1
|
Gutierrez BC, Lammel E, González-Cappa SM, Poncini CV. Early Immune Response Elicited by Different Trypanosoma cruzi Infective Stages. Front Cell Infect Microbiol 2021; 11:768566. [PMID: 34900754 PMCID: PMC8656353 DOI: 10.3389/fcimb.2021.768566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that affects millions of people in Latin America. Infection occurs by vectorial transmission or by transfusion or transplacental route. Immune events occurring immediately after the parasite entrance are poorly explored. Dendritic cells (DCs) are target for the parasite immune evasion mechanisms. Recently, we have demonstrated that two different populations of DCs display variable activation after interaction with the two infective forms of the parasite: metacyclic or blood trypomastigotes (mTp or bTp) in vitro. The skin constitutes a complex network with several populations of antigen-presenting cells. Previously, we have demonstrated T. cruzi conditioning the repertoire of cells recruited into the site of infection. In the present work, we observed that mTp and bTp inoculation displayed differences in cell recruitment to the site of infection and in the activation status of APCs in draining lymph nodes and spleen during acute infection. Animals inoculated with mTp exhibited 100% of survival with no detectable parasitemia, in contrast with those injected with bTp that displayed high mortality and high parasite load. Animals infected with mTp and challenged with a lethal dose of bTp 15 days after primary infection showed no mortality and incremented DC activation in secondary lymphoid organs compared with controls injected only with bTp or non-infected mice. These animals also displayed a smaller number of amastigote nests in cardiac tissue and more CD8 T cells than mice infected with bTp. All the results suggest that both Tp infective stages induce an unequal immune response since the beginning of the infection.
Collapse
Affiliation(s)
- Brenda Celeste Gutierrez
- Laboratorio de Inmunología Celular e Inmunopatología de Infecciones, Instituto de Investigaciones en Microbiología y Parasitología Medica (IMPaM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Estela Lammel
- Laboratorio de Inmunología Celular e Inmunopatología de Infecciones, Instituto de Investigaciones en Microbiología y Parasitología Medica (IMPaM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Stella Maris González-Cappa
- Laboratorio de Inmunología Celular e Inmunopatología de Infecciones, Instituto de Investigaciones en Microbiología y Parasitología Medica (IMPaM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Laboratorio de Inmunología Celular e Inmunopatología de Infecciones, Instituto de Investigaciones en Microbiología y Parasitología Medica (IMPaM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Carvalho LM, de Carvalho TV, Ferraz AT, Marques FDS, Roatt BM, Fonseca KDS, Reis LES, Carneiro CM, Vieira PMDA. Histopathological changes in the gastrointestinal tract and systemic alterations triggered by experimental oral infection with Trypanosoma cruzi. Exp Parasitol 2020; 218:108012. [PMID: 33011239 DOI: 10.1016/j.exppara.2020.108012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in almost all countries of Latin America. In Brazil, oral infection is becoming the most important mechanism of transmission of the disease in several regions of the country. The gastrointestinal tract is the gateway for the parasite through this route of infection, however, little is known about the involvement of these organs related to oral route. In this sense, the present study evaluated the impact of oral infection on the digestive tract in mice infected by Berenice-78 (Be-78) T. cruzi strain, in comparison with the intraperitoneal route of infection. In this work, the intraperitoneal route group showed a peak of parasitemia similar to the oral route group, however the mortality rate among the orally infected animals was higher when compared to intraperitoneal route. By analyzing the frequency of blood cell populations, differences were mainly observed in CD4+ T lymphocytes, and not in CD8+, presenting an earlier reduction in the number of CD4+ T cells, which persisted for a longer period, in the animals of the oral group when compared with the intraperitoneal group. Animals infected by oral route presented a higher tissue parasitism and inflammatory infiltrate in stomach, duodenum and colon on the 28th day after infection. Therefore, these data suggest that oral infection has a different profile of parasitological and immune responses compared to intraperitoneal route, being the oral route more virulent and with greater tissue parasitism in organs of the gastrointestinal tract evaluated during the acute phase.
Collapse
Affiliation(s)
- Lívia Mendes Carvalho
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil; Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Thais Vieira de Carvalho
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Aline Tonhela Ferraz
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Flávia de Souza Marques
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Levi Eduardo Soares Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Claudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
3
|
Differences in cNOS/iNOS Activity during Resistance to Trypanosoma cruzi Infection in 5-Lipoxygenase Knockout Mice. Mediators Inflamm 2020; 2019:5091630. [PMID: 31772504 PMCID: PMC6854994 DOI: 10.1155/2019/5091630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Infection with the protozoan Trypanosoma cruzi causes Chagas disease and consequently leads to severe inflammatory heart condition; however, the mechanisms driving this inflammatory response have not been completely elucidated. Nitric oxide (NO) is a key mediator of parasite killing in T. cruzi-infected mice, and previous studies have suggested that leukotrienes (LTs) essentially regulate the NO activity in the heart. We used infected 5-lipoxygenase-deficient mice (5-LO−/−) to explore the participation of nitric oxide synthase isoforms, inducible (iNOS) and constitutive (cNOS), in heart injury, cytokine profile, and oxidative stress during the early stage of T. cruzi infection. Our evidence suggests that the cNOS of the host is involved in the resistance of 5-LO−/− mice during T. cruzi infection. iNOS inhibition generated a remarkable increase in T. cruzi infection in the blood and heart of mice, whereas cNOS inhibition reduced cardiac parasitism (amastigote nests). Furthermore, this inhibition associates with a higher IFN-γ production and lower lipid peroxidation status. These data provide a better understanding about the influence of NO-interfering therapies for the inflammatory response toward T. cruzi infection.
Collapse
|
4
|
Sánchez-Valdéz FJ, Pérez Brandán C, Ferreira A, Basombrío MÁ. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease. Expert Rev Vaccines 2014; 14:681-97. [PMID: 25496192 DOI: 10.1586/14760584.2015.989989] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. This illness is now becoming global, mainly due to congenital transmission, and so far, there are no prophylactic or therapeutic vaccines available to either prevent or treat Chagas disease. Therefore, different approaches aimed at identifying new protective immunogens are urgently needed. Live vaccines are likely to be more efficient in inducing protection, but safety issues linked with their use have been raised. The development of improved protozoan genetic manipulation tools and genomic and biological information has helped to increase the safety of live vaccines. These advances have generated a renewed interest in the use of genetically attenuated parasites as vaccines against Chagas disease. This review discusses the protective capacity of genetically attenuated parasite vaccines and the challenges and perspectives for the development of an effective whole-parasite Chagas disease vaccine.
Collapse
|