1
|
Panich W, Puttharugsa C, Tejangkura T, Chontananarth T. A simple color absorption analysis of colorimetric loop-mediated isothermal amplification for detection of Raillietina spp. in clinical samples using a 3D-printed tube holder coupled with a smartphone camera and notebook screen. Mikrochim Acta 2024; 191:603. [PMID: 39284926 DOI: 10.1007/s00604-024-06648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 10/13/2024]
Abstract
A simple method has been developed for semi-quantitative analysis of the colorimetric output of loop-mediated isothermal amplification (LAMP) using a 3D-printed tube holder with a smartphone and notebook for the detection of Raillietina, which is the cause of Raillietiniasis affecting free-range chicken farming. In this method, a light is directed from a notebook screen to the LAMP products in the tube holder and the color absorption of the LAMP products is measured by using the appropriate smartphone application. It was found that the malachite green dye-coupled LAMP (MaG-LAMP) assay showed the highest sensitivity and specificity for detecting Raillietina without any cross-reaction with other related parasites and hosts. The limit of detection was 10 fg/μL of DNA. A total of 60 fecal samples were infectively confirmed by microscopic examination and the results of microscopy compared with those of MaG-LAMP and triplex PCR assays. Microscopy and MaG-LAMP based on the color absorption demonstrated high agreement in Raillietina detection with kappa = 1. Rapid, simple, cost-effective, and easy interpretation of colorimetric LAMP assays and their high sensitivity make them superior to PCR and morphological investigation, demonstrating the feasibility of this assay in point-of-care screening to support farm management and solve chicken health problems. Our study presents is an alternative diagnostic method using semi-quantitative analysis of colorimetric LAMP based on the differing solution color absorptions between positive and negative reactions for infectious disease diagnosis.
Collapse
Affiliation(s)
- Wasin Panich
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Chokchai Puttharugsa
- Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanawan Tejangkura
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
2
|
Selva Sharma A, Lee NY. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: A comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coord Chem Rev 2024; 509:215769. [DOI: 10.1016/j.ccr.2024.215769] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
van Bergen KJM, Brienen EA, Randrianasolo BS, Ramarokoto CE, Leutscher P, Kjetland EF, van Diepen A, Dekker F, Saggiomo V, Velders AH, van Lieshout L. Next step towards point-of-care molecular diagnosis of female genital schistosomiasis (FGS): evaluation of an instrument-free LAMP procedure. FRONTIERS IN PARASITOLOGY 2024; 3:1297310. [PMID: 39817178 PMCID: PMC11731957 DOI: 10.3389/fpara.2024.1297310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/26/2024] [Indexed: 01/18/2025]
Abstract
Detection of Schistosoma spp. DNA in gynaecological samples by quantitative real-time polymerase chain reaction (qPCR) is considered to be the reference diagnostic test for female genital schistosomiasis (FGS). However, qPCR needs expensive laboratory procedures and highly trained technicians. Loop-mediated amplification (LAMP) is a more field-friendly isothermal procedure for the detection of parasite-specific DNA, but it still requires electrically powered equipment. Here, we validated a Schistosoma haematobium-specific Sh-LAMP procedure and tested a fully instrument-free isothermal amplification using a novel low-cost, and reusable Temperature-cup (T-cup) device. Specific primers were selected based on published assays, targeting the ribosomal intergenic spacer (IGS) region of S. haematobium. Technical validation of the IGS-Sh-LAMP was performed using 20 negative controls, including DNA extracts of soil-transmitted helminths and S. mansoni, and a 10-fold dilution series (100-10-3) of DNA extracted from a single S. haematobium egg (n=4). For clinical validation, the IGS-Sh-LAMP was tested on 125 DNA samples extracted from vaginal swabs of a previous FGS study in Madagascar. Results were compared with the quantification cycle value (Cq) of the standard ITS-2 targeting qPCR. Single S. haematobium egg DNA up to a 10-2 dilution and an ITS-2 Cq <35 tested positive in the IGS-Sh-LAMP. The specificity was found to be excellent (100%). In the clinical samples, IGS-Sh-LAMP showed comparable results with the qPCR, with 35.2% and 33.6% positives, respectively, and a concordance of 79.2% (99/125). Of the 12 false-negatives, 5 corresponded to the 7 qPCR positive samples with very low DNA levels (Cq ≥35). On the other hand, IGS-Sh-LAMP detected 14 additional cases that were not detected by qPCR. The T-cup IGS-Sh-LAMP performance was evaluated in a representative sub-selection (n=10) of IGS-Sh-LAMP positive clinical samples. The T-cup IGS-Sh-LAMP was found to be a very user-friendly method, but in different runs, it missed 1 to 4 of the 10 IGS-Sh-LAMP positive samples, specifically those with a low DNA load. Our results show that the IGS-Sh-LAMP is a suitable alternative to the ITS-2 qPCR for the diagnosis of FGS in gynaecological samples, with high potential for the T-cup as a fully instrument-free isothermal amplification device for point-of-care diagnosis in low-resource settings.
Collapse
Affiliation(s)
- Kim J. M. van Bergen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric A.T. Brienen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Peter Leutscher
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Eyrun F. Kjetland
- Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases Discipline of Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Floris Dekker
- Department of BioNanoTechnology, Wageningen University, Wageningen, Netherlands
| | - Vittorio Saggiomo
- Department of BioNanoTechnology, Wageningen University, Wageningen, Netherlands
| | - Aldrik H. Velders
- Department of BioNanoTechnology, Wageningen University, Wageningen, Netherlands
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Panich W, Nak-On S, Sabaijai M, Raksaman A, Puttharugsa C, Tejangkura T, Chontananarth T. Evaluation of semi-quantitative colorimetric assays based on loop-mediated isothermal amplification indicators by using image analysis. Anal Biochem 2024; 688:115481. [PMID: 38360170 DOI: 10.1016/j.ab.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Colorimetric assays are some of the most convenient detection methods, creating discoloration in solutions that is visible to the naked eye. However, colorimetric reactions have some limitations regarding the variability in the color perception of individuals caused by factors such as color blindness, experience, and gender. Semi-quantitative chromatic analysis has been used as an alternative method to differentiate between two colors and accurately interpret the results from a numerical value, with high confidence. Therefore, we developed and determined the optimal model between Red-Green-Blue (RGB) and Commission Internationale de l'Eclairage (CIE) Lab color spaces to establish a semi-quantitative colorimetric assay via image analysis by the ImageJ program for loop-mediated isothermal amplification (LAMP), using the dyes malachite green and phenol red. The semi-quantitative colorimetric assays using the color distance values of the CIELab color space (ΔEab) were more suitable than those using the RGB color space (ΔERGB) for chromatic differentiation between positive and negative reactions in both indicator dyes, demonstrating the feasibility of this assay to be applied in the detection of a wide range of pathogens and infectious diseases.
Collapse
Affiliation(s)
- Wasin Panich
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sirapat Nak-On
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Metawee Sabaijai
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Awika Raksaman
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Chokchai Puttharugsa
- Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanawan Tejangkura
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand; Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand; Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
5
|
Hamer M, Watanabe O, Saraullo V, Ortega F, Sánchez C, Martínez M, Brihuega B, Grune Loffler S. Optimization and comparative analysis of LAMP and PCR techniques for the detection of leptospiral DNA in Golden Syrian hamsters. Vet Res Commun 2024; 48:103-111. [PMID: 37540477 DOI: 10.1007/s11259-023-10183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Leptospirosis is a zoonotic disease with significant public health and economic impact worldwide. Rapid and accurate diagnosis is essential for effective prevention and treatment. This study optimized a loop-mediated isothermal amplification (LAMP) assay using BFo isothermal DNA polymerase with different colorimetric indicators. LAMP was able to detect DNA from pathogenic and intermediate leptospires, while non-pathogenic leptospires and other non-leptospiral microorganisms were negative. LAMP assay combined with calcein showed a tenfold higher limit of detection (1 ng of leptospiral DNA per reaction) than LAMP combined with hydroxynaphthol blue or end-point PCR lipL32 (10 ng of DNA per reaction). Animal samples were collected from infected and non-infected Golden Syrian hamsters (Mesocricetus auratus) to evaluate and compare the performance of LAMP and PCR. These techniques showed a substantial agreement according to Cohen's kappa statistic, being both useful techniques for detecting leptospiral DNA in clinical samples. Overall, this study demonstrates that the LAMP assay is a sensitive, specific, rapid, and simple tool for the detection of leptospiral DNA. It has the potential to facilitate the diagnosis of leptospirosis, particularly in low-income regions with limited diagnosis resources.
Collapse
Affiliation(s)
- Micaela Hamer
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| | - Olivia Watanabe
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Vanina Saraullo
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Facundo Ortega
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Cristina Sánchez
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Mara Martínez
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Bibiana Brihuega
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
- Veterinary School, University of El Salvador, Buenos Aires, Argentina
| | - Sylvia Grune Loffler
- Centre of Human and Animal Virology (CEVHAN), Interamerican Open University (UAI) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Investigation and validation of labelling loop mediated isothermal amplification (LAMP) products with different nucleotide modifications for various downstream analysis. Sci Rep 2022; 12:7137. [PMID: 35504953 PMCID: PMC9062634 DOI: 10.1038/s41598-022-11320-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Loop mediated isothermal amplification (LAMP) is one of the best known and most popular isothermal amplification methods. It's simplicity and speed make the method particularly suitable for point-of-care diagnostics. Nevertheless, false positive results remain a major drawback. Many (downstream) applications are known for the detection of LAMP amplicons like colorimetric assays, in-situ LAMP or CRISPR-Cas systems. Often, modifications of the LAMP products are necessary for different detection applications such as lateral flow assays. This is usually achieved with pre-modified primer. The aim of this study is to evaluate amplicon labelling with different modified nucleotides such as Cy5-dUTP, biotin-dUTP and aminoallyl-dUTP as an alternative to pre-labelled primers. To realise this, the effects on amplification and labelling efficiency were studied as a function of molecule size and nucleotide amount as well as target concentration. This research shows that diverse labelling of LAMP amplicons can be achieved using different, modified nucleotides during LAMP and that these samples can be analysed by a wide range of downstream applications such as fluorescence spectroscopy, gel electrophoresis, microarrays and lateral flow systems. Furthermore, microarray-based detection and the ability to identify and distinguish false positives were demonstrated as proof of concept.
Collapse
|
8
|
Maciag L, Morgan ER, Holland C. Toxocara: time to let cati ‘out of the bag’. Trends Parasitol 2022; 38:280-289. [DOI: 10.1016/j.pt.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
|
9
|
Avila HG, Risso MG, Cabrera M, Ruybal P, Repetto SA, Butti MJ, Trangoni MD, Santillán G, Pérez VM, Periago MV. Development of a New LAMP Assay for the Detection of Ancylostoma caninum DNA (Copro-LAMPAc) in Dog Fecal Samples. Front Vet Sci 2021; 8:770508. [PMID: 34869740 PMCID: PMC8633310 DOI: 10.3389/fvets.2021.770508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023] Open
Abstract
Ancylostoma caninum is a zoonotic nematode which is able to affect animals and humans. Diagnosis in the definitive host and environmental detection are key to prevent its dissemination and achieve control. Herein, a new coprological LAMP method for the detection of A. caninum (Copro-LAMPAc) DNA was developed. DNA extraction was performed using a low-cost method and a fragment of the cox-1 gene was used for primer design. The analytical sensitivity, evaluated with serial dilutions of genomic DNA from A. caninum adult worms, was 100 fg. A specificity of 100% was obtained using genomic DNA from the host and other pathogens. The Copro-LAMPAc was evaluated using environmental canine fecal samples. When compared with gold standard optical microscopy in epidemiological studies, it proved to be more sensitive. This new LAMP assay can provide an alternative protocol for screening and identification of A. caninum for epidemiological studies in endemic areas.
Collapse
Affiliation(s)
- Héctor Gabriel Avila
- Laboratorio Provincial de Zoonosis de San Juan, Facultad de Ciencias Veterinarias, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marikena Guadalupe Risso
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Cabrera
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Paula Ruybal
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Analía Repetto
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina.,División Infectología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Javier Butti
- Laboratorio de Parasitosis Humanas y Zoonosis Parasitarias, Cátedra de Parasitología Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcos David Trangoni
- Laboratorio de Brucella, Campylobacter y Microbiota del rumen, Instituto de Biotecnología/Instituto de Agrobiotecnología y Biología Molecular, Unidades Ejecutoras de Doble Dependencia (UEDD) INTA-CONICET, Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Graciela Santillán
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Verónica Mirtha Pérez
- Laboratorio Provincial de Zoonosis de San Juan, Facultad de Ciencias Veterinarias, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina.,Sección de Rabia y Zoonosis, Dirección de Epidemiología, Ministerio de Salud Pública de San Juan, San Juan, Argentina
| | - María Victoria Periago
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Fundación Mundo Sano, Buenos Aires, Argentina
| |
Collapse
|