1
|
Nascimento de Oliveira CG, Alvares-Saraiva AM, Perez EC, Sampaio SC, Lallo MA. Crotoxin modulates Encephalitozoon cuniculi-infected macrophages toward the M1 microbicidal profile. Toxicon 2025; 259:108348. [PMID: 40216367 DOI: 10.1016/j.toxicon.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Crotoxin (CTX), a bioactive extract from the snake Crotalus durissus terrificus, has antibacterial, antitumor, and anti-inflammatory properties. Microsporidia are opportunistic, obligate intracellular fungi that infect vertebrates and invertebrates and are highly resistant to conventional drugs. They can also subvert the microbicidal activity of M1 macrophages to an M2 profile, which is more favorable for the pathogen. Thus, in this study, we evaluated the effects of CTX on the viability of spores of the microsporidium Encephalitozoon cuniculi, as well as on the microbicidal activity of macrophages in vitro. E. cuniculi spores were treated with two concentrations of CTX (2.4 and 4.8 μg/mL) and cultivated in RK-13 cells for viability analysis. Additionally, peritoneal adherent cells (APerC), obtained from peritoneal washes of BALB/c mice, were infected with spores of E. cuniculi for 1 h and treated with CTX for 3 h. The profile of macrophages, cytokine production, viability of macrophages, and proliferative capacity of spores were subsequently evaluated. Treatment of E. cuniculi spores with CTX had no fungicidal or fungistatic effects. Compared to the macrophages in the control group, macrophages infected with E. cuniculi and treated with 2.4 μg/mL CTX presented an increase in the M1 profile, more necrosis, and greater production of the cytokines TNF-α and IL-6, and the spores obtained from these macrophages presented a reduction in proliferative capacity. These results indicated that CTX modulated the M1 profile of macrophages infected with E. cuniculi, resulting in greater production of proinflammatory cytokines and stronger microbicidal activity.
Collapse
Affiliation(s)
| | | | | | | | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental da Universidade Paulista-Unip, São Paulo, Brazil.
| |
Collapse
|
2
|
Macedo JM, Souza MF, Lima AM, Francisco AF, Kayano AM, Gusmão MEMDL, de Araújo ECS, Salvador GHM, Fontes MRDM, Zuliani JP, Soares AM. Molecular interaction assays in silico of crotapotin from Crotalus durissus terrificus against the molecular target trypanothione reductase from Leishmania braziliensis. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240049. [PMID: 40190838 PMCID: PMC11970842 DOI: 10.1590/1678-9199-jvatitd-2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/12/2024] [Indexed: 04/09/2025] Open
Abstract
Background Leishmaniasis is a neglected disease that mainly affects impoverished populations and receives limited attention from governments and research institutions. Current treatments are based on antimonial therapies, which present high toxicity and cause significant side effects, such as cardiotoxicity and hepatotoxicity. This study proposes using crotapotin, isolated from Crotalus durissus terrificus venom, as a potential inhibitor of the enzyme trypanothione reductase from Leishmania braziliensis (LbTR). Methods In silico assays were conducted to evaluate the interaction of crotapotin with LbTR using molecular docking and molecular dynamics techniques. Recombinant LbTR was expressed in E. coli, and its enzymatic activity was confirmed. The inhibitory action of crotapotin on LbTR was then tested in enzymatic assays. Results The stability of these interactions was confirmed over 200 ns molecular dynamics simulations, with a clustering analysis using the GROMACS method revealing a total of 12 distinct clusters. The five most representative clusters showed low RMSD values, indicating high structural stability of the LbTR-crotapotin complex. In particular, cluster 1, with 3,398 frames and an average RMSD of 0.189 nm from the centroid, suggests a dominant stable conformation of the complex. Additional clusters maintained average RMSD values between 0.173 nm and 0.193 nm, further reinforcing the robustness of the complex under physiological conditions. Recombinant LbTR expression was successful, yielding 4.8 mg/L with high purity, as verified by SDS-PAGE. In the enzymatic assays, crotapotin partially inhibited LbTR activity, with an IC50 of 223.4 μM. Conclusion The in silico findings suggest a stable and structured interaction between crotapotin and LbTR, with low structural fluctuation, although the inhibition observed in in vitro assays was moderate. These results indicate the potential of crotapotin as a promising basis for developing specific LbTR inhibitors, contributing to the bioprospecting of new antiparasitic agents.
Collapse
Affiliation(s)
- Jamile Mariano Macedo
- Federal Institute of Rondônia, Porto Velho Calama Campus, Porto
Velho, RO, Brazil
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Mateus Farias Souza
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Maciel Lima
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Tropical Medicine Research Center (CEPEM/SESAU-RO), Porto Velho,
RO, Brazil
| | - Maria Elisabeth Moreira de Lima Gusmão
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Erika Crhistina Santos de Araújo
- Postgraduate Program in Cellular and Molecular Biology, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz
Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Marcos Roberto de Mattos Fontes
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Department of Biophysics and Pharmacology, Institute of
Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Institute for Advanced Studies of the Sea (IEAMar), São Paulo State
University (UNESP), São Vicente, SP, Brazil
| | - Juliana Pavan Zuliani
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz
Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of
the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of
the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| |
Collapse
|
3
|
Fischer-Carvalho A, Taveira-Barbosa TC, Verjovski-Almeida S, Haeberlein S, Sena Amaral M. Antischistosomal Potential of Animal-Derived Natural Products and Compounds. Microorganisms 2025; 13:397. [PMID: 40005763 PMCID: PMC11858059 DOI: 10.3390/microorganisms13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects over 240 million people worldwide. Currently, praziquantel is the only drug recommended by the World Health Organization for treatment. However, cases of drug resistance have been reported, which indicates an urgent need for new therapeutics. In this context, natural compounds represent valuable sources of pharmacological substances. Plant-derived natural products have been greatly explored for their potential antischistosomal activity, while animal-derived compounds have received little attention. Recent advances in the biotechnology field allow the wide exploration of animal-derived compounds in drug discovery, which may represent a cost-effective option to find bioactive molecules also against Schistosoma mansoni and other parasites. This review highlights the research into animal-derived products and compounds that have already been tested against schistosomes. Phenotypic effects on schistosomes have been observed upon incubation with some of these substances, which may, therefore, represent possible candidates to be used in the development of new drugs. Overall, these studies advance the discovery of antischistosomal compounds by exploring a yet understudied natural resource. The present review also discusses the challenges of testing animal-derived products and provides examples of the experimental in vitro testing of different selected animal natural products against S. mansoni.
Collapse
Affiliation(s)
- Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
| | | | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Simone Haeberlein
- Biomedizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
| |
Collapse
|
4
|
Galué-Parra A, de Moraes LS, Hage AAP, Castro de Sena CB, Nascimento JLMD, da Silva EO. In vitro immunomodulatory effects of Caryocar villosum oil on murine macrophages. Biomed Pharmacother 2024; 179:117360. [PMID: 39232387 DOI: 10.1016/j.biopha.2024.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Macrophages undergo activation in response to multiple stimuli, including pathogens, growth factors and natural products. The inflammatory response and oxidative stress play critical roles in such macrophage activation. Some natural products reportedly promote immunoregulatory effects and the control of macrophage activation. Caryocar villosum (Cv), a native amazon plant, contains compounds that are an important source of molecules capable of macrophage activation. Herein, we demonstrate the immunomodulatory effects of oil obtained from Caryocar villosum (CvO) on macrophages. Macrophages were treated with varying concentrations of CvO, and resulting cellular morphological and functional changes were evaluated, including the production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and phagocytic activity. Treatment of cells with 50 and 100 μg/mL CvO induced morphological and physiological alterations in the macrophages, such as increased cell surface and phagocytic activity. Additionally, treatment increased the productions of inflammatory cytokines (INF-γ, TNF-α, IL-6) and anti-inflammatory cytokines (IL-17 and IL-10) by macrophages, and significantly decreased ROS levels. In conclusion, these data suggest that, due to molecular diversity, CvO promoted an immunomodulatory effect on macrophages, mediated by an increased production of cytokines, and inhibition of ROS generation and phagocytic activity. Thus, CvO presents potential as a therapeutic agent for the treatment of inflammatory and non-inflammatory diseases.
Collapse
Affiliation(s)
- Adan Galué-Parra
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lienne Silveira de Moraes
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil
| | - Amanda Anastácia Pinto Hage
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Luiz Martins do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edilene Oliveira da Silva
- Laboratory of Structural Biology, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Para Institute of Biological Sciences, Belém, Pará, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
6
|
Bretones ML, Sampaio SC, Barbeiro DF, Ariga SKK, Soriano FG, Lima TMD. Crotoxin modulates inflammation and macrophages' functions in a murine sepsis model. Toxicon 2022; 216:132-138. [PMID: 35850256 DOI: 10.1016/j.toxicon.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is a syndrome of physiological and biochemical abnormalities induced by an infection that represents a major public health concern. It involves the early activation of inflammatory responses. Crotoxin (CTX), the major toxin of the South American rattlesnake Crotalus durissus terrificus venom, presents longstanding anti-inflammatory properties. Since immune system modulation may be a strategic target in sepsis management, and macrophages' functional and secretory activities are related to the disease's progression, we evaluated the effects of CTX on macrophages from septic animals. Balb/c male mice submitted to cecal ligation and puncture (CLP) were treated with CTX (0.9 μg/animal, subcutaneously) 1 h after the procedure and euthanized after 6 h. We used plasma samples to quantify circulating cytokines and eicosanoids. Bone marrow differentiated macrophages (BMDM) were used to evaluate the CTX effect on macrophages' functions. Our data show that CTX administration increased the survival rate of the animals from 40% to 80%. Septic mice presented lower plasma concentrations of IL-6 and TNF-α after CTX treatment, and higher concentrations of LXA4, PGE2, and IL-1β. No effect was observed in IL-10, IFN-γ, and RD1 concentrations. BMDM from septic mice treated with CTX presented decreased capacity of E. coli phagocytosis, but sustained NO and H2O2 production. We also observed higher IL-6 concentration in the culture medium of BMDM from septic mice, and CTX induced a significant reduction. CTX treatment increased IL-10 production by macrophages as well. Our data show that the protective effect of CTX in sepsis mortality involves modulation of macrophage functions and inflammatory mediators' production.
Collapse
Affiliation(s)
- Marisa Langeani Bretones
- Laboratório de Emergências Clínicas (LIM51), Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas (LIM51), Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Suely K Kubo Ariga
- Laboratório de Emergências Clínicas (LIM51), Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Francisco Garcia Soriano
- Laboratório de Emergências Clínicas (LIM51), Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Thais Martins de Lima
- Laboratório de Emergências Clínicas (LIM51), Faculdade de Medicina da Universidade de São Paulo, Brazil.
| |
Collapse
|
7
|
Katz S, Barbiéri CL, Soler FPM, Soares AM, Chavantes MC, Zamuner SR. Effect of Isolated Proteins from Crotalus Durissus Terrificus Venom on Leishmania (Leishmania) Amazonensis-Infected Macrophages. Protein Pept Lett 2021; 27:718-724. [PMID: 31994997 DOI: 10.2174/0929866527666200129152954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cutaneous and mucocutaneous leishmaniasis are parasitic diseases characterized by skin manifestations. In Brazil, Leishmania (Leishmania) amazonensis is one of the etiological agents of cutaneous leishmaniasis. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, as they are often highly toxic, poorly tolerated and of variable effectiveness. This study aimed to evaluate in vitro the leishmanicidal activity of toxins isolated from Crotalus durissus terrificus venom as a new approach for the treatment of leishmaniasis. METHODS The comparative effects of crotamine, crotoxin, gyrotoxin, convulxin and PLA2 on bone marrow-derived macrophages infected with L. (L.) amazonensis as well as the release of TGF-β from the treated macrophages were studied. RESULTS AND DISCUSSION Crotamine had the strongest inhibitory effect on parasite growth rate (IC50: 25.65±0.52 μg/mL), while convulxin showed the weakest inhibitory effect (IC50: 52.7±2.21 μg/mL). In addition, TGF-β was significantly reduced after the treatment with all toxins evaluated. CONCLUSION The Crotalus durissus terrificus toxins used in this study displayed significant activity against L. (L.) amazonensis, indicating that all of them could be a potential alternative for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Simone Katz
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda Paula Martins Soler
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | | | - Maria Cristina Chavantes
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Stella Regina Zamuner
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| |
Collapse
|
8
|
de Andrade CM, Rey FM, Cintra ACO, Sampaio SV, Torqueti MR. Effects of crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, on human endothelial cells. Int J Biol Macromol 2019; 134:613-621. [PMID: 31071401 DOI: 10.1016/j.ijbiomac.2019.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 01/03/2023]
Abstract
Vascular endothelium plays an important modulatory role due to the production of molecules that mediate vasomotricity, inflammation, and leukocyte adhesion and rolling. Here we addressed whether crotoxin (25-200 μg/mL) - the main component of Crotalus durissus terrificus snake venom - interferes with cell viability, apotosis/necrosis, and cell response to oxidative stress in human umbilical vein endothelial cells (HUVEC) in vitro. We also examined whether crotoxin alters the levels of interleukins, adhesion molecules, and endothelial vasoactive factors in HUVEC cells treated or not with lipopolysaccharide (LPS; 1 μg/mL; 24 h). Crotoxin was not cytotoxic towards HUVEC cells, and downregulated the LPS-induced production of adhesion molecules (VCAM-1, ICAM-1, and E-selectin), vasoactive factors (endothelin-1 and prostaglandin I2), and interleukins (IL-6, IL-8, and IL1β), as well as protected cells against H2O2-induced oxidative stress. Hence, crotoxin played anti-inflammatory, antioxidant, immunomodulating, and vasoactive actions on HUVEC cells, in vitro. Considering that the initial stages of atherosclerosis is characterized by vasoconstriction, increased levels of adhesion molecules, inflammatory cytokines, and oxidative stress in the vascular endothelium; and crotoxin downmodulated all these events, our findings indicate that the actions of crotoxin here demonstrated suggest that it may have an anti-atherogenic action in vivo, which deserves to be tested in future studies.
Collapse
Affiliation(s)
- Camila M de Andrade
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Fernanda M Rey
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adélia Cristina O Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Regina Torqueti
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Silvestrini AVP, de Macedo LH, de Andrade TAM, Mendes MF, Pigoso AA, Mazzi MV. Intradermal Application of Crotamine Induces Inflammatory and Immunological Changes In Vivo. Toxins (Basel) 2019; 11:toxins11010039. [PMID: 30646542 PMCID: PMC6357061 DOI: 10.3390/toxins11010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Crotamine is a single-chain polypeptide with cell-penetrating properties, which is considered a promising molecule for clinical use. Nevertheless, its biosafety data are still scarce. Herein, we assessed the in vivo proinflammatory properties of crotamine, including its local effect and systemic serum parameters. Sixty male Wistar rats were intradermically injected with 200, 400 and 800 µg crotamine and analyzed after 1, 3 and 7 days. Local effect of crotamine was assessed by determination of MPO and NAG activities, NO levels and angiogenesis. Systemic inflammatory response was assessed by determination of IL-10, TNF-α, CRP, NO, TBARS and SH groups. Crotamine induced macrophages and neutrophils chemotaxis as evidenced by the upregulation of both NAG (0.5–0.6 OD/mg) and MPO (0.1–0.2 OD/mg) activities, on the first and third day of analysis, respectively. High levels of NO were observed for all concentrations and time-points. Moreover, 800 μg crotamine resulted in serum NO (64.7 μM) and local tissue NO (58.5 μM) levels higher or equivalent to those recorded for their respective histamine controls (55.7 μM and 59.0 μM). Crotamine also induced a significant angiogenic response compared to histamine. Systemically, crotamine induced a progressive increase in serum CRP levels up to the third day of analysis (22.4–45.8 mg/mL), which was significantly greater than control values. Crotamine (400 μg) also caused an increase in serum TNF-α, in the first day of analysis (1095.4 pg/mL), however a significant increase in IL-10 (122.2 pg/mL) was also recorded for the same time-point, suggesting the induction of an anti-inflammatory effect. Finally, crotamine changed the systemic redox state by inducing gradual increase in serum levels of TBARS (1.0–1.8 μM/mL) and decrease in SH levels (124.7–19.5 μM/mL) throughout the experimental period of analysis. In summary, rats intradermally injected with crotamine presented local and systemic acute inflammatory responses similarly to histamine, which limits crotamine therapeutic use on its original form.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Luana Henrique de Macedo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Thiago Antônio Moretti de Andrade
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maíra Felonato Mendes
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Acácio Antônio Pigoso
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| |
Collapse
|
10
|
Tomiotto-Pellissier F, Bortoleti BTDS, Assolini JP, Gonçalves MD, Carloto ACM, Miranda-Sapla MM, Conchon-Costa I, Bordignon J, Pavanelli WR. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front Immunol 2018; 9:2529. [PMID: 30429856 PMCID: PMC6220043 DOI: 10.3389/fimmu.2018.02529] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/15/2018] [Indexed: 01/14/2023] Open
Abstract
Leishmaniasis is a vector-borne neglected tropical disease that affects more than 700,000 people annually. Leishmania parasites cause the disease, and different species trigger a distinct immune response and clinical manifestations. Macrophages are the final host cells for the proliferation of Leishmania parasites, and these cells are the key to a controlled or exacerbated response that culminates in clinical manifestations. M1 and M2 are the two main macrophage phenotypes. M1 is a pro-inflammatory subtype with microbicidal properties, and M2, or alternatively activated, is an anti-inflammatory/regulatory subtype that is related to inflammation resolution and tissue repair. The present review elucidates the roles of M1 and M2 polarization in leishmaniasis and highlights the role of the salivary components of the vector and the action of the parasite in the macrophage plasticity.
Collapse
Affiliation(s)
- Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - João Paulo Assolini
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, State University of Londrina, Universitary Hospital, Londrina, Brazil
| | | | | | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Molecular Virology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil
| | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
11
|
Zhao X, Tang X, Guo N, An Y, Chen X, Shi C, Wang C, Li Y, Li S, Xu H, Liu M, Wang Y, Yu L. Biochanin a Enhances the Defense Against Salmonella enterica Infection Through AMPK/ULK1/mTOR-Mediated Autophagy and Extracellular Traps and Reversing SPI-1-Dependent Macrophage (MΦ) M2 Polarization. Front Cell Infect Microbiol 2018; 8:318. [PMID: 30271755 PMCID: PMC6142880 DOI: 10.3389/fcimb.2018.00318] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
A novel treatment regimen for bacterial infections is the pharmacological enhancement of the host's immune defenses. We demonstrated that biochanin A (BCA), an isoflavone constituent in some plants, could enhance both intra- and extracellular bactericidal activity of host cells. First, BCA could induce a complete autophagic response in nonphagocytic cells (HeLa) or macrophages (MΦ) via the AMPK/ULK1/mTOR pathway and Beclin-1-dependent manner, and BCA enhanced the killing of invading Salmonella by autophagy through reinforcing ubiquitinated adapter protein (LRSAM1, NDP52 and p62)-mediated recognition of intracellular bacteria and through the formation of autophagolysosomes. Second, we demonstrated that BCA could enhance the release of MΦ extracellular traps (METs) to remove extracellular Salmonella also via the AMPK/ULK1/mTOR pathway, not through reactive oxygen species (ROS) pathway. Furtherly, in a Salmonella-infected mouse model, BCA treatment increased intra- and extracellular bactericidal activity through the strengthening autophagy and MET production, respectively, in peritoneal MΦ, liver and spleen tissue. Additionally, our findings showed that BCA downregulated SPI-1 (Salmonella pathogenicity island 1) expression during Salmonella infection in vitro and in vivo to reverse the MΦ M2 polarization, which was different from the MΦ M1 phenotype caused by most of bacteria infection. Together, these findings suggest that BCA has an immunomodulatory effect on Salmonella-infected host cells and enhances their bactericidal activity in vitro and in vivo through autophagy, extracellular traps and regulation of MΦ polarization.
Collapse
Affiliation(s)
- Xingchen Zhao
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China.,Department of Food Quality and Safety, College of Food Science and Engineering, Tonghua Normal University, Tonghua, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Na Guo
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiangrong Chen
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Ce Shi
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Chao Wang
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Shulin Li
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Hongyue Xu
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Wang
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
12
|
Da Silva BJM, Pereira SWG, Rodrigues APD, Do Nascimento JLM, Silva EO. In vitro antileishmanial effects of Physalis angulata root extract on Leishmania infantum. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:404-410. [PMID: 30195443 DOI: 10.1016/j.joim.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE In the present study, we evaluated the effects of the aqueous extract of Physalis angulata root (AEPa) on Leishmania infantum proliferation, morphology, and the driving mechanism in leishmanicidal activity and modulatory action on macrophages. METHODS L. infantum promastigotes were treated with 50 and 100 µg/mL AEPa for 72 h and then antipromastigote assay was performed by counts in a Newbauer chamber, morphological changes were analyzed by transmission electron microscopy and the mechanism of the leishmanicidal activity was detected. In addition, macrophages were infected with L. infantum and were used to evaluate anti-amastigote activity of AEPa and effects of AEPa on cytokine secretion after 72-hour treatment. RESULTS Treatment with AEPa reduced the numbers of L. infantum promastigotes (50% inhibitory concentration (IC50) = 65.9 μg/mL; selectivity index (SI) = 22.1) and amastigotes (IC50 = 37.9 μg/mL; SI = 38.5) compared with the untreated control. Amphotericin B reduced 100% of the promastigote numbers after 72 h of treatment (IC50 = 0.2 μg/mL). AEPa induced several morphological changes and increased the production of reactive oxygen species and apoptotic death in promastigotes after treating for 72 h. AEPa (100 μg/mL) promoted tumor necrosis factor-α secretion in macrophages infected with L. infantum after 72 h of treatment, but did not induce an increase in this cytokine in noninfected macrophages. In addition, AEPa showed no cytotoxic effect on J774-A1 cells (50% cytotoxic concentration >1000 μg/mL). CONCLUSION AEPa presented antileishmanial activity against the promastigotes and amastigotes of L. infantum without macrophage cytotoxicity; these results show that natural products such as P. angulata have leishmanicidal potential and in the future may be an alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Bruno José Martins Da Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (INCT-INBEB), Rio de Janeiro 21941-901, Brazil
| | - Sandro Wilson Gomes Pereira
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
| | - Ana Paula Drummond Rodrigues
- Laboratory of Electron Microscopy, Department of Health Surveillance, Ministry of Health, Evandro Chagas Institute, Belém, Pará 66087-082, Brazil
| | - José Luiz Martins Do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-360, Brazil
| | - Edilene Oliveira Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (INCT-INBEB), Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|