1
|
Abstract
Concatemeric phage lambda imm434 DNA packaged in vitro into phage T4 particles produced plaques on a selective host. Moreover, lambda DNA containing a pBR322 derivative flanked by the lambda attL and attR sites could be specifically recircularized by excisive lambda recombination to yield the pBR322 derivative. A host deficient in generalized recombination and containing a defective lambda c Its prophage which provided Int and Xis proteins was the recipient for this plasmid derivative carried by T4. Such a T4-lambda hybrid may potentially allow almost one T4 headful of donor DNA (166 kb) to be packaged and recircularized.
Collapse
|
2
|
Herman RE, Snustad DP. Plasmid pR386 renders Escherichia coli cells restrictive to the growth of bacteriophage T4 unf mutants. J Virol 1982; 41:330-3. [PMID: 6177866 PMCID: PMC256756 DOI: 10.1128/jvi.41.1.330-333.1982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The introduction of the F1 incompatibility group plasmid pR386 Tc into several common laboratory strains of Escherichia coli rendered them restrictive to the growth of bacteriophage T4 unf mutants, which are defective in unfolding the host genome. The growth inhibition was temperature dependent. The single mutant unf39 x 5 exhibited an efficiency of plating of less than 10(-8) at 27 degrees C. However, at 37 degrees C, complete growth inhibition occurred only when host DNA degradation was also absent.
Collapse
|
3
|
Young ET, Menard RC. Sizes of bacteriophage T4 early mRNA's separated by preparative polyacrylamide gel electrophoresis and identified by in vitro translation and by hybridization to recombinant T4 plasmids. J Virol 1981; 40:772-89. [PMID: 6459465 PMCID: PMC256689 DOI: 10.1128/jvi.40.3.772-789.1981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We determined the sized of specific T4 prereplicative nRNA's by preparative polyacrylamide gel electrophoresis, and we used the following two techniques to identify specific gene transcripts; cell-free protein synthesis accompanied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to distinguish T4 polypeptides and hybridization to recombinant plasmids containing T4 DNA of known genetic composition. In our first analysis, the use of nonsense and in-phase deletion mutants allowed unambiguous identification of the functional transcripts that encoded genes 32, rIIB, and rIIA. In addition, we identified the functional transcript that encoded genes 43, 45, 30, 39, and 52, the beta-glucosyl transferase gene, and the deletion 293 region. A single peak of mRNA activity that coded for gp43, gp39, gprIIA, beta-glucosyl transferase, and the polypeptide encoded in the deletion 293 region was present; the other polypeptides were encoded in multiple mRNA species, gp46 and gp32 were encoded by two mRNA's and gp52 and gprIIB were encoded by three nRNA's. By hybridizing fractionated, pulse-labeled early RNA to cloned restriction fragments of T4 DNA, we identified the same specific transcripts for genes 43, 52, and rIIB. In addition, a lower-molecular-weight RNA (presumably degraded nRNA) was present even in pulse-labeled RNA preparations. The distribution of pulse-labeled RNAs that hybridized to gene 39, gene 30, gene rIIA, gene 40 plus gene 41, and gene 42 plus the beta-glucosyl transferase gene indicated extensive degradation. We detected cotranscription of genes rIIA and rIIB by rehybridization of RNA first annealed to an rIIB plasmid and then eluted and annealed to an rIIA plasmid. The size distributions of normal and chloramphenicol-treated RNAs that hybridized to plasmids containing T4 immediate early gene 30, gene 39, gene 40 plus gene 41, and gene 42 plus the beta-glucosyl transferase gene were not significantly different.
Collapse
|
4
|
Goldfarb A, Burger HJ. Mapping of in vitro transcription units and identification of primary transcripts of the D region of bacteriophage T4. Nucleic Acids Res 1981; 9:2791-800. [PMID: 7024905 PMCID: PMC326893 DOI: 10.1093/nar/9.12.2791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The D region of bacteriophage T4 is comprised of six closely linked genes which are situated between 161 kb and 165 kb on the T4 chromosome. We studied the transcription of these genes in vitro by using DNA templates derived from a series of deletion mutants in this region. The mixture of primary products made by Escherichia coli RNA polymerase were fractionated by gel electrophoresis into discrete RNA species. The results obtained together with the known map positions of the deletions allowed to identify four wild-type and several deletion-specific transcripts of the D region. The end points of these transcripts were approximately mapped. The results demonstrate that the D region has two promoters and two terminators, an organisation which is similar to the previously established organisation of the T4 tRNA gene cluster.
Collapse
|
5
|
Dhillon EK, Dhillon TS, Lam YY, Tsang AH. Temperate coliphages: classification and correlation with habitats. Appl Environ Microbiol 1980; 39:1046-53. [PMID: 6446882 PMCID: PMC291473 DOI: 10.1128/aem.39.5.1046-1053.1980] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Temperate coliphages were recovered from sewage, mammalian feces, and lysogenic strains of Escherichia coli. A total of 32 phages of independent origin were divided into six groups by applying the criteria of host range, antigenic homology, and the ultraviolet inducibility of the prophage. The demonstration of genetic interactions in some cases has confirmed the classification scheme. Nine phages were assigned to the P2 family and 19 to the lambda family. The remaining four isolates may represent some novel phylogenetic types. Phages recovered from the lysogenic strains of E. coli were all found to be P2 related, whereas a majority of the phages recovered as cell-free plaque-forming units were assignable to the lambda family. It is proposed that the biological attributes of the phages belonging to the two principal families are reflected in the distribution patterns observed. The virions of phage HK256 show multiple tail fibers and may thus represent a "new" virion form among the temperate coliphages.
Collapse
|
6
|
Snustad DP, Bursch CJ, Parson KA, Hefeneider SH. Mutants of bacteriophage T4 deficient in the ability to induce nuclear disruption: shutoff of host DNA and protein synthesis gene dosage experiments, identification of a restrictive host, and possible biological significance. J Virol 1976; 18:268-88. [PMID: 768523 PMCID: PMC515546 DOI: 10.1128/jvi.18.1.268-288.1976] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The shutoff of host DNA synthesis is delayed until about 8 to 10 min after infection when Escherichia coli B/5 cells were infected with bacteriophage T4 mutants deficient in the ability to induce nuclear disruption (ndd mutants). The host DNA synthesized after infection with ndd mutants is stable in the absence of T4 endonucleases II and IV, but is unstable in the presence of these nucleases. Host protein synthesis, as indicated by the inducibility of beta-galactosidase and sodium dodecyl sulfate-polyacrylamide gel patterns of isoptopically labeled proteins synthesize after infection, is shut off normally in ndd-infected cells, even in the absence of host DNA degradation. The Cal Tech wild-type strain of E. coli CT447 was found to restrict growth of the ndd mutants. Since T4D+ also has a very low efficiency of plating on CT447, we have isolated a nitrosoguanidine-induced derivative of CT447 which yields a high T4D+ efficiency of plating while still restricting the ndd mutants. Using this derivative, CT447 T4 plq+ (for T4 plaque+), we have shown that hos DNA degradation and shutoff of host DNA synthesis occur after infection with either ndd98 X 5 (shutoff delayed) or T4D+ (shutoff normal) with approximately the same kinetics as in E. coli strain B/5. Nuclear disruption occurs after infection of CT447 with ndd+ phage, but not after infection with ndd- phage. The rate of DNA synthesis after infection of CT447 T4 plq+ with ndd98 X 5 is about 75% of the rate observed after infection with T4D+ while the burst size of ndd98 X 5 is only 3.5% of that of T4D+. The results of gene dosage experiments using the ndd restrictive host C5447 suggest that the ndd gene product is required in stoichiometric amounts. The observation by thin-section electron microscopy of two distinct pools of DNA, one apparently phage DNA and the other host DNA, in cells infected with nuclear disruption may be a compartmentalization mechanism which separates the pathways of host DNA degradation and phage DNA biosynthesis.
Collapse
|
7
|
Snustad DP, Tigges MA, Parson KA, Bursch CJ, Caron FM, Koerner JF, Tutas DJ. Identification and preliminary characterization of a mutant defective in the bacteriophage T4-induced unfolding of the Escherichia coli nucleoid. J Virol 1976; 17:622-41. [PMID: 768519 PMCID: PMC515453 DOI: 10.1128/jvi.17.2.622-641.1976] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.
Collapse
|
8
|
Abstract
Mutants in gene 20, a new T7 gene, cannot grow on rex+ lambda lysogens. Gene 20-- mutants suppress in double mutants the phenotype of T7 ligase negative mutations, but not vice versa. Amber 20- mutants have been obtained. There are differences between these T7 mutations and the similar T4 rII mutations. There are host mutations which permit T7 20- mutants to grow on lambda+ lysogens. T7 DNA synthesis on normal lambda+ lysogens infected with 20- mutants is essentially normal, but the DNA is not packaged. The gene 20 protein is active in in vitro complementation and probably used late in infection for DNA packaging into phage heads.
Collapse
|
9
|
Depew RE, Snopek TJ, Cozzarelli NR. Characterization of a new class of deletions of the D region of the bacteriophage T4 genome. Virology 1975; 64:144-5. [PMID: 1114706 DOI: 10.1016/0042-6822(75)90086-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Parson KA, Snustad DP. Host DNA degradation after infection of Escherichia coli with bacteriophage T4: dependence of the alternate pathway of degradation which occurs in the absence of both T4 endonuclease II and nuclear disruption on T4 endonuclease IV. J Virol 1975; 15:221-4. [PMID: 1089802 PMCID: PMC354438 DOI: 10.1128/jvi.15.1.221-224.1975] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Escherichia coli cells infected with T4 phage which are deficient in both nuclear disruption and endonuclease II exhibit a pathway of host DNA degradation which does not occur in cells infected with phage deficient only in endonuclease II. This alternate pathway of host DNA degradation requires T4 endonuclease IV.
Collapse
|
11
|
Snustad DP, Conroy LM. Mutants of bacteriophage T4 deficient in the ability to induce nuclear disruption. I. Isolation and genetic characterization. J Mol Biol 1974; 89:663-73. [PMID: 4615165 DOI: 10.1016/0022-2836(74)90043-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Snustad DP, Parson KA, Warner HR, Tutas DJ, Wehner JM, Koerner JF. Mutants of bacteriophage T4 deficient in the ability to induce nuclear disruption. II. Physiological state of the host nucleoid in infected cells. J Mol Biol 1974; 89:675-87. [PMID: 4615166 DOI: 10.1016/0022-2836(74)90044-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
|
14
|
Vetter D, Sadowski PD. Point mutants in the D2a region of bacteriophage T4 fail to induce T4 endonuclease IV. J Virol 1974; 14:207-13. [PMID: 4847325 PMCID: PMC355505 DOI: 10.1128/jvi.14.2.207-213.1974] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have studied the properties of presumptive point mutants in the D2a region of bacteriophage T4. Dominance tests showed that the D2a mutation was recessive to the wild-type allele. The mutations were shown to map in the D2a region by complementation against rII deletions. The D2a mutations were also located between gene 52 and rIIB by two- and three-factor crosses. The mutants are located at at least two distinct loci in the D2a region. The point mutants grow normally on all hosts tested and none of the mutants makes T4 endonuclease IV. We propose the name "denB" for the D2a locus.
Collapse
|
15
|
Black LW, Abremski K. Restriction of phage T4 internal protein I mutants by a strain of Escherichia coli. Virology 1974; 60:180-91. [PMID: 4601629 DOI: 10.1016/0042-6822(74)90375-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Depew RE, Cozzarelli NR. Genetics and physiology of bacteriophage T4 3'-phosphatase: evidence for involvement of the enzyme in T4 DNA metabolism. J Virol 1974; 13:888-97. [PMID: 4362515 PMCID: PMC355387 DOI: 10.1128/jvi.13.4.888-897.1974] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mutants of bacteriophage T4D which fail to induce the deoxyribonucleotide-specific T4 3'-phosphatase have been isolated. These mutants (T4pseT) grow as well as wild-type T4 in most strains of Escherichia coli, but not in the T4-sensitive "Hospital Strain," CT196, or in a derivative strain, CTr5x. Both the formation of infectious centers and the final yield of phage are reduced by 98% when CTr5x is infected by T4pseT mutants. The growth defects are accompanied by a 50% reduction in the rate of T4 DNA synthesis, a decrease in the single-strand length of the DNA product to about one-half the mature length, and greatly reduced packaging of DNA into phage particles. Introduction of an extra-cistronic suppressor mutation (stp) into T4pseT eliminates both the requirement for the T4 3'-phosphatase in infected CTr5x and the other observed effects of the pseT mutations. The pseT gene lies between genes 63 and 31. The stp gene lies in the nonessential region between rIIB and ac. Our results suggest that 3'-phosphoryl termini can disrupt T4 DNA replication to the extent that T4 3'-phosphatase becomes required for phage production.
Collapse
|
17
|
van de Vate C, Symonds N. A staple duplication as an intermediate in the selection of deletion mutants of phage T4. Genet Res (Camb) 1974; 23:87-105. [PMID: 4407213 DOI: 10.1017/s0016672300014683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SummaryA selective procedure is described for the isolation of deletions in phage T4. This is based on the properties of partial diploids which possess a tandem duplication covering the rII region. The starting-point of the procedure is a particular s1231/3157 diploid which has a high segregation frequency and so possesses a long duplication. The replacement in this diploid of the large deletion 3157 by the small one 196 further increases the length of this duplication and removes the terminal redundancy of the resulting phage which are then non-viable. New compensating deletions which restore the terminal redundancy and thus the viability to these diploids are thereby selected. Nine new independent T4 deletions have been isolated by this procedure. The length of three has been estimated by terminal redundancy measurements and each found to be appreciably longer than the rII region. While developing the isolation procedure a key diploid intermediate was identified with the property that is was completely stable; that is, unlike typical diploids which continually generate haploid segregants during phage multiplications, this diploid strain produced no viable haploid segregants. This unexpected finding led us to examine the general problem of how tandem duplications can be stabilized. The solution we propose here is a structural one involving new stabilizing deletions which penetrate into one arm of the duplication removing certain essential genes. These stabilizing deletions are located in such a way that all haploid segregants formed by recombination are necessarily non-viable. Further investigations of the original stable diploid, and others isolated subsequently, validated this model for these phage diploids. It also led to the recognition of several novel genetic structures involving repeated DNA sequences which, together with the concept of the stabilizing deletions, could be of general significance.
Collapse
|
18
|
|
19
|
|
20
|
|
21
|
Symonds N, van den Ende P, Durston A, White P. The structure of rII diploids of phage T4. MOLECULAR & GENERAL GENETICS : MGG 1972; 116:223-38. [PMID: 5047921 DOI: 10.1007/bf00269767] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
|
23
|
Bruner R, Souther A, Suggs S. Stability of cytosine-containing deoxyribonucleic acid after infection by certain T4 rII-D deletion mutants. J Virol 1972; 10:88-92. [PMID: 4339199 PMCID: PMC356429 DOI: 10.1128/jvi.10.1.88-92.1972] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
When T-even phage infect Escherichia coli, synthesis of host deoxyribonucleic acid (DNA) rapidly ceases. If the phage carry a mutation in a gene essential for phage DNA synthesis, then the infected bacteria should make no DNA, either host DNA or phage DNA. However, we have found that infection with certain T4 gene 56 (deoxycytidine triphosphatase)-rII double mutants leads to substantial DNA synthesis. Only rII deletion mutations which extend into the middle third of the adjacent, nonessential D region lead to the anomalous DNA synthesis, when combined with a gene 56 mutation; the requirement probably is that the deletion extend into the D2a transcriptional unit identified by Sederoff et al. Genetic evidence indicates that the observed anomalous DNA synthesis is synthesis of phage DNA. We suggest that the D2a region controls, directly or indirectly, a nuclease involved in the breakdown of cytosine-containing DNA. In the absence of the D2a product, the cytosine-containing phage DNA made by the gene 56 mutant is stabilized.
Collapse
|
24
|
Abstract
The extent and phenotype of acriflavin-resistant rII deletions have been examined. The properties of these deletions confirm that acriflavin resistance may result from a loss of function at the ac locus and that the ac locus coincides with the rII distal portion of the dispensable region which is adjacent to the rIIB cistron.
Collapse
|
25
|
|