1
|
Li N, Li H, Feng D, Li M, Han D, Liu T, Wang J. Anti-Diabetic Effect of Soy-Whey Dual-Protein on Mice with Type 2 Diabetes Mellitus Through INS/IRS1/PI3K Signaling Pathway. Foods 2025; 14:2115. [PMID: 40565724 DOI: 10.3390/foods14122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2025] [Revised: 06/10/2025] [Accepted: 06/13/2025] [Indexed: 06/28/2025] Open
Abstract
The effects of soy protein and whey protein supplementation on glycemic control show inconsistency, and the mechanisms underlying the impact of a high-protein diet on blood glucose regulation remain unclear. This study aimed to explore the impact of a dual-protein (DP) blend comprising soy protein isolate (SPI) and whey protein concentrate (WPC), processed through high-pressure homogenization, on mice with Type 2 diabetes mellitus (T2DM) and its potential mechanisms. In the in vitro experiments, an insulin-resistant (IR) HepG2 cell model was treated with DP, resulting in a significant enhancement of glucose uptake and upregulation of IRS1 and GLUT4 expression. For the in vivo experiments, male C57BL/6J mice were randomly assigned into four groups (n = 6) based on body weight: normal control, T2DM model group, Metformin-treated group, and DP-treated group. Following a 5-week feeding period, Metformin and DP significantly reduced levels of blood sugar, AUC, TC, TG, and LDL-C in T2DM mice. Additionally, TP and ALB levels in the DP group were notably higher in the model group. In the liver and pancreas, DP alleviated histopathological changes and promoted liver glycogen synthesis in T2DM mice. Moreover, the levels of IRS1 and PI3K in the livers of mice in the DP group were significantly higher than those in the model group. Compared with the model groups, DP significantly reduced the expression of CD45 and increased the expression of CD206 in the pancreas of mice. Furthermore, 16S rRNA analysis revealed that DP altered the composition of the gut microbiota in diabetic mice, increasing the relative abundance of Lactobacillus, Parvibacter, and Lactobacillaceae. This suggested that DP could alleviate functional metabolic disorders in the gut and potentially reverse the risk of related complications. In conclusion, soy whey dual-protein may have an effective nutritional therapeutic effect on T2DM mice by regulating lipid metabolism, the INS/IRS1/PI3K signaling pathway, and gut microbiota.
Collapse
Affiliation(s)
- Na Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hu Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Mengjie Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Di Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tianxin Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
2
|
Prokopidis K, Morgan PT, Veronese N, Morwani-Mangnani J, Triantafyllidis KK, Kechagias KS, Roberts J, Hurst C, Stevenson E, Vlachopoulos D, Witard OC. The effects of whey protein supplementation on indices of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2025; 44:109-121. [PMID: 39647241 DOI: 10.1016/j.clnu.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION The increasing prevalence of cardiometabolic diseases highlights the urgent need for practical interventions to mitigate their associated public health burden. Whey protein supplementation has emerged as a potential intervention for improving markers of cardiometabolic health. The aim of this systematic review and meta-analysis was to examine the effect of whey protein ingestion on cardiometabolic profile in adults. METHODS A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library from inception until June 2024. Eligible RCTs compared the effect of whey protein supplementation compared to placebo or a carbohydrate-based control on markers of cardiometabolic health. Using the random effects inverse-variance model, we estimated the mean difference (MD) in blood pressure, high- and low-density lipoproteins (HDL-cholesterol, LDL-cholesterol), total cholesterol, triglycerides, and homeostatic model assessment for insulin resistance (HOMA-IR) index. RESULTS This meta-analysis included 21 RCTs. Whey protein supplementation had no effect on HDL-cholesterol concentration but did elicit a reduction in LDL-cholesterol in individuals aged <50 years (P < 0.01) and when combined with exercise (MD: -5.38, 95 % confidence interval (95 % CI): -8.87 to -1.88, I2 = 0 %, P < 0.01). Total cholesterol was reduced with interventions that combined whey protein supplementation and exercise (MD: -8.58, -14.32 to -2.83, I2 = 55 %, P < 0.01), irrespective of age, protein dose, and body mass index ≥25 kg/m2 (MD: -6.71, 95 % CI: -11.60 to -1.83, I2 = 74 %, P < 0.01). Whey protein supplementation of ≥12 weeks was associated with reduced triglyceride levels (MD: -6.61, 95 % CI: -11.06 to -2.17, I2 = 70 %, P < 0.01). There was no clinically relevant effect of whey protein supplementation on blood pressure and HOMA-IR, however, changes pertinent to HDL-cholesterol, total cholesterol, and triglyceride reduction were primarily displayed in healthy adults. CONCLUSIONS Whey protein supplementation may be an effective intervention for reducing LDL and total cholesterol levels, particularly in healthy, overweight/obese adults aged <50 years, with the greatest benefits observed when combined with exercise. Healthy adults also showed a benefit regarding triglyceride levels.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool Heart and Chest Hospital, Liverpool, UK.
| | - Paul T Morgan
- Department of Sport and Exercise Sciences, Institute of Sport, 99 Oxford Road, Manchester Metropolitan University, Manchester, UK
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
| | - Jordi Morwani-Mangnani
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Konstantinos S Kechagias
- Department of Obstetrics and Gynaecology, The Hillingdon Hospitals NHS Foundation Trust, Uxbridge, UK
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Christopher Hurst
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria Northumberland Tyne and Wear NHS Foundation Trust and Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, UK
| | - Emma Stevenson
- Human Nutrition and Exercise Research Centre, School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Department of Public Health and Sport Science, University of Exeter, Exeter, UK
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Pickering RT, Yiannakou I, Lara-Castor L, Bradlee ML, Singer MR, Moore LL. Individual and Joint Associations Between Animal and Plant Protein Intakes with Impaired Fasting Glucose and Type 2 Diabetes in the Framingham Offspring Study. Nutrients 2024; 17:83. [PMID: 39796517 PMCID: PMC11723152 DOI: 10.3390/nu17010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVES Given the considerable discrepancy in the literature regarding dietary protein and glucose homeostasis, we examined the prospective association between protein intake (total, animal, plant) and risk of type 2 diabetes mellitus or impaired fasting glucose (IFG). We also examined whether these associations differed by sex, body weight, or other risk factors. METHODS We included 1423 subjects, aged ≥ 30 years, in the Framingham Offspring Study cohort. Three-day dietary records at exams 3 and 5 were used to average protein intake and then adjusted for body weight residuals. Cox proportional hazard models were used to estimate hazard ratios (HR), adjusting for anthropometric, demographic, and lifestyle factors over ~16 years of follow-up. RESULTS Subjects with the highest total protein intakes (≥100 g men; ≥85 g women) had a 31% lower risk of type 2 diabetes/IFG (95% CI: 0.54, 0.87). The highest (vs. lowest) category of intake of animal protein was associated with a 32% lower risk of diabetes/IFG (95% CI: 0.55, 0.83), whereas plant protein was not. Beneficial trends of total protein, especially animal, were stronger for women (HR: 0.61; 95% CI: 0.42, 0.87) than for men (HR: 0.82; 95% CI 0.58, 1.15). Subjects with lower BMI who consumed more protein had the lowest risks of diabetes/IFG. CONCLUSIONS Overall, in this prospective study, higher intake of total dietary protein, including the consumption of animal protein, particularly among individuals with lower BMI and higher physical activity levels, was inversely associated with risk of incident type 2 diabetes and IFG.
Collapse
Affiliation(s)
- R. Taylor Pickering
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Ioanna Yiannakou
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Laura Lara-Castor
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - M. Loring Bradlee
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Martha R. Singer
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Lynn L. Moore
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| |
Collapse
|
4
|
Jeevarathinam G, Ramniwas S, Singh P, Rustagi S, Mohammed Basheeruddin Asdaq S, Pandiselvam R. Macromolecular, thermal, and nonthermal technologies for reduction of glycemic index in food-A review. Food Chem 2024; 445:138742. [PMID: 38364499 DOI: 10.1016/j.foodchem.2024.138742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Consumers rely on product labels to make healthy choices, especially with regard to the glycemic index (GI) and glycemic load (GL), which identify foods that stabilize blood sugar. Employing both thermal and nonthermal processing techniques can potentially reduce the GI, contributing to improved blood sugar regulation and overall metabolic health. This study concentrates on the most current advances in GI-reduction food processing technologies. Food structure combines fiber, healthy fats, and proteins to slow digestion, reducing GI. The influence of thermal approaches on the physical and chemical modification of starch led to decreased GI. The duration of heating and the availability of moisture also determine the degree of hydrolysis of starch and the glycemic effects on food. At a lower temperature, the parboiling revealed less gelatinization and increased moisture. The internal temperature of the product is raised during thermal and nonthermal treatment, speeds up retrogradation, and reduces the rate of starch breakdown.
Collapse
Affiliation(s)
- G Jeevarathinam
- Department of Food Technology, Hindusthan College of Engineering and Technology, Coimbatore 641 032, Tamil Nadu, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Uttar Pradesh 281406, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod-671 124, Kerala, India.
| |
Collapse
|
5
|
Prokopidis K, Kirwan RP, Giannos P, Triantafyllidis KK, Kechagias KS, Forbes SC, Candow DG. The impact of branched-chain amino acid supplementation on measures of glucose homeostasis in individuals with hepatic disorders: A systematic review of clinical studies. J Hum Nutr Diet 2022; 36:603-611. [PMID: 35996869 DOI: 10.1111/jhn.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Branched chain amino acid (BCAA) supplementation may influence glucose metabolism in individuals with impaired glycemic profile. This systematic review investigated the effects of isolated BCAA supplementation on measures of glucose homeostasis in individuals with hepatic disorders. METHODS We searched PubMed, Web of Science, Cochrane Library, and Scopus for published clinical trials that investigated the effects of isolated BCAA supplementation on measures of glucose homeostasis, including serum glucose and insulin, glycated hemoglobin (HbA1c) levels, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) scores. RESULTS Eleven trials met the inclusion criteria. Only one study revealed a decrease in serum glucose from BCAA supplementation compared to three studies that showed increases. Five studies demonstrated no significant changes in serum glucose, and two studies displayed no changes in HbA1c following BCAA supplementation. Serum levels of insulin were decreased in three studies, remained unchanged in one, whilst increased in the remaining three studies. BCAA supplementation reduced HOMA-IR scores in two studies, increased HOMA-IR scores in another two or resulted in no changes in two other studies. CONCLUSIONS BCAA supplementation in isolation had no effect on overall glucose homeostasis in individuals with hepatic disorders, although some improvements on serum insulin levels and HOMA-IR scores were observed. Overall, there is little evidence to support the utilization of BCAA supplementation as a potential nutritional strategy for improving measures of glucose homeostasis in individuals with hepatic disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Richard P Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Panagiotis Giannos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | - Konstantinos S Kechagias
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK.,Department of Nutrition & Dietetics, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Scott C Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
6
|
Ni Y, Zheng A, Hu Y, Rong N, Zhang Q, Long W, Yang S, Nan S, Zhang L, Zhou K, Wu T, Fu Z. Compound dietary fiber and high-grade protein diet improves glycemic control and ameliorates diabetes and its comorbidities through remodeling the gut microbiota in mice. Front Nutr 2022; 9:959703. [PMID: 35958251 PMCID: PMC9363113 DOI: 10.3389/fnut.2022.959703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary intervention with a low glycemic index and full nutritional support is emerging as an effective strategy for diabetes management. Here, we found that the treatment of a novel compound dietary fiber and high-grade protein diet (CFP) improved glycemic control and insulin resistance in streptozotocin-induced diabetic mice, with a similar effect to liraglutide. In addition, CFP treatment ameliorated diabetes-related metabolic syndromes, such as hyperlipidemia, hepatic lipid accumulation and adipogenesis, systemic inflammation, and diabetes-related kidney damage. These results were greatly associated with enhanced gut barrier function and altered gut microbiota composition and function, especially those bacteria, microbial functions, and metabolites related to amino acid metabolism. Importantly, no adverse effect of CFP was found in our study, and CFP exerted a wider arrange of protection against diabetes than liraglutide. Thereby, fortification with balanced dietary fiber and high-grade protein, like CFP, might be an effective strategy for the management and treatment of diabetes.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Aqian Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yating Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Nianke Rong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qianpeng Zhang
- Polaris Health Life Science Research Center, Zhejiang University of Technology, Hangzhou, China
| | - Wenmin Long
- Polaris Health Life Science Research Center, Zhejiang University of Technology, Hangzhou, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sujie Nan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqian Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kexin Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tianxing Wu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Gordon RA, Zumbro EL, Castleberry TJ, Sokoloski ML, Brisebois MF, Irvine CJ, Duplanty AA, Ben-Ezra V. Whey protein improves glycemia during an oral glucose tolerance test compared to vigorous-intensity aerobic exercise in young adult men. BMC Sports Sci Med Rehabil 2022; 14:147. [PMID: 35907903 PMCID: PMC9338680 DOI: 10.1186/s13102-022-00540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Both aerobic exercise and whey protein can improve glucose regulation. The purpose of this study was to investigate how a single bout of vigorous-intensity aerobic exercise and whey protein, independently, as well as when combined, influence glycemia during an oral glucose tolerance test in sedentary, young men. METHODS Healthy males (n = 11) completed four randomized trials: no exercise/no whey protein (R); exercise (EX; walking at 70% VO2max for 60 min); 50 g of whey protein (W); and exercise combined with 50 g of whey protein (EXW). Each trial included a 75 g oral glucose tolerance test (OGTT) that was completed after an overnight fast. Blood samples were collected over a two-hour period during the OGTT. For EX and EXW, the exercise was performed the evening before the OGTT and the 50 g of whey protein was dissolved in 250 mL of water and was consumed as a preload 30 min prior to the OGTT. For R and EX, participants consumed 250 mL of water prior to the OGTT. Plasma samples were analyzed for glucose, insulin, C-peptide, glucagon, gastric inhibitory peptide (GIP) and glucagon like peptide 1 (GLP-1), and postprandial incremental area under the curve (iAUC) was calculated for each. RESULTS Glucose iAUC was reduced during W (- 32.9 ± 22.3 mmol/L) compared to R (122.7 ± 29.8 mmol/L; p < 0.01) and EX (154.3 ± 29.2 mmol/L; p < 0.01). Similarly, glucose iAUC was reduced for EXW (17.4 ± 28.9 mmol/L) compared to R and EX (p < 0.01 for both). There were no differences in iAUC for insulin, C-peptide, GIP, GLP-1, and glucagon between the four trials. Insulin, C-peptide, glucagon, GIP, and GLP-1 were elevated during the whey protein preload period for W and EXW compared to EX and R (p < 0.01). There were no differences for insulin, C-peptide, glucagon, GIP, or GLP-1 between trials for the remaining duration of the OGTT. CONCLUSIONS Glucose responses during an oral glucose tolerance test were improved for W compared to EX. There were no additional improvements in glucose responses when vigorous-intensity aerobic exercise was combined with whey protein (EXW).
Collapse
Affiliation(s)
- Ryan A Gordon
- Department of Biology, Drury University, Springfield, MO, USA.
| | - Emily L Zumbro
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Matthew L Sokoloski
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Matthew F Brisebois
- Department of Human Performance and Health, University of South Carolina Upstate, Spartanburg, SC, USA
| | - Christopher J Irvine
- Department of Health and Human Performance, Rocky Mountain College, Billings, MT, USA
| | - Anthony A Duplanty
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Vic Ben-Ezra
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| |
Collapse
|
8
|
Oberoi A, Giezenaar C, Rigda RS, Lange K, Horowitz M, Jones KL, Chapman I, Soenen S. Comparative Effects of Co-Ingesting Whey Protein and Glucose Alone and Combined on Blood Glucose, Plasma Insulin and Glucagon Concentrations in Younger and Older Men. Nutrients 2022; 14:3111. [PMID: 35956288 PMCID: PMC9370714 DOI: 10.3390/nu14153111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The ingestion of dietary protein with, or before, carbohydrate may be a useful strategy to reduce postprandial hyperglycemia, but its effect in older people, who have an increased predisposition for type 2 diabetes, has not been clarified. Blood glucose, plasma insulin and glucagon concentrations were measured for 180 min following a drink containing either glucose (120 kcal), whey-protein (120 kcal), whey-protein plus glucose (240 kcal) or control (~2 kcal) in healthy younger (n = 10, 29 ± 2 years; 26.1 ± 0.4 kg/m2) and older men (n = 10, 78 ± 2 years; 27.3 ± 1.4 kg/m2). Mixed model analysis was used. In both age groups the co-ingestion of protein with glucose (i) markedly reduced the increase in blood glucose concentrations following glucose ingestion alone (p < 0.001) and (ii) had a synergistic effect on the increase in insulin concentrations (p = 0.002). Peak insulin concentrations after protein were unaffected by ageing, whereas insulin levels after glucose were lower in older than younger men (p < 0.05) and peak insulin concentrations were higher after glucose than protein in younger (p < 0.001) but not older men. Glucagon concentrations were unaffected by age. We conclude that the ability of whey-protein to reduce carbohydrate-induced postprandial hyperglycemia is retained in older men and that protein supplementation may be a useful strategy in the prevention and management of type 2 diabetes in older people.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (A.O.); (R.S.R.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Caroline Giezenaar
- Food Experience and Sensory Testing (FEAST) Laboratory, School of Food & Advanced Technology, Massey University, Palmerston North 9430, New Zealand;
| | - Rachael S. Rigda
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (A.O.); (R.S.R.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (A.O.); (R.S.R.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (A.O.); (R.S.R.); (K.L.); (M.H.); (K.L.J.); (I.C.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (A.O.); (R.S.R.); (K.L.); (M.H.); (K.L.J.); (I.C.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (A.O.); (R.S.R.); (K.L.); (M.H.); (K.L.J.); (I.C.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (A.O.); (R.S.R.); (K.L.); (M.H.); (K.L.J.); (I.C.)
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia
| |
Collapse
|
9
|
Nouri M, Pourghassem Gargari B, Tajfar P, Tarighat-Esfanjani A. A systematic review of whey protein supplementation effects on human glycemic control: A mechanistic insight. Diabetes Metab Syndr 2022; 16:102540. [PMID: 35772356 DOI: 10.1016/j.dsx.2022.102540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/AIMS Some studies showed that dietary factors such as whey protein (WP) are effective on glycemic regulation. Due to the current controversy about WP effects and mechanisms of its action on glycemic control, we conducted this systematic review to shed light on the subject. METHODS Web of Science, Medline (Pubmed), and Scopus online databases were searched from 2012 up to February 2022 using the following keywords: "whey protein" and "glycemic control"/"glycemia"/"glucose"/"insulin". The search included original English articles, human clinical trials with WP supplementation and measurement of glucose or insulin as an outcome, studies on healthy individuals/patients with diabetes mellitus (DM)/impaired fasting glucose (IFG). RESULTS Title/abstract of 1991 studies were reviewed. After excluding studies due to inappropriate full title and duplication, and exercising inclusion criteria, 58 studies were reviewed in detail. Ample evidence showed that WP decreased postprandial glucose incremental area under the curve (iAUC) and increased iAUCs of insulin and incretin hormones. WP affects glycemic control mainly through stimulating insulin and incretins secretion, slowing gastric emptying, and appetite suppression. CONCLUSION Although most of the recent evidence showed beneficial effects of WP supplementation on glycemic response, further long-term clinical trials are required which assess the long-term impact of WP supplementation and its exact mechanisms.
Collapse
Affiliation(s)
- Maryam Nouri
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran; Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| | - Pedram Tajfar
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| |
Collapse
|
10
|
Chiang SW, Liu HW, Loh EW, Tam KW, Wang JY, Huang WL, Kuan YC. Whey protein supplementation improves postprandial glycemia in persons with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Nutr Res 2022; 104:44-54. [DOI: 10.1016/j.nutres.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
|
11
|
Joblin-Mills A, Wu Z, Fraser K, Jones B, Yip W, Lim JJ, Lu L, Sequeira I, Poppitt S. The impact of ethnicity and intra-pancreatic fat on the postprandial metabolome response to whey protein in overweight Asian Chinese and European Caucasian women with prediabetes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:980856. [PMID: 36992769 PMCID: PMC10012149 DOI: 10.3389/fcdhc.2022.980856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 03/31/2023]
Abstract
The "Thin on the Outside Fat on the Inside" TOFI_Asia study found Asian Chinese to be more susceptible to Type 2 Diabetes (T2D) compared to European Caucasians matched for gender and body mass index (BMI). This was influenced by degree of visceral adipose deposition and ectopic fat accumulation in key organs, including liver and pancreas, leading to altered fasting plasma glucose, insulin resistance, and differences in plasma lipid and metabolite profiles. It remains unclear how intra-pancreatic fat deposition (IPFD) impacts TOFI phenotype-related T2D risk factors associated with Asian Chinese. Cow's milk whey protein isolate (WPI) is an insulin secretagogue which can suppress hyperglycemia in prediabetes. In this dietary intervention, we used untargeted metabolomics to characterize the postprandial WPI response in 24 overweight women with prediabetes. Participants were classified by ethnicity (Asian Chinese, n=12; European Caucasian, n=12) and IPFD (low IPFD < 4.66%, n=10; high IPFD ≥ 4.66%, n=10). Using a cross-over design participants were randomized to consume three WPI beverages on separate occasions; 0 g (water control), 12.5 g (low protein, LP) and 50 g (high protein, HP), consumed when fasted. An exclusion pipeline for isolating metabolites with temporal (T0-240mins) WPI responses was implemented, and a support vector machine-recursive feature elimination (SVM-RFE) algorithm was used to model relevant metabolites by ethnicity and IPFD classes. Metabolic network analysis identified glycine as a central hub in both ethnicity and IPFD WPI response networks. A depletion of glycine relative to WPI concentration was detected in Chinese and high IPFD participants independent of BMI. Urea cycle metabolites were highly represented among the ethnicity WPI metabolome model, implicating a dysregulation in ammonia and nitrogen metabolism among Chinese participants. Uric acid and purine synthesis pathways were enriched within the high IPFD cohort's WPI metabolome response, implicating adipogenesis and insulin resistance pathways. In conclusion, the discrimination of ethnicity from WPI metabolome profiles was a stronger prediction model than IPFD in overweight women with prediabetes. Each models' discriminatory metabolites enriched different metabolic pathways that help to further characterize prediabetes in Asian Chinese women and women with increased IPFD, independently.
Collapse
Affiliation(s)
- Aidan Joblin-Mills
- Food Chemistry and Structure Team, Agresearch, Palmerston North, New Zealand
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- *Correspondence: Aidan Joblin-Mills,
| | - Zhanxuan Wu
- Food Chemistry and Structure Team, Agresearch, Palmerston North, New Zealand
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | - Karl Fraser
- Food Chemistry and Structure Team, Agresearch, Palmerston North, New Zealand
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Beatrix Jones
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Wilson Yip
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jia Jiet Lim
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Louise Lu
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ivana Sequeira
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally Poppitt
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Kirk B, Mooney K, Vogrin S, Jackson M, Duque G, Khaiyat O, Amirabdollahian F. Leucine-enriched whey protein supplementation, resistance-based exercise, and cardiometabolic health in older adults: a randomized controlled trial. J Cachexia Sarcopenia Muscle 2021; 12:2022-2033. [PMID: 34520104 PMCID: PMC8718053 DOI: 10.1002/jcsm.12805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Increasing protein intake (above the Recommended Dietary Amount) alone or with resistance-based exercise is suggested to improve cardiometabolic health; however, randomized controlled trials (RCTs) are needed to confirm this. METHODS The Liverpool Hope University-Sarcopenia Aging Trial (LHU-SAT) was a 16 week RCT (ClinicalTrials.gov Identifier: NCT02912130) of 100 community-dwelling older adults [mean age: 68.73 ± 5.80 years, body mass index: 27.06 ± 5.18 kg/m2 (52% women)] who were randomized to four independent groups [Control (C), Exercise (E), Exercise + Protein (EP), Protein (P)]. E and EP completed supervised and progressive resistance-based exercise (resistance exercise: two times per week, functional circuit exercise: once per week), while EP and P were supplemented with a leucine-enriched whey protein drink (three times per day) based on individual body weight (0.50 g/kg/meal, 1.50 g/kg/day). Outcome measures including arterial stiffness (pulse wave velocity), fasting plasma/serum biomarkers [glucose/glycated haemoglobin, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein, insulin, resistin, leptin, adiponectin, C-reactive protein, tumour necrosis factor-alpha, interleukin-6, cystatin-C, & ferritin], insulin resistance (HOMA-IR), and kidney function (eGFR) were measured before and after intervention. RESULTS Total protein intake (habitual diet plus supplementation) increased to 1.55 ± 0.69 g/kg/day in EP and to 1.93 ± 0.72 g/kg/day in P, and remained significantly lower (P < 0.001) in unsupplemented groups (E: 1.08 ± 0.33 g/kg/day, C: 1.00 ± 0.26 g/kg/day). At 16 weeks, there was a group-by-time interaction whereby absolute changes in LDL-cholesterol were lower in EP [mean difference: -0.79 mmol/L, 95% confidence interval (CI): -1.29, -0.28, P = 0.002] and P (mean difference: -0.76 mmol/L, 95% CI: -1.26, -0.26, P = 0.003) vs. C. Serum insulin also showed group-by-time interactions at 16 weeks whereby fold changes were lower in EP (mean difference: -0.40, 95% CI: -0.65, -0.16, P = 0.001) and P (mean difference: -0.32, 95% CI: -0.56, -0.08, P = 0.009) vs. C, and fold changes in HOMA-IR improved in EP (mean difference: -0.37, 95% CI: -0.64, -0.10, P = 0.007) and P (mean difference: -0.27, 95% CI: -0.53, -0.00, P = 0.048) vs. C. Serum resistin declined in P only (group-by-time interaction at 16 weeks: P = 0.009). No other interactions were observed in outcome measures (P > 0.05), and kidney function (eGFR) remained unaltered. CONCLUSIONS Sixteen weeks of leucine-enriched whey protein supplementation alone and combined with resistance-based exercise improved cardiometabolic health markers in older adults.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, Melbourne, VIC, Australia.,School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Kate Mooney
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Sara Vogrin
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Matthew Jackson
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Gustavo Duque
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Omid Khaiyat
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | | |
Collapse
|
13
|
Feng Y, Wang Y, Feng Q, Song X, Wang L, Sun L. Whey protein preloading can alleviate stress adaptation disorder and improve hyperglycemia in women with gestational diabetes mellitus. Gynecol Endocrinol 2021; 37:753-757. [PMID: 34060419 DOI: 10.1080/09513590.2021.1932803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AIMS To investigate the change of stress hormones, oxidative stress and insulin resistance (IR) in women with gestational diabetes mellitus (GDM) after supplement whey protein, in an attempt to gain insights into the prevention and treatment of GDM. MATERIALS AND METHODS 60 GDM women were recruited in this study, and 30 women received a preload drink containing 20 g whey protein as group GDM-W, and the other 30 women received control flavoring drink as group GDM, and the trial lasted for 14 days. Plasma epinephrine (E), noradrenaline (NE), and cortisol were detected; we also determined levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). Homeostasis model assessment of insulin resistance (HOMA-IR) was used to assess IR. RESULTS In the GDM-W group, postprandial blood glucose was decreased significantly on 3, 5, 7, and 14 days (all p < .05), plasma 2 h insulin was increased by 7.2, 8.6, and 20.5% on days 5, 7, and 14 (p < .05, .05, .01). HOMA-IR was decreased significantly on day 14 (p < .05). MDA was decreased by 20.7% on day 14 (p < .01), and anti-oxidative enzymes' SOD was decreased by 13.4% on day 14 (p < .05) and GSH was decreased by 16.7 and 29.1% on days 7 and 14 (both p < .05). Stress hormones E and cortisol were decreased by 10.8 and 19.8%, respectively, on day 14 (p < .05). There was no significant difference in NE between the two groups within 14 days. CONCLUSIONS Whey protein supplementation may improve hyperglycemia by alleviating stress disorder and oxidative stress injury in GDM women. This trial was registered at chictr.org.cn/as ChiCTR1800020413.
Collapse
Affiliation(s)
- Yan Feng
- Department of Clinical Nutrition, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Yuping Wang
- Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Qi Feng
- Department of General Surgery, CPLA No. 71897, Xi'an, China
| | - Xinna Song
- Department of Clinical Nutrition, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Lanlan Wang
- Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Li Sun
- Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
14
|
Han Y, Lee S, Lee JH, Yoo HJ. Potential Mechanisms of Improved Activity of Natural Killer Cells Induced by the Consumption of F-MRP for 8 weeks. Mol Nutr Food Res 2021; 65:e2100337. [PMID: 33966345 DOI: 10.1002/mnfr.202100337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Indexed: 12/20/2022]
Abstract
SCOPE The authors used metabolomics to investigate the nutritional modulatory effect of fermented Maillard-reactive whey protein (F-MRP) on the activity of natural killer (NK) cells. METHODS AND RESULTS Fifty subjects who had participated in our previous intervention study were included in the present study in the test (n = 20) and placebo groups (n = 30). Additional analyses using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and gas chromatography (GC)-MS were conducted to identify relevant metabolic features. After 8 weeks, the activity of lipoprotein-associated phospholipase A2 (Lp-PLA₂) (p = 0.021), levels of interleukin (IL)-1β (p = 0.001), and activity of NK cells were considerably increased in the test group compared with those in the placebo group. Based on the metabolites discovered by UPLC-MS, ten altered metabolic pathways were observed in the test group after 8 weeks of F-MRP consumption. Specific pathways with most pronounced associations with immune-enhancing effect of F-MRP included aminoacyl-tRNA biosynthesis, glycine/serine/threonine metabolism, arginine/proline metabolism, and sphingolipid metabolism. CONCLUSIONS The present study demonstrated the effects of 8 weeks of F-MRP supplementation on the metabolic status manifested as changes in the Lp-PLA2 activity, IL-1β level, and activity of NK cells. Intermediate metabolites of the identified metabolic pathways can be used to confirm the immune-enhancing efficacy of short-term supplementation.
Collapse
Affiliation(s)
- Youngmin Han
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soyeon Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea.,Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hye Jin Yoo
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea.,Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Kamruzzaman M, Horowitz M, Jones KL, Marathe CS. Gut-Based Strategies to Reduce Postprandial Glycaemia in Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:661877. [PMID: 33897622 PMCID: PMC8062751 DOI: 10.3389/fendo.2021.661877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Postprandial glycemic control is an important target for optimal type 2 diabetes management, but is often difficult to achieve. The gastrointestinal tract plays a major role in modulating postprandial glycaemia in both health and diabetes. The various strategies that have been proposed to modulate gastrointestinal function, particularly by slowing gastric emptying and/or stimulating incretin hormone GLP-1, are summarized in this review.
Collapse
Affiliation(s)
- Md Kamruzzaman
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, Bangladesh
| | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen L. Jones
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Chinmay S. Marathe
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
16
|
Postprandial Metabolic Response to Rapeseed Protein in Healthy Subjects. Nutrients 2020; 12:nu12082270. [PMID: 32751170 PMCID: PMC7469072 DOI: 10.3390/nu12082270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Plant proteins have become increasingly important for ecological reasons. Rapeseed is a novel source of plant proteins with high biological value, but its metabolic impact in humans is largely unknown. A randomized, controlled intervention study including 20 healthy subjects was conducted in a crossover design. All participants received a test meal without additional protein or with 28 g of rapeseed protein isolate or soy protein isolate (control). Venous blood samples were collected over a 360-min period to analyze metabolites; satiety was assessed using a visual analog scale. Postprandial levels of lipids, urea, and amino acids increased following the intake of both protein isolates. The postprandial insulin response was lower after consumption of the rapeseed protein than after intake of the soy protein (p < 0.05), whereas the postmeal responses of glucose, lipids, interleukin-6, minerals, and urea were comparable between the two protein isolates. Interestingly, the rapeseed protein exerted stronger effects on postprandial satiety than the soy protein (p < 0.05). The postmeal metabolism following rapeseed protein intake is comparable with that of soy protein. The favorable effect of rapeseed protein on postprandial insulin and satiety makes it a valuable plant protein for human nutrition.
Collapse
|
17
|
Allerton DM, West DJ, Stevenson EJ. Whey protein consumption following fasted exercise reduces early postprandial glycaemia in centrally obese males: a randomised controlled trial. Eur J Nutr 2020; 60:999-1011. [PMID: 32572617 PMCID: PMC7900064 DOI: 10.1007/s00394-020-02304-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Purpose Acute submaximal exercise and whey protein supplementation have been reported to improve postprandial metabolic and appetite responses to a subsequent meal independently. We aimed to examine the combination of these strategies on postprandial responses to a carbohydrate-rich breakfast. Methods Twelve centrally obese males (age 41 ± 3 years, waist circumference 123.4 ± 2.9 cm), completed three trials in a single-blind, crossover design. Participants rested for 30 min (CON) or completed 30 min low–moderate-intensity treadmill walking (51 ± 1% \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\dot{V}O}}_{\text{2peak}}$$\end{document}V˙O2peak) followed immediately by ingestion of 20 g whey protein (EX + PRO) or placebo (EX). After 15 min, a standardised breakfast was consumed and blood, expired gas and subjective appetite were sampled postprandially. After 240 min, an ad libitum lunch meal was provided to assess energy intake. Results During EX + PRO, post-breakfast peak blood glucose was reduced when compared with EX and CON (EX + PRO: 7.6 ± 0.4 vs EX: 8.4 ± 0.3; CON: 8.3 ± 0.3 mmol l−1, p ≤ 0.04). Early postprandial glucose AUC0–60 min was significantly lower under EX + PRO than EX (p = 0.011), but not CON (p = 0.12). Over the full postprandial period, AUC0–240 min during EX + PRO did not differ from other trials (p > 0.05). Peak plasma insulin concentrations and AUC0–240 min were higher during EX + PRO than CON, but similar to EX. Plasma triglyceride concentrations, substrate oxidation and subjective appetite responses were similar across trials and ad libitum energy intake was not influenced by prior fasted exercise, nor its combination with whey protein supplementation (p > 0.05). Conclusion Following fasted low–moderate-intensity exercise, consuming whey protein before breakfast may improve postprandial glucose excursions, without influencing appetite or subsequent energy intake, in centrally obese males. Trial registration number NCT02714309.
Collapse
Affiliation(s)
- Dean M Allerton
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
18
|
Karusheva Y, Koessler T, Strassburger K, Markgraf D, Mastrototaro L, Jelenik T, Simon MC, Pesta D, Zaharia OP, Bódis K, Bärenz F, Schmoll D, Wolkersdorfer M, Tura A, Pacini G, Burkart V, Müssig K, Szendroedi J, Roden M. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial. Am J Clin Nutr 2019; 110:1098-1107. [PMID: 31667519 PMCID: PMC6821637 DOI: 10.1093/ajcn/nqz191] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Epidemiological studies have shown that increased circulating branched-chain amino acids (BCAAs) are associated with insulin resistance and type 2 diabetes (T2D). This may result from altered energy metabolism or dietary habits. OBJECTIVE We hypothesized that a lower intake of BCAAs improves tissue-specific insulin sensitivity. METHODS This randomized, placebo-controlled, double-blinded, crossover trial examined well-controlled T2D patients receiving isocaloric diets (protein: 1 g/kg body weight) for 4 wk. Protein requirements were covered by commercially available food supplemented ≤60% by an AA mixture either containing all AAs or lacking BCAAs. The dietary intervention ensured sufficient BCAA supply above the recommended minimum daily intake. The patients underwent the mixed meal tolerance test (MMT), hyperinsulinemic-euglycemic clamps (HECs), and skeletal muscle and white adipose tissue biopsies to assess insulin signaling. RESULTS After the BCAA- diet, BCAAs were reduced by 17% during fasting (P < 0.001), by 13% during HEC (P < 0.01), and by 62% during the MMT (P < 0.001). Under clamp conditions, whole-body and hepatic insulin sensitivity did not differ between diets. After the BCAA- diet, however, the oral glucose sensitivity index was 24% (P < 0.01) and circulating fibroblast-growth factor 21 was 21% higher (P < 0.05), whereas meal-derived insulin secretion was 28% lower (P < 0.05). Adipose tissue expression of the mechanistic target of rapamycin was 13% lower, whereas the mitochondrial respiratory control ratio was 1.7-fold higher (both P < 0.05). The fecal microbiome was enriched in Bacteroidetes but depleted of Firmicutes. CONCLUSIONS Short-term dietary reduction of BCAAs decreases postprandial insulin secretion and improves white adipose tissue metabolism and gut microbiome composition. Longer-term studies will be needed to evaluate the safety and metabolic efficacy in diabetes patients.This trial was registered at clinicaltrials.gov as NCT03261362.
Collapse
Affiliation(s)
- Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Theresa Koessler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, München-Neuherberg, Germany,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Bärenz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | - Andrea Tura
- Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy
| | - Giovanni Pacini
- Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,Address correspondence to JS (e-mail: )
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany,German Center for Diabetes Research, München-Neuherberg, Germany,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Effect of supplemental whey protein timing on postprandial glycaemia in centrally obese males. Br J Nutr 2019; 121:637-646. [PMID: 30572966 DOI: 10.1017/s0007114518003793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consuming whey protein before a meal may reduce postprandial glucose excursions, however, optimising timing of supplementation is important to improve its clinical utility. A total of thirteen centrally obese, insulin-resistant males (waist circumference: 121 (sem 3) cm; homeostasis model assessment for insulin resistance (HOMA-IR): 6·4 (sem 1·2)) completed four experimental conditions in a single-blind, crossover design. Participants consumed mixed-macronutrient breakfast and lunch meals on all occasions, with 20 g whey protein consumed 15 min before (PRE), alongside (DUR) or 15 min post-breakfast (POST) or omitted (CON). Capillary glucose and plasma concentrations of insulin, TAG and NEFA, in addition to subjective appetite ratings, were collected for 180 min after each meal. PRE and DUR reduced post-breakfast glucose peak by 17·0 (sem 1·9) % (P<0·001) and 9·2 (sem 2·9) % (P=0·046), respectively, compared with CON. Post-breakfast glucose AUC was lower following PRE compared with POST and CON (PRE: 982 (sem 30) v. POST: 1031 (sem 36) and CON: 1065 (sem 37) mmol/l×180 min; P≤0·042) but similar to DUR (1013 (sem 32) mmol/l×180 min; P=0·77). Insulin was lower during PRE, when compared with POST and DUR (both P≤0·042) but similar to CON. There were no between-condition differences in measures of postprandial lipaemia or appetite, and no effect of condition post-lunch. Consumption of whey protein as a preload or alongside a mixed-macronutrient breakfast reduces postprandial glucose excursions in centrally obese, insulin-resistant males. Whey consumed as a preload has superior glycaemic-lowering effects. Supplementation at breakfast does not alter glycaemic responses to subsequent meals.
Collapse
|
20
|
Mihai BM, Mihai C, Cijevschi-Prelipcean C, Grigorescu ED, Dranga M, Drug V, Sporea I, Lăcătușu CM. Bidirectional Relationship between Gastric Emptying and Plasma Glucose Control in Normoglycemic Individuals and Diabetic Patients. J Diabetes Res 2018; 2018:1736959. [PMID: 30402500 PMCID: PMC6192082 DOI: 10.1155/2018/1736959] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
Gastric emptying and glycemic control pathways are closely interrelated processes. Gastric chyme is transferred into the duodenum with velocities depending on its solid or liquid state, as well as on its caloric and nutritional composition. Once nutrients enter the intestine, the secretion of incretins (hormonal products of intestinal cells) is stimulated. Among incretins, glucagon-like peptide-1 (GLP-1) has multiple glycemic-regulatory effects that include delayed gastric emptying, thus triggering a feedback loop lowering postprandial serum glucose levels. Glycemic values also influence gastric emptying; hyperglycemia slows it down, and hypoglycemia accelerates it, both limiting glycemic fluctuations. Disordered gastric emptying in diabetes mellitus is understood today as a complex pathophysiological condition, with both irreversible and reversible components and high intra- and interindividual variability of time span and clinical features. While limited delays may be useful for reducing postprandial hyperglycemias, severely hindered gastric emptying may be associated with higher glycemic variability and worsened long-term glycemic control. Therapeutic approaches for both gastric emptying and glycemic control include dietary modifications of meal structure or content and drugs acting as GLP-1 receptor agonists. In the foreseeable future, we will probably witness a wider range of dietary interventions and more incretin-based medications used for restoring both gastric emptying and glycemic levels to nearly physiological levels.
Collapse
Affiliation(s)
- Bogdan Mircea Mihai
- “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Centre of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Cătălina Mihai
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Cristina Cijevschi-Prelipcean
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Elena-Daniela Grigorescu
- “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Centre of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Mihaela Dranga
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Vasile Drug
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Ioan Sporea
- Gastroenterology, “Victor Babes” University of Medicine and Pharmacy Timișoara, Romania
| | - Cristina Mihaela Lăcătușu
- “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Centre of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| |
Collapse
|