1
|
Zhu C, Yan Y, Feng Y, Sun J, Mu M, Yang Z. Genome-Wide Analysis Reveals Key Genes and MicroRNAs Related to Pathogenic Mechanism in Wuchereria bancrofti. Pathogens 2024; 13:1088. [PMID: 39770348 PMCID: PMC11678661 DOI: 10.3390/pathogens13121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Wuchereria bancrofti is a parasite transmitted by mosquitoes and can cause a neglected tropical disease called Lymphatic filariasis. However, the genome of W. bancrofti was not well studied, making novel drug development difficult. This study aims to identify microRNA, annotate protein function, and explore the pathogenic mechanism of W. bancrofti by genome-wide analysis. Novel miRNAs were identified by analysis of expressed sequence tags (ESTs) from this parasite. Protein homology was obtained by a bidirectional best-hit strategy using BLAST. By an EST-based method, we identified 20 novel miRNAs in the genome. The AU content of these miRNAs ranged from 39.7% to 80.0%, with a mean of 52.9%. Among them, 14 miRNA homologs were present in mammal genomes, while six miRNA homologs were present in non-mammal genomes. By conducting a detailed sequence alignment using BLAST, we have successfully annotated the functions of 75 previously unannotated proteins, enhancing our understanding of the proteome and potentially revealing new targets for therapy. Homology distribution analysis indicated that a set of critical proteins were present in parasites and mosquitoes, but not present in mammals. By searching the literature, ten proteins were found to be involved in the pathogenic infection process of W. bancrofti. In addition, the miRNA-gene network analysis indicated that two pathogenic genes (CALR and HMGB2) are regulated by newly identified miRNAs. These genes were supposed to play key roles in the infection mechanism of W. bancrofti. In conclusion, our genome-wide analysis provided new clues for the prevention and treatment of W. bancrofti infection.
Collapse
Affiliation(s)
- Caoli Zhu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yicheng Yan
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yaning Feng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiawei Sun
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mingdao Mu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Das NC, Gorai S, Gupta PSS, Panda SK, Rana MK, Mukherjee S. Immune targeting of filarial glutaredoxin through a multi-epitope peptide-based vaccine: A reverse vaccinology approach. Int Immunopharmacol 2024; 133:112120. [PMID: 38657497 DOI: 10.1016/j.intimp.2024.112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Sampa Gorai
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences & Bioengineering, D. Y. Patil International University, Akurdi, Pune 411044, India
| | - Saroj Kumar Panda
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Malay Kumar Rana
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India.
| |
Collapse
|
3
|
Das NC, Sen Gupta PS, Biswal S, Patra R, Rana MK, Mukherjee S. In-silico evidences on filarial cystatin as a putative ligand of human TLR4. J Biomol Struct Dyn 2021; 40:8808-8824. [PMID: 33955317 DOI: 10.1080/07391102.2021.1918252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cystatin is a small molecular weight immunomodulatory protein of filarial parasite that plays a pivotal role in downregulating the host immune response to prolong the survival of the parasite inside the host body. Hitherto, this protein is familiar as an inhibitor of human proteases. However, growing evidences on the role of cystatin in regulating inflammatory homeostasis prompted us to investigate the molecular reasons behind the explicit anti-inflammatory trait of this protein. We have explored molecular docking and molecular dynamics simulation approaches to explore the interaction of cystatin of Wuchereria bancrofti (causative parasite of human filariasis) with human Toll-like receptors (TLRs). TLRs are the most crucial component of frontline host defence against pathogenic infections including filarial infection. Our in-silico data clearly revealed that cystatin strongly interacts with the extracellular domain of TLR4 (binding energy=-93.5 ± 10 kJ/mol) and this biophysical interaction is mediated by hydrogen bonding and hydrophobic interaction. Molecular dynamics simulation analysis revealed excellent stability of the cystatin-TLR4 complex. Taken together, our data indicated that cystatin appears to be a ligand of TLR4 and we hypothesize that cystatin-TLR4 interaction most likely to play a key role in activating the alternative activation pathways to establish an anti-inflammatory milieu. Thus, the study provokes the development of chemotherapeutics and/or vaccines for targeting the cystatin-TLR4 interaction to disrupt the pathological attributes of human lymphatic filariasis. Our findings are expected to provide a novel dimension to the existing knowledge on filarial immunopathogenesis and it will encourage the scientific communities for experimental validation of the present investigation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
4
|
Therapeutic Efficacy of Anti-Bestrophin Antibodies against Experimental Filariasis: Immunological, Immune-Informatics and Immune Simulation Investigations. Antibodies (Basel) 2021; 10:antib10020014. [PMID: 33920596 PMCID: PMC8167583 DOI: 10.3390/antib10020014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/05/2022] Open
Abstract
Lymphatic filariasis (LF) is a debilitating parasitic disease caused by filarial parasites and it is prevalent across the underprivileged population throughout the globe. The inadequate efficacy of the existing treatment options has provoked the conception of alternative strategies, among which immunotherapy is steadily emerging as a promising option. Herein, we demonstrate the efficacy of an antibody-based immunotherapeutic approach in an experimental model of filariasis, i.e., Wistar rat infected with Setaria cervi (a model filarial parasite). The polyclonal antibodies were raised against filarial surface antigen bestrophin protein (FSAg) in mice using the purified Wuchereria bancrofti FSAg. The adoptive transfer of anti-FSAg antibody-containing serum resulted in the significant reduction of parasite burden in filaria-infected rats. Intriguingly, anti-FSAg sera-treated animals also displayed a reduction in the level of proinflammatory cytokines as compared to the infected but untreated group. Furthermore, our in silico immunoinformatics data revealed eight B-cell epitopes and several T-cell epitopes in FSAg and these epitopes were linked to form a refined antigen in silico. The immune simulation suggested IgM and IgG1 as the predominant immunoglobulins induced in response to FSAg. Taken together, our experimental and simulation data collectively indicated a therapeutic potential of anti-FSAg sera against LF.
Collapse
|
5
|
Mukherjee S, Karnam A, Das M, Babu SPS, Bayry J. Wuchereria bancrofti filaria activates human dendritic cells and polarizes T helper 1 and regulatory T cells via toll-like receptor 4. Commun Biol 2019; 2:169. [PMID: 31098402 PMCID: PMC6505026 DOI: 10.1038/s42003-019-0392-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Interaction between innate immune cells and parasite plays a key role in the immunopathogenesis of lymphatic filariasis. Despite being professional antigen presenting cells critical for the pathogen recognition, processing and presenting the antigens for mounting T cell responses, the dendritic cell response and its role in initiating CD4+ T cell response to filaria, in particular Wuchereria bancrofti, the most prevalent microfilaria is still not clear. Herein, we demonstrate that a 70 kDa phosphorylcholine-binding W. bancrofti sheath antigen induces human dendritic cell maturation and secretion of several pro-inflammatory cytokines. Further, microfilarial sheath antigen-stimulated dendritic cells drive predominantly Th1 and regulatory T cell responses while Th17 and Th2 responses are marginal. Mechanistically, sheath antigen-induced dendritic cell maturation, and Th1 and regulatory T cell responses are mediated via toll-like receptor 4 signaling. Our data suggest that W. bancrofti sheath antigen exploits dendritic cells to mediate distinct CD4+ T cell responses and immunopathogenesis of lymphatic filariasis.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Antigens, Helminth/pharmacology
- Cell Differentiation
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/parasitology
- Elephantiasis, Filarial/genetics
- Elephantiasis, Filarial/immunology
- Elephantiasis, Filarial/parasitology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression Regulation
- Host-Parasite Interactions/immunology
- Humans
- Immunity, Innate
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Lymphocyte Activation
- Microfilariae/genetics
- Microfilariae/immunology
- Microfilariae/pathogenicity
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/parasitology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/parasitology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/parasitology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/parasitology
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Wuchereria bancrofti/genetics
- Wuchereria bancrofti/immunology
- Wuchereria bancrofti/pathogenicity
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, 731235 India
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
- Present Address: Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340 India
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
| | - Santi P. Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, 731235 India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| |
Collapse
|