1
|
Abdala ME, Rivero MB, Luque ME, Di Lullo D, Luna BE, Carranza PG, Volta BJ, Rivero FD. Proteomic analysis of proteins released by Tritrichomonas foetus: Identification of potential targets for the development of new diagnostic methods. Vet Parasitol 2023; 316:109890. [PMID: 36878106 DOI: 10.1016/j.vetpar.2023.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bovine trichomonosis (BT), a disease of the bovine urogenital tract, is caused by the protozoan Tritrichomonas foetus (Tf). Tf causes endometritis, infertility, and premature death of the embryo, which generates considerable economic losses. The proteins released can mediate fundamental interactions between the pathogen and the host, triggering factors associated with the symptomatology, immune evasion and pathogenesis characteristic of the species. However, little is known about the profile of the proteins released by Tf. In order to contribute to their knowledge, we performed an isolation protocol and a proteomic profiling of the supernatant (SN) content of six Tf isolates. A total of 662 proteins present in the SN of Tf were detected, out of which 121 were shared by the six isolates, while the remaining 541 were found in at least one of the isolates studied. The comparative analyses using the databases of Tf strain genome K revealed 32.9% of uncharacterized proteins. The bioinformatic analyses showed that the main molecular functions predicted were binding (47.9%) and catalytic activity (38.2%). Additionally, we performed immunodetection assays to evidence the antigenic potential of SN proteins. Interestingly, we observed great ability to detect SN proteins from all six isolates using serum from immunized mice and infected bulls. A complementary mass spectrometry assay allowed us to determine that the proteins that showed the strongest signal intensity in the immunoassays were Grp78 (A0A1J4IZS3) and Ap65 (A0A1J4JSR1). This work represents the first proteomic characterization of Tf SN proteins and their antigenic potential, which might be interesting for the future design of new diagnosis and treatment methods for BT.
Collapse
Affiliation(s)
- María Eugenia Abdala
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - María Belén Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
| | - Melchor Emilio Luque
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - David Di Lullo
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
| | - Bruno Elías Luna
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
| | - Pedro Gabriel Carranza
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Bibiana J Volta
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Fernando David Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina; Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
2
|
Linderblood KL, Wilson WA, Brittingham A. GLYCOGEN ACCUMULATION IN TRICHOMONAS IS DRIVEN BY THE AVAILABILITY OF EXTRACELLULAR GLUCOSE. J Parasitol 2021; 107:514-518. [PMID: 34157111 DOI: 10.1645/20-154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The parasitic protist Trichomonas vaginalis is the causative agent of trichomoniasis, a highly prevalent sexually transmitted infection. The organism is known to accumulate substantial deposits of the polysaccharide glycogen, which is believed to serve as a store of carbon and energy that can be tapped during periods of nutrient limitation. Such nutrient limitation is likely to occur when T. vaginalis is transmitted between hosts, implying that glycogen may play an important role in the lifecycle of the parasite. Both T. vaginalis glycogen synthase and glycogen phosphorylase, key enzymes of glycogen synthesis and degradation, respectively, have been cloned and characterized, and neither enzyme is subject to the post-translational controls found in other, well-characterized eukaryotic systems. Thus, it is unclear how glycogen metabolism is regulated in this organism. Here we use a glucose limitation/re-feeding protocol to show that the activities of key enzymes of glycogen synthesis do not increase during re-feeding when glycogen synthesis is stimulated. Rather, a simple model appears to operate with glycogen storage being driven by the extracellular glucose concentration.
Collapse
Affiliation(s)
- Kelsie L Linderblood
- Department of Microbiology & Immunology, Des Moines University, Des Moines, Iowa 50312
| | - Wayne A Wilson
- Department of Biochemistry & Nutrition, Des Moines University, Des Moines, Iowa 50312
| | - Andrew Brittingham
- Department of Microbiology & Immunology, Des Moines University, Des Moines, Iowa 50312
| |
Collapse
|
3
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, Harant K, Pompach P, Hrdý I, Tachezy J. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics 2018; 17:304-320. [PMID: 29233912 PMCID: PMC5795393 DOI: 10.1074/mcp.ra117.000434] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 11/06/2022] Open
Abstract
The secretion of virulence factors by parasitic protists into the host environment plays a fundamental role in multifactorial host-parasite interactions. Several effector proteins are known to be secreted by Trichomonas vaginalis, a human parasite of the urogenital tract. However, a comprehensive profiling of the T. vaginalis secretome remains elusive, as do the mechanisms of protein secretion. In this study, we used high-resolution label-free quantitative MS to analyze the T. vaginalis secretome, considering that secretion is a time- and temperature-dependent process, to define the cutoff for secreted proteins. In total, we identified 2 072 extracellular proteins, 89 of which displayed significant quantitative increases over time at 37 °C. These 89 bona fide secreted proteins were sorted into 13 functional categories. Approximately half of the secreted proteins were predicted to possess transmembrane helixes. These proteins mainly include putative adhesins and leishmaniolysin-like metallopeptidases. The other half of the soluble proteins include several novel potential virulence factors, such as DNaseII, pore-forming proteins, and β-amylases. Interestingly, current bioinformatic tools predicted the secretory signal in only 18% of the identified T. vaginalis-secreted proteins. Therefore, we used β-amylases as a model to investigate the T. vaginalis secretory pathway. We demonstrated that two β-amylases (BA1 and BA2) are transported via the classical endoplasmic reticulum-to-Golgi pathways, and in the case of BA1, we showed that the protein is glycosylated with multiple N-linked glycans of Hex5HexNAc2 structure. The secretion was inhibited by brefeldin A but not by FLI-06. Another two β-amylases (BA3 and BA4), which are encoded in the T. vaginalis genome but absent from the secretome, were targeted to the lysosomal compartment. Collectively, under defined in vitro conditions, our analysis provides a comprehensive set of constitutively secreted proteins that can serve as a reference for future comparative studies, and it provides the first information about the classical secretory pathway in this parasite.
Collapse
Affiliation(s)
| | - Petr Rada
- From the ‡Department of Parasitology
| | | | | | | | | | | | - Petr Pompach
- §Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Czech Republic
- ¶Department of Biochemistry, Charles University, Faculty of Science, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- From the ‡Department of Parasitology
| | | |
Collapse
|
5
|
Wilson WA, Pradhan P, Madhan N, Gist GC, Brittingham A. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family. Biochimie 2017; 138:90-101. [PMID: 28465215 DOI: 10.1016/j.biochi.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023]
Abstract
Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry & Nutrition, Des Moines University, Des Moines, IA 50312, USA.
| | - Prajakta Pradhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Nayasha Madhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Galen C Gist
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Andrew Brittingham
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
6
|
Smith RW, Brittingham A, Wilson WA. Purification and identification of amylases released by the human pathogen Trichomonas vaginalis that are active towards glycogen. Mol Biochem Parasitol 2016; 210:22-31. [DOI: 10.1016/j.molbiopara.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 11/28/2022]
|
7
|
Huffman RD, Nawrocki LD, Wilson WA, Brittingham A. Digestion of glycogen by a glucosidase released by Trichomonas vaginalis. Exp Parasitol 2015; 159:151-9. [DOI: 10.1016/j.exppara.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/03/2015] [Accepted: 09/24/2015] [Indexed: 11/27/2022]
|
8
|
Dirkx M, Boyer MP, Pradhan P, Brittingham A, Wilson WA. Expression and characterization of a β-fructofuranosidase from the parasitic protist Trichomonas vaginalis. BMC BIOCHEMISTRY 2014; 15:12. [PMID: 24972630 PMCID: PMC4083873 DOI: 10.1186/1471-2091-15-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Trichomonas vaginalis, a flagellated protozoan, is the agent responsible for trichomoniasis, the most common nonviral sexually transmitted infection worldwide. A reported 200 million cases are documented each year with far more cases going unreported. However, T. vaginalis is disproportionality under studied, especially considering its basic metabolism. It has been reported that T. vaginalis does not grow on sucrose. Nevertheless, the T. vaginalis genome contains some 11 putative sucrose transporters and a putative β-fructofuranosidase (invertase). Thus, the machinery for both uptake and cleavage of sucrose appears to be present. RESULTS We amplified the β-fructofuranosidase from T. vaginalis cDNA and cloned it into an Escherichia coli expression system. The expressed, purified protein was found to behave similarly to other known β-fructofuranosidases. The enzyme exhibited maximum activity at pH close to 5.0, with activity falling off rapidly at increased or decreased pH. It had a similar K(m) and V(max) to previously characterized enzymes using sucrose as a substrate, was also active towards raffinose, but had no detectable activity towards inulin. CONCLUSIONS T. vaginalis has the coding capacity to produce an active β-fructofuranosidase capable of hydrolyzing di- and trisaccharides containing a terminal, non-reducing fructose residue. Since we cloned this enzyme from cDNA, we know that the gene in question is transcribed. Furthermore, we could detect β-fructofuranosidase activity in T. vaginalis cell lysates. Therefore, the inability of the organism to utilize sucrose as a carbon source cannot be explained by an inability to degrade sucrose.
Collapse
Affiliation(s)
| | | | | | | | - Wayne A Wilson
- Department of Biochemistry & Nutrition, Des Moines University, Des Moines, IA 50312, USA.
| |
Collapse
|
9
|
de Aguiar Matos JA, Borges FP, Tasca T, Bogo MR, De Carli GA, da Graça Fauth M, Dias RD, Bonan CD. Characterisation of an ATP diphosphohydrolase (Apyrase, EC 3.6.1.5) activity in Trichomonas vaginalis. Int J Parasitol 2001; 31:770-5. [PMID: 11403767 DOI: 10.1016/s0020-7519(01)00191-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present report the enzymatic properties of an ATP diphosphohydrolase (apyrase, EC 3.6.1.5) in Trichomonas vaginalis were determined. The enzyme hydrolyses purine and pyrimidine nucleoside 5'-di- and 5'-triphosphates in an optimum pH range of 6.0--8.0. It is Ca(2+)-dependent and is insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (5 mM). A significant inhibition of ADP hydrolysis (37%) was observed in the presence of 20 mM sodium azide, an inhibitor of ATP diphosphohydrolase. Levamisole, a specific inhibitor of alkaline phosphatase, and P(1), P(5)-di (adenosine 5'-) pentaphosphate, a specific inhibitor of adenylate kinase, did not inhibit the enzyme activity. The enzyme has apparent K(m) (Michaelis Constant) values of 49.2+/-2.8 and 49.9+/-10.4 microM and V(max) (maximum velocity) values of 49.4+/-7.1 and 48.3+/-6.9 nmol of inorganic phosphate x min(-1) x mg of protein(-1) for ATP and ADP, respectively. The parallel behaviour of ATPase and ADPase activities and the competition plot suggest that ATP and ADP hydrolysis occur at the same active site. The presence of an ATP diphosphohydrolase activity in T. vaginalis may be important for the modulation of nucleotide concentration in the extracellular space, protecting the parasite from the cytolytic effects of the nucleotides, mainly ATP.
Collapse
Affiliation(s)
- J A de Aguiar Matos
- Laboratório de Pesquisa Bioquímica, Departamento de Ciências Fisiológicas, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ter Kuile BH, Hrdý I, Sánchez LB, Müller M. Purification and specificity of two alpha-glucosidase isoforms of the parasitic protist Trichomonas vaginalis. J Eukaryot Microbiol 2000; 47:440-2. [PMID: 11001140 DOI: 10.1111/j.1550-7408.2000.tb00072.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two isoforms of alpha-glucosidase were purified from the parasitic protist Trichomonas vaginalis. Both consisted of 103 kDa subunits, but differed in pH optimum and substrate specificity. Isoform 1 had a pH optimum around 4.5 and negligible activity on glucose oligomers other than maltose, while isoform 2 with a pH optimum of 5.5 hydrolyzed also such substrates at considerable rates. Neither had activity on glycogen or starch. Isoform 1 had a specific activity for hydrolysis of maltose of 30 U/mg protein and isoform 2 101 U/mg protein. The Km values were 0.4 mM and 2.0 mM, respectively. Isoform 2 probably corresponds to the activity detected on the cell surface.
Collapse
Affiliation(s)
- B H Ter Kuile
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
11
|
Diderich JA, Teusink B, Valkier J, Anjos J, Spencer-Martins I, van Dam K, Walsh MC. Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3447-3454. [PMID: 10627042 DOI: 10.1099/00221287-145-12-3447] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The extent to which the transport of glucose across the plasma membrane of the yeast Saccharomyces bayanus controls the glycolytic flux was determined. The magnitude of control was quantified by measuring the effect of small changes in the activity of the glucose transport system on the rate of glucose consumption. Two effectors were used to modulate the activity of glucose transport: (i) maltose, a competitive inhibitor of the glucose transport system in S. bayanus (as well as in Saccharomyces cerevisiae) and (ii) extracellular glucose, the substrate of the glucose transport system. Two approaches were followed to derive from the experimental data the flux control coefficient of glucose transport on the glycolytic flux: (i) direct comparison of the steady-state glycolytic flux with the zero trans-influx of glucose and (ii) comparison of the change in glycolytic flux with the concomitant change in calculated glucose transport activity on variation of the extracellular glucose concentration. Both these approaches demonstrated that in cells of S. bayanus grown on glucose and harvested at the point of glucose exhaustion, a high proportion of the control of the glycolytic flux resides in the transport of glucose across the plasma membrane.
Collapse
Affiliation(s)
- Jasper A Diderich
- E. C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands1
| | - Bas Teusink
- E. C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands1
| | - Jeroen Valkier
- E. C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands1
| | - Jorge Anjos
- Biotechnology Unit, Faculty of Sciences and Technology, New University of Lisbon, P-2825 Monte de Caparica, Portugal 2
| | - Isabel Spencer-Martins
- Biotechnology Unit, Faculty of Sciences and Technology, New University of Lisbon, P-2825 Monte de Caparica, Portugal 2
| | - Karel van Dam
- E. C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands1
| | - Michael C Walsh
- E. C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands1
| |
Collapse
|
12
|
Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 1998; 11:300-17. [PMID: 9564565 PMCID: PMC106834 DOI: 10.1128/cmr.11.2.300] [Citation(s) in RCA: 453] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Trichomonas vaginalis, a parasitic protozoan, is the etiologic agent of trichomoniasis, a sexually transmitted disease (STD) of worldwide importance. Trichomoniasis is the most common nonviral STD, and it is associated with many perinatal complications, male and female genitourinary tract infections, and an increased incidence of HIV transmission. Diagnosis is difficult, since the symptoms of trichomoniasis mimic those of other STDs and detection methods lack precision. Although current treatment protocols involving nitroimidazoles are curative, metronidazole resistance is on the rise, outlining the need for research into alternative antibiotics. Vaccine development has been limited by a lack of understanding of the role of the host immune response to T. vaginalis infection. The lack of a good animal model has made it difficult to conduct standardized studies in drug and vaccine development and pathogenesis. Current work on pathogenesis has focused on the host-parasite relationship, in particular the initial events required to establish infection. These studies have illustrated that the pathogenesis of T. vaginalis is indeed very complex and involves adhesion, hemolysis, and soluble factors such as cysteine proteinases and cell-detaching factor. T. vaginalis interaction with the members of the resident vaginal flora, an advanced immune evasion strategy, and certain stress responses enable the organism to survive in its changing environment. Clearly, further research and collaboration will help elucidate these pathogenic mechanisms, and with better knowledge will come improved disease control.
Collapse
Affiliation(s)
- D Petrin
- Department of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Mehta SV, Patil VB, Velmurugan S, Lobo Z, Maitra PK. Std1, a gene involved in glucose transport in Schizosaccharomyces pombe. J Bacteriol 1998; 180:674-9. [PMID: 9457874 PMCID: PMC106938 DOI: 10.1128/jb.180.3.674-679.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A wild-type strain, Sp972 h-, of Schizosaccharomyces pombe was mutagenized with ethylmethanesulfonate (EMS), and 2-deoxyglucose (2-DOG)-resistant mutants were isolated. Out of 300 independent 2-DOG-resistant mutants, 2 failed to grow on glucose and fructose (mutants 3/8 and 3/23); however, their hexokinase activity was normal. They have been characterized as defective in their sugar transport properties, and the mutations have been designated as std1-8 and std1-23 (sugar transport defective). The mutations are allelic and segregate as part of a single gene when the mutants carrying them are crossed to a wild-type strain. We confirmed the transport deficiency of these mutants by [14C]glucose uptake. They also fail to grow on other monosaccharides, such as fructose, mannose, and xylulose, as well as disaccharides, such as sucrose and maltose, unlike the wild-type strain. Lack of growth of the glucose transport-deficient mutants on maltose revealed the extracellular breakdown of maltose in S. pombe, unlike in Saccharomyces cerevisiae. Both of the mutants are unable to grow on low concentrations of glucose (10 to 20 mM), while one of them, 3/23, grows on high concentrations (50 to 100 mM) as if altered in its affinity for glucose. This mutant (3/23) shows a lag period of 12 to 18 h when grown on high concentrations of glucose. The lag disappears when the culture is transferred from the log phase of its growth on high concentrations. These mutants complement phenotypically similar sugar transport mutants (YGS4 and YGS5) reported earlier by Milbradt and Hoefer (Microbiology 140:2617-2623, 1994), and the clone complementing YGS4 and YGS5 was identified as the only glucose transporter in fission yeast having 12 transmembrane domains. These mutants also demonstrate two other defects: lack of induction and repression of shunt pathway enzymes and defective mating.
Collapse
Affiliation(s)
- S V Mehta
- Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | |
Collapse
|