferreira BG, Oliveira DC, Moreira ASFP, Faria AP, Guedes LM, França MGC, Álvarez R, Isaias RMS. Antioxidant metabolism in galls due to the extended phenotypes of the associated organisms. PLoS One 2018; 13:e0205364. [PMID: 30346955 PMCID: PMC6197632 DOI: 10.1371/journal.pone.0205364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/23/2018] [Indexed: 11/30/2022] Open
Abstract
Animal-induced galls are considered extended phenotypes of their inducers, and therefore plant morphogenesis and metabolism may vary according to the species of gall inducers. The alterations in vacuolar and apoplastic polyphenols, carotenoids, chlorophyll fluorescence rates, PSII quantum yield, and phospholipid peroxidation were studied in galls induced by Ditylenchus gallaeformans (Nematoda) on Miconia albicans and M. ibaguensis (Melastomataceae), and by an unidentified Eriophyidae (Acarina) on M. ibaguensis. The focus currently addressed is gall metabolism as the extended phenotype of the gall inducers, and the neglected determination of gall functionalities over host plant peculiarities. Galls induced by D. gallaeformans on M. albicans and by the Eriophyidae on M. ibaguensis have increased accumulation of apoplastic and vacuolar phenolics, which is related to the control of phospholipid peroxidation and photoprotection. The galls induced by D. gallaeformans on M. ibaguensis have higher carotenoid and vacuolar polyphenol contents, which are related to excessive sunlight energy dissipation as heat, and photoprotection. Accordingly, antioxidant strategies varied according to the gall-inducing species and to the host plant species. The distinctive investments in carotenoid and/or in polyphenol concentrations in the studied galls seemed to be peculiar mechanisms to maintain oxidative homeostasis. These mechanisms were determined both by the stimuli of the gall-inducing organism and by the intrinsic physiological features of the host plant species. Therefore, the roles of both associated organisms in host plant-galling organisms systems over gall metabolism is attested.
Collapse
Affiliation(s)
- Bruno G. Ferreira
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis C. Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana S. F. P. Moreira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana P. Faria
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Lubia M. Guedes
- Postgrados en Ciências Biológicas - área Botánica, Univ ersidad de Concepción, Concepción, Chile
| | - Marcel G. C. França
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Álvarez
- Departamento de Biología Molecular– Área Biología Celular, Universidad de León, León, Spain
| | - Rosy M. S. Isaias
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|