1
|
Khatir Z, Hizam Z, Lyons B, Leitão A. Aneuploidy in the Pearl Oyster Pinctada radiata (Leach, 1814): Evidence for Nonrandom Chromosome Loss and Gain in Marine Bivalves. MALACOLOGIA 2022. [DOI: 10.4002/040.065.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zenaba Khatir
- Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zainab Hizam
- Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar
| | - Brett Lyons
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth DT4 8UB, UK
| | - Alexandra Leitão
- Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
2
|
de Sousa JT, Allen SK, Wolfe BM, Small JM. Mitotic instability in triploid and tetraploid one-year-old eastern oyster, Crassostrea virginica, assessed by cytogenetic and flow cytometry techniques. Genome 2017; 61:79-89. [PMID: 29190125 DOI: 10.1139/gen-2017-0173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For commercial oyster aquaculture, triploidy has significant advantages. To produce triploids, the principal technology uses diploid × tetraploid crosses. The development of tetraploid brood stock for this purpose has been successful, but as more is understood about tetraploids, it seems clear that chromosome instability is a principal feature in oysters. This paper is a continuation of work to investigate chromosome instability in polyploid Crassostrea virginica. We established families between tetraploids-apparently stable (non-mosaic) and unstable (mosaic)-and normal reference diploids, creating triploid groups, as well as tetraploids between mosaic and non-mosaic tetraploids. Chromosome loss was about the same for triploid juveniles produced from either mosaic or non-mosaic tetraploids or from either male or female tetraploids. However, there was a statistically significant difference in chromosome loss in tetraploid juveniles produced from mosaic versus non-mosaic parents, with mosaics producing more unstable progeny. These results confirm that chromosome instability, as manifested in mosaic tetraploids, is of little concern for producing triploids, but it is clearly problematic for tetraploid breeding. Concordance between the results from cytogenetics and flow cytometry was also tested for the first time in oysters, by assessing the ploidy of individuals using both techniques. Results between the two were non-concordant.
Collapse
Affiliation(s)
- Joana Teixeira de Sousa
- Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA.,Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Standish K Allen
- Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA.,Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Brittany M Wolfe
- Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA.,Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Jessica Moss Small
- Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA.,Aquaculture Genetics and Breeding Technology Center. Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| |
Collapse
|
3
|
David P, Perdieu MA, Pernot AF, Jarne P. FINE-GRAINED SPATIAL AND TEMPORAL POPULATION GENETIC STRUCTURE IN THE MARINE BIVALVE SPISULA OVALIS. Evolution 2017; 51:1318-1322. [PMID: 28565480 DOI: 10.1111/j.1558-5646.1997.tb03979.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/1996] [Accepted: 03/06/1997] [Indexed: 11/27/2022]
Affiliation(s)
- Patrice David
- Génétique et Environnement, CC 065, Université Montpellier II, F34095, Montpellier Cedex 05, France
| | - Mireille-Ange Perdieu
- Génétique et Environnement, CC 065, Université Montpellier II, F34095, Montpellier Cedex 05, France
| | - Anne-Françoise Pernot
- Génétique et Environnement, CC 065, Université Montpellier II, F34095, Montpellier Cedex 05, France
| | - Philippe Jarne
- Génétique et Environnement, CC 065, Université Montpellier II, F34095, Montpellier Cedex 05, France
| |
Collapse
|
4
|
Benabdelmouna A, Ledu C. Autotetraploid Pacific oysters (Crassostrea gigas) obtained using normal diploid eggs: induction and impact on cytogenetic stability. Genome 2015; 58:333-48. [DOI: 10.1139/gen-2015-0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe two methods of producing viable and fertile autotetraploid Pacific oyster (Crassostrea gigas Thunberg) based on the use of normal-sized oocytes produced by normal diploid females. Our methods showed that the oocyte size is not a limiting factor for the success of the induction to autotetraploidy. These methods offer means of direct introgression of genetic progress from elite diploid lines to tetraploids used as broodstock, avoiding a triploid step with the risk of transferring undesirable traits from highly fecund triploids. High variability in the level of cytogenetic stability was found among the different tetraploid oysters tested, showing that induction method has an important impact on the long-term cytogenetic stability of the tetraploids. It appears that induction method based on the use of triploid females induces a greater cytogenetic instability among tetraploids so obtained, and this compared to tetraploids originating from the two methods described in our present study. As the aneuploidies and reversions observed in tetraploids can have serious consequences for the sustainability of tetraploid broodstock itself, as well as their triploid offspring, the two tetraploid induction methods described in the present work offer means to produce tetraploids with optimal cytogenetic, genetic, and zootechnical performances.
Collapse
Affiliation(s)
- Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Christophe Ledu
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| |
Collapse
|
5
|
Barranger A, Benabdelmouna A, Dégremont L, Burgeot T, Akcha F. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:36-43. [PMID: 25498420 DOI: 10.1016/j.aquatox.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment.
Collapse
Affiliation(s)
- Audrey Barranger
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France; Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France.
| | - Lionel Dégremont
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Thierry Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| |
Collapse
|
6
|
Llera-Herrera R, García-Gasca A, Abreu-Goodger C, Huvet A, Ibarra AM. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS One 2013; 8:e73176. [PMID: 24066034 PMCID: PMC3774672 DOI: 10.1371/journal.pone.0073176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/17/2013] [Indexed: 01/01/2023] Open
Abstract
Despite the great advances in sequencing technologies, genomic and transcriptomic information for marine non-model species with ecological, evolutionary, and economical interest is still scarce. In this work we aimed to identify genes expressed during spermatogenesis in the functional hermaphrodite scallop Nodipecten subnodosus (Mollusca: Bivalvia: Pectinidae), with the purpose of obtaining a panel of genes that would allow for the study of differentially transcribed genes between diploid and triploid scallops in the context of meiotic arrest and reproductive sterility. Because our aim was to isolate genes involved in meiosis and other testis maturation-related processes, we generated suppressive subtractive hybridization libraries of testis vs. inactive gonad. We obtained 352 and 177 ESTs by clone sequencing, and using pyrosequencing (454-Roche) we maximized the identified ESTs to 34,276 reads. A total of 1,153 genes from the testis library had a blastx hit and GO annotation, including genes specific for meiosis, spermatogenesis, sex-differentiation, and transposable elements. Some of the identified meiosis genes function in chromosome pairing (scp2, scp3), recombination and DNA repair (dmc1, rad51, ccnb1ip1/hei10), and meiotic checkpoints (rad1, hormad1, dtl/cdt2). Gene expression analyses in different gametogenic stages in both sexual regions of the gonad of meiosis genes confirmed that the expression was specific or increased towards the maturing testis. Spermatogenesis genes included known testis-specific ones (kelch-10, shippo1, adad1), with some of these known to be associated to sterility. Sex differentiation genes included one of the most conserved genes at the bottom of the sex-determination cascade (dmrt1). Transcript from transposable elements, reverse transcriptase, and transposases in this library evidenced that transposition is an active process during spermatogenesis in N. subnodosus. In relation to the inactive library, we identified 833 transcripts with functional annotation related to activation of the transcription and translation machinery, as well as to germline control and maintenance.
Collapse
Affiliation(s)
- Raúl Llera-Herrera
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
| | | | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Arnaud Huvet
- Laboratoire des Sciences de l'Environnement Marin, Institut Français de Recherche pour l'Exploitation de la Mer, (IFREMER), Centre de Bretagne, Plouzané, France
| | - Ana M. Ibarra
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
- * E-mail:
| |
Collapse
|
7
|
Baranski M, Loughnan S, Austin CM, Robinson N. A microsatellite linkage map of the blacklip abalone, Haliotis rubra. Anim Genet 2007; 37:563-70. [PMID: 17121601 DOI: 10.1111/j.1365-2052.2006.01531.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is considerable scope for genetic improvement of cultured blacklip abalone Haliotis rubra in Australia using molecular marker-assisted, selective-breeding practices. Such improvement is dependent on the availability of primary genetic resources, such as a genetic linkage map. This study presents a first-generation linkage map of H. rubra, containing 122 microsatellite markers typed in a single full-sib family. These loci mapped to 17 and 20 linkage groups for the male and female respectively, and when aligned, the consensus map represented 18 linkage groups. The male linkage map contained 102 markers (one unlinked) covering 621 cM with an average intermarker spacing of 7.3 cM, and the female map contained 98 markers (eight unlinked) covering 766 cM with an average intermarker spacing of 9.8 cM. Analysis of markers informative in both parents showed a significantly higher recombination rate in the female parent, with an average male-to-female recombination ratio of 1:1.45 between linked pairs of markers. This linkage map represents a significant advancement in the genetic resource available for H. rubra and provides a framework for future quantitative trait loci mapping and eventual implementation of marker-assisted selection.
Collapse
Affiliation(s)
- M Baranski
- AKVAFORSK (Institute for Aquaculture Research AS), As N-1432, Norway.
| | | | | | | |
Collapse
|
8
|
Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics 2005; 168:351-62. [PMID: 15454548 PMCID: PMC1448102 DOI: 10.1534/genetics.104.027342] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We constructed male and female consensus linkage maps for the Pacific oyster Crassostrea gigas, using a total of 102 microsatellite DNA markers typed in 11-day-old larvae from three families. We identified 11 and 12 linkage groups in the male and female consensus maps, respectively. Alignment of these separate maps, however, suggests 10 linkage groups, which agrees with the haploid chromosome number. The male linkage map comprises 88 loci and spans 616.1 cM, while the female map comprises 86 loci and spans 770.5 cM. The male and the female maps share 74 loci; 2 markers remain unlinked. The estimated coverages for the consensus linkage maps are 79% for the male and 70-75% for the female, on the basis of two estimates of genome length. Ninety-five percent of the genome is expected to lie within 16 and 21 cM of markers on the male and female maps, respectively, while 95% of simulated minimum distances to the male and female maps are within 10.1 and 13.6 cM, respectively. Females have significantly more recombination than males, across 118 pairs of linked markers in common to the parents of the three families. Significant differences in recombination and orders of markers are also evident among same-sex parents of different families as well as sibling parents of opposite sex. These observations suggest that polymorphism for chromosomal rearrangements may exist in natural populations, which could have profound implications for interpreting the evolutionary genetics of the oyster. These are the first linkage maps for a bivalve mollusc that use microsatellite DNA markers, which should enable them to be transferred to other families and to be useful for further genetic analyses such as QTL mapping.
Collapse
Affiliation(s)
- Sophie Hubert
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-0371, USA
| | | |
Collapse
|
9
|
Gong N, Yang H, Zhang G, Landau BJ, Guo X. Chromosome inheritance in triploid Pacific oyster Crassostrea gigas Thunberg. Heredity (Edinb) 2005; 93:408-15. [PMID: 15254489 DOI: 10.1038/sj.hdy.6800517] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction and chromosome inheritance in triploid Pacific oyster (Crassostrea gigas Thunberg) were studied in diploid female x triploid male (DT) and reciprocal (TD) crosses. Relative fecundity of triploid females was 13.4% of normal diploids. Cumulative survival from fertilized eggs to spat stage was 0.007% for DT crosses and 0.314% for TD crosses. Chromosome number analysis was conducted on surviving progeny from DT and TD crosses at 1 and 4 years of age. At Year 1, oysters from DT crosses consisted of 15% diploids (2n=20) and 85% aneuploids. In contrast, oysters from TD crosses consisted of 57.2% diploids, 30.9% triploids (3n=30) and only 11.9% aneuploids, suggesting that triploid females produced more euploid gametes and viable progeny than triploid males. Viable aneuploid chromosome numbers included 2n+1, 2n+2, 2n+3, 3n-2 and 3n-1. There was little change over time in the overall frequency of diploids, triploids and aneuploids. Among aneuploids, oysters with 2n+3 and 3n-2 chromosomes were observed at Year 1, but absent at Year 4. Triploid progeny were significantly larger than diploids by 79% in whole body weight and 98% in meat weight at 4 years of age. Aneuploids were significantly smaller than normal diploids. This study suggests that triploid Pacific oyster is not completely sterile and cannot offer complete containment of cultured populations.
Collapse
Affiliation(s)
- N Gong
- Experimental Marine Biology Laboratory, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, PRC
| | | | | | | | | |
Collapse
|
10
|
Garnier-Géré PH, Naciri-Graven Y, Bougrier S, Magoulas A, Héral M, Kotoulas G, Hawkins A, Gérard A. Influences of triploidy, parentage and genetic diversity on growth of the Pacific oyster Crassostrea gigas reared in contrasting natural environments. Mol Ecol 2002; 11:1499-514. [PMID: 12144669 DOI: 10.1046/j.1365-294x.2002.01531.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An increasing number of hypotheses are being proposed to explain the faster growth potential of triploids in molluscs, including their partial sterility or their higher heterozygosity compared to diploids. Triploid advantage however, remains controversial for poorer sites, because of a potential trade-off with survival. These questions were addressed in Crassostrea gigas by deploying meiosis II triploids and their diploid siblings from a single mass spawning of three males and seven females, in two contrasting locations for their trophic resources. One hundred and fifty individuals were sampled at each site after nine months, measured for weight and biochemical composition, and genotyped using three microsatellite and seven allozyme loci. Higher performance was observed at the fast-growing site for all traits except shell weight, and triploids had greater weights and biochemical contents than diploids at harvest. Triploids also grew faster at the poorer site, and showed similar survival rates to diploids at both sites. Triploids had significantly higher average allozyme and microsatellite diversity. However, they performed better for a wide range of individual heterozygosity values, arguing for an advantage of the triploid state per se, that could be due to positive effects on growth of both sterility of triploids with subsequent resource re-allocation and possible faster transcription with three copies of each gene. Despite evidence of very low or no inbreeding in the diploid sample, positive associations between individual allozyme diversity and growth were detected, which explained little but significant amounts of phenotypic variation. These associations were interpreted as direct effects of allozymes, either alone or including epistatic interactions with other loci. In addition, measures of individual distance (mean-d2) specific to microsatellites, were negatively correlated with growth in diploids, indicating possible effects of outbreeding depression between more distant genomes of parents from distinct populations.
Collapse
Affiliation(s)
- Pauline Hélène Garnier-Géré
- INRA Recherches Forestières. U. R. Génétique et Amélioration des Arbres Forestiers. BP 45. 33 611 GAZINET cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The causes of inbreeding depression and the converse phenomenon of heterosis or hybrid vigor remain poorly understood despite their scientific and agricultural importance. In bivalve molluscs, related phenomena, marker-associated heterosis and distortion of marker segregation ratios, have been widely reported over the past 25 years. A large load of deleterious recessive mutations could explain both phenomena, according to the dominance hypothesis of heterosis. Using inbred lines derived from a natural population of Pacific oysters and classical crossbreeding experiments, we compare the segregation ratios of microsatellite DNA markers at 6 hr and 2-3 months postfertilization in F(2) or F(3) hybrid families. We find evidence for strong and widespread selection against identical-by-descent marker homozygotes. The marker segregation data, when fit to models of selection against linked deleterious recessive mutations and extrapolated to the whole genome, suggest that the wild founders of inbred lines carried a minimum of 8-14 highly deleterious recessive mutations. This evidence for a high genetic load strongly supports the dominance theory of heterosis and inbreeding depression and establishes the oyster as an animal model for understanding the genetic and physiological causes of these economically important phenomena.
Collapse
Affiliation(s)
- S Launey
- University of California, Davis, Bodega Marine Laboratory, Bodega Bay, California 94923-0247, USA
| | | |
Collapse
|
12
|
Legay JM, Heizmann A, Thiriot-Quiévreux C. [Asymmetry and growth rate of the shell valves in juveniles of Crassostrea gigas Thünberg]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2000; 323:537-42. [PMID: 10923209 DOI: 10.1016/s0764-4469(00)00164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thanks to a sampling of juvenile oysters with different growth rates (slow, medium and fast), a subtle biometrical study of their shell evolution is described distinguishing the two valves. We conclude that all the phenomena are dominated by the early establishment of a directional asymmetry, which rapidly becomes so large that we should consider dissymmetry. The clearest relationship is revealed to be that between the weakness of the growth rate and the degree of the relative dissymetry between the weights of the valves. This result is to be compared with the highly debated relationship between the asymmetry and the growth rate. The existence and interpretation of both of these phenomena have led to many publications.
Collapse
Affiliation(s)
- J M Legay
- Laboratoire de biométrie et biologie évolutive, UMR 5558 du CNRS, université Claude-Bernard-Lyon-1, Villeurbanne, France.
| | | | | |
Collapse
|
13
|
Abstract
Heterozygosity-fitness correlations (HFC) have been studied in various organisms for more than two decades, but they are not universal. Although their detectability is limited by several factors (null alleles, inaccuracy of the phenotypic description of fitness, small sample sizes) the correlations appear intrinsically weak and often inconsistent across samples. Determining the origins of HFC is therefore a complex task. However, this issue might soon be resolved provided clear hypotheses and definitions are used (especially, if the problem of the neutrality of allozyme variation is not identified with the related issue of HFC), as well as new empirical (molecular markers) & theoretical (statistical models) tools.
Collapse
Affiliation(s)
- P David
- Institut des Sciences de l'Evolution, Université Montpellier II, France.
| |
Collapse
|