1
|
Henao Rincón MA, Pulido Arias EA, Pachon Rojas C, Gonzalez Orozco A, Bolaños Lopez C, Arango García V, Uribe Escobar A, Velez Duncan CA. Exploring the Potential of Stem Cells: A Systematic Review on Cellular Therapy for Sensorineural Hearing Loss. Cureus 2025; 17:e77286. [PMID: 39931625 PMCID: PMC11810136 DOI: 10.7759/cureus.77286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Sensorineural hearing loss affects a significant portion of the global population, with its prevalence projected to rise sharply in the coming years. Most cases involve the degeneration of hair cells and spiral ganglion neurons within the inner ear, and current therapeutic options for hearing rehabilitation offer limited efficacy with variable outcomes among patients. This systematic review evaluates the existing evidence on stem cell therapy as an intervention for hearing loss, focusing on its impact on hearing restoration, quality of life, and safety. A thorough search of electronic databases and clinical trial registries identified randomized and quasi-randomized studies on this topic. Eight studies met the inclusion criteria, investigating various types of stem cells such as embryonic, umbilical cord, and inner ear cells administered intravenously or directly into the inner ear. Most studies used animal models to simulate hearing loss, while one was conducted in humans. Findings on hearing improvement were mixed, with some studies reporting significant improvements in hearing thresholds and others showing no effect. The safety of stem cell therapy was assessed in a single human study, which noted no significant adverse effects. While the results indicate potential therapeutic value, further human studies with standardized protocols and larger sample sizes are necessary to clarify the safety and effectiveness of stem cell therapy for sensorineural hearing loss.
Collapse
|
2
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
3
|
Hoppe U, Hesse G. Hearing aids: indications, technology, adaptation, and quality control. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2017; 16:Doc08. [PMID: 29279726 PMCID: PMC5738937 DOI: 10.3205/cto000147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hearing loss can be caused by a number of different pathological conditions. Some of them can be successfully treated, mainly by surgery, depending on the individual's disease process. However, the treatment of chronic sensorineural hearing loss with damaged cochlear structures usually needs hearing rehabilitation by means of technical amplification. During the last two decades tremendous improvements in hearing aid technology led to a higher quality of the hearing rehabilitation process. For example, due to sophisticated signal processing acoustic feedback could be reduced and hence open fitting options are available even for more subjects with higher degrees of hearing loss. In particular for high-frequency hearing loss, the use of open fitting is an option. Both the users' acceptance and the perceived sound quality were significantly increased by open fittings. However, we are still faced with a low level of readiness in many hearing impaired subjects to accept acoustic amplification. Since ENT specialists play a key-role in hearing aid provision, they should promote early hearing aid rehabilitation and include this in the counselling even in subjects with mild and moderate hearing loss. Recent investigations demonstrated the benefit of early hearing aid use in this group of patients since this may help to reduce subsequent damages as auditory deprivation, social isolation, development of dementia, and cognitive decline. For subjects with tinnitus, hearing aids may also support masking by environmental sounds and enhance cortical inhibition. The present paper describes the latest developments of hearing aid technology and the current state of the art for amplification modalities. Implications for both hearing aid indication and provision are discussed.
Collapse
Affiliation(s)
- Ulrich Hoppe
- Section of Audiology, Department of Otolaryngology, Head and Neck Surgery, University of Erlangen, Germany
| | - Gerhard Hesse
- Tinnitus Department, Hospital of Bad Arolsen, University of Witten-Herdecke, Germany
| |
Collapse
|
4
|
Almeida-Branco MS, Cabrera S, Lopez-Escamez JA. Perspectivas para el tratamiento de la hipoacusia neurosensorial mediante regeneración celular del oído interno. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2015; 66:286-95. [DOI: 10.1016/j.otorri.2014.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
|
5
|
Perspectives for the Treatment of Sensorineural Hearing Loss by Cellular Regeneration of the Inner Ear. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2015. [DOI: 10.1016/j.otoeng.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Abstract
BACKGROUND Tissue engineering using biocompatible scaffolds, with or without cells, can permit surgeons to restore structure and function following tissue resection or in cases of congenital abnormality. Tracheal regeneration has emerged as a spearhead application of these technologies, whilst regenerative therapies are now being developed to treat most other diseases within otolaryngology. METHODS AND RESULTS A systematic review of the literature was performed using Ovid Medline and Ovid Embase, from database inception to 15 November 2014. A total of 561 papers matched the search criteria, with 76 fulfilling inclusion criteria. Articles were predominantly pre-clinical animal studies, reflecting the current status of research in this field. Several key human research articles were identified and discussed. CONCLUSION The main issues facing research in regenerative surgery are translation of animal model work into human models, increasing stem cell availability so it can be used to further research, and development of better facilities to enable implementation of these advances.
Collapse
|
7
|
|
8
|
Lou X, Xie J, Wang X, Yang L, Zhang Y. Comparison of sphere-forming capabilities of the cochlear stem cells derived from apical, middle and basal turns of murine organ of Corti. Neurosci Lett 2014; 579:1-6. [DOI: 10.1016/j.neulet.2014.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
9
|
Novozhilova E, Olivius P, Siratirakun P, Lundberg C, Englund-Johansson U. Neuronal differentiation and extensive migration of human neural precursor cells following co-culture with rat auditory brainstem slices. PLoS One 2013; 8:e57301. [PMID: 23505423 PMCID: PMC3591396 DOI: 10.1371/journal.pone.0057301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.
Collapse
Affiliation(s)
- Ekaterina Novozhilova
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Petri Olivius
- Department of ENT—Head and Neck Surgery, UHL, County Council of Östergötland, Linköping, Sweden
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Piyaporn Siratirakun
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrica Englund-Johansson
- Department of Ophthalmology, Institution of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|