1
|
Outa JO, Avenant-Oldewage A. Echinostomatids from South African freshwater limpets: phylogenetic analyses and diagnostic morphological features for cercariae of Petasiger. J Helminthol 2025; 98:e91. [PMID: 39757578 DOI: 10.1017/s0022149x24000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Species of the family Echinostomatidae use diverse gastropod taxa as first intermediate hosts. However, identification of echinostomatid larvae often proves difficult because of incomplete information on their life cycles and lack of molecular data that can link larvae to the corresponding known adults. Here, echinostomatids that were isolated from freshwater limpets in South Africa were described using light and scanning electron microscopy, and ribosomal (28S, ITS, and 18S) and mitochondrial (cox1) DNA sequences. The analyses revealed three species: Petasiger radiatus, Petasiger sp., and Echinostomatidae gen. sp. Considering the close morphological resemblance between cercariae of Petasiger spp., the current species were compared with data from literature. The results showed that cercarial size is generally unsuitable for species discrimination. The numbers of flame cells and refractile granules in the excretory system, and penetration gland cell patterns, may indicate, but do not prove species identity. Although papillary patterns were distinct between species, papillae were clearly discernible only using scanning electron microscopy and are known for only a few species. Phylogenetic reconstruction indicated that 28S rDNA sequences of Petasiger on GenBank are for P. exaeretus, P. phalacrocoracis, P. radiatus, and six unnamed species. Furthermore, the results revealed that multiple ITS rDNA and cox1 sequences labelled as Stephanoprora amurensis and P. phalacrocoracis on GenBank, are from isolates whose identities are questionable. Echinostomatidae gen. sp. could not be assigned to any currently known genus. Expansion of the genetic database of the family Echinostomatidae is necessary for the delineation of putative species and elucidation of intergeneric relationships.
Collapse
Affiliation(s)
- James Omondi Outa
- University of Johannesburg, Department of Zoology, Auckland Park, 2006, Johannesburg, South Africa
| | | |
Collapse
|
2
|
Ray M, Trinidad M, Francis N, Shamsi S. Characterization of Echinostoma spp. (Trematoda: Echinostomatidae Looss, 1899) infecting ducks in south-eastern Australia. Int J Food Microbiol 2024; 421:110754. [PMID: 38917490 DOI: 10.1016/j.ijfoodmicro.2024.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Waterbirds, are one of the popular game animals and are of significant relevance to parasite spread due to their ability to fly and migrate great distances in relatively short periods of time. In Australia, however, the knowledge of parasites infecting native waterbirds is lacking with some of the last reports occurring over 50 years ago. The study aimed to characterise Echinostoma spp. infecting wild native Australian ducks found in the southern regions of the Murray Darling Basin (MDB). Ducks (n = 98) were collected from southern New South Wales within the MDB catchment. Three different species of native ducks were found including Anas superciliosa (n = 37), Anas gracilis (n = 47) and Chenonetta jubata (n = 14), of which 4.3 %, 2.7 % and 7.1 %, respectively, were found to be infected with adult stages Echinostoma spp. Examination of the parasites revealed the presence of two morphotypes. The 18S, 28S and ITS rRNA as well as the mitochondrial nad1 genes were sequenced for representative isolates of the two morphotypes. These sequences were then compared with existing sequences of Echinostoma spp. available in the GenBank. Phylogenetic analysis based on the ITS region indicated that the two morphotypes were genetically distinct. Although there are comparable sequences of Echinostoma spp. in Australia these morphotypes appear to be genetically distinct. Based on their distinct morphology and genetics we suggest that these two morphotypes are previously undescribed in Australia. This study sheds light on the presence of Echinostoma parasites in native Australian waterbirds and highlights the need for further research to better understand the diversity and prevalence of these parasites in the region.
Collapse
Affiliation(s)
- Madeleine Ray
- Gulbali Institute, School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga 2678, Australia.
| | - Michael Trinidad
- Gulbali Institute, School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga 2678, Australia
| | - Nidhish Francis
- Gulbali Institute, School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga 2678, Australia
| | - Shokoofeh Shamsi
- Gulbali Institute, School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga 2678, Australia
| |
Collapse
|
3
|
Le TH, Pham LTK, Van Quyen D, Nguyen KT, Doan HTT, Saijuntha W, Blair D. The ribosomal transcription units of five echinostomes and their taxonomic implications for the suborder Echinostomata (Trematoda: Platyhelminthes). Parasitol Res 2024; 123:103. [PMID: 38236312 DOI: 10.1007/s00436-023-08110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Five newly obtained nuclear ribosomal transcription unit (rTU) sequences from Echinostomatidae and Echinochasmidae are presented. The inter- and intrafamilial relationships of these and other families in the suborder Echinostomata are also analyzed. The sequences obtained are the complete rTU of Artyfechinostomum malayanum (9,499 bp), the near-complete rTU of Hypoderaeum conoideum (8,076 bp), and the coding regions (from 5'-terminus of 18S to 3'-terminus of 28S rRNA gene) in Echinostoma revolutum (6,856 bp), Echinostoma miyagawai (6,854 bp), and Echinochasmus japonicus (7,150 bp). Except for the longer first internal transcribed spacer (ITS1) in Echinochasmus japonicus, all genes and spacers were almost identical in length. Comprehensive maximum-likelihood phylogenies were constructed using the PhyML software package. The datasets were either the concatenated 28S + 18S rDNA sequences (5.7-5.8 kb) from 60 complete rTUs of 19 families or complete 28S sequences only (about 3.8-3.9 kb) from 70 strains or species of 22 families. The phylogenetic trees confirmed Echinostomatoidea as monophyletic. Furthermore, a detailed phylogeny constructed from alignments of 169 28S D1-D3 rDNA sequences (1.1-1.3 kb) from 98 species of 50 genera of 10 families, including 154 echinostomatoid sequences (85 species/42 genera), clearly indicated known generic relationships within Echinostomatidae and Echinochasmidae and relationships of families within Echinostomata and several other suborders. Within Echinostomatidae, Echinostoma, Artyfechinostomum, and Hypoderaeum appeared as monophyletic, while Echinochasmus (Echinochasmidae) was polyphyletic. The Echinochasmidae are a sister group to the Psilostomidae. The datasets provided here will be useful for taxonomic reappraisal as well as studies of evolutionary and population genetics in the superfamily Echinostomatoidea, the sole superfamily in the suborder Echinostomata.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam.
| | - Linh Thi Khanh Pham
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | - Dong Van Quyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
- Molecular Microbiology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | - Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | - Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam
| | | | - David Blair
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
4
|
Chai JY, Jung BK. Epidemiology and Geographical Distribution of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:443-505. [PMID: 39008273 DOI: 10.1007/978-3-031-60121-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Digenetic trematodes infecting humans are more than 109 species that belong to 49 genera all over the world. According to their habitat in the definitive hosts, they are classified as 6 blood flukes (Schistosoma japonicum. S. mekongi, S. malayensis, S. mansoni, S. intercalatum, and S. haematobium), 15 liver flukes (Fasciola hepatica, F. gigantica, Clonorchis sinensis, Opisthorchis viverrini, O. felineus, Dicrocoelium dendriticum, D. hospes, Metorchis bilis, M. conjunctus, M. orientalis, Amphimerus sp., A. noverca, A. pseudofelineus, Pseudamphistomum truncatum, and P. aethiopicum), nine lung flukes (Paragonimus westermani, P. heterotremus, P. skrjabini, P. skrjabini miyazakii, P. kellicotti, P. mexicanus, P. africanus, P. uterobilateralis, and P. gondwanensis), 30 heterophyid intestinal flukes (Metagonimus yokogawai, M. takahashii, M. miyatai, M. suifunensis, M. katsuradai, M. pusillus, M. minutus, Heterophyes heterophyes, H. nocens, H. dispar, Haplorchis taichui, H. pumilio, H. yokogawai, H. vanissinus, Centrocestus formosanus, C. armatus, C. cuspidatus, C. kurokawai, Procerovum calderoni, P. varium, Pygidiopsis genata, P. summa, Stictodora fuscata, S. lari, Stellantchasmus falcatus, Heterophyopsis continua, Acanthotrema felis, Apophallus donicus, Ascocotyle longa, and Cryptocotyle lingua), 24 echinostome intestinal flukes (Echinostoma revolutum, E. cinetorchis, E. mekongi, E. paraensei, E. ilocanum, E. lindoense, E. macrorchis, E. angustitestis, E. aegyptica, Isthmiophora hortensis, I. melis, Echinochasmus japonicus, E. perfoliatus, E. lilliputanus, E. caninus, E. jiufoensis, E. fujianensis, Artyfechinostomum malayanum, A. sufrartyfex, A. oraoni, Acanthoparyphium tyosenense, Echinoparymphium recurvatum, Himasthla muehlensi, and Hypoderaeum conoideum), 23 miscellaneous intestinal flukes (Brachylaima cribbi, Caprimolgorchis molenkampi, Phaneropsolus bonnei, P. spinicirrus, Cotylurus japonicus, Fasciolopsis buski, Gastrodiscoides hominis, Fischoederius elongatus, Watsonius watsoni, Gymnophalloides seoi, Gynaecotyla squatarolae, Microphallus brevicaeca, Isoparorchis hypselobagri, Nanophyetus salmincola, N. schikobalowi, Neodiplostomum seoulense, Fibricola cratera, Plagiorchis muris, P. vespertilionis, P. harinasutai, P. javensis, P. philippinensis, and Prohemistomum vivax), one throat fluke (Clinostomum complanatum), and one pancreatic fluke (Eurytrema pancreaticum). The mode of transmission to humans includes contact with cercariae contaminated in water (schistosomes) or ingestion of raw or improperly cooked food, including fish (liver flukes, heterophyid flukes, echinostomes, and throat flukes), snails (echinostomes, brachylaimids, and gymnophallid flukes), amphibia, reptiles (neodiplostomes), aquatic vegetables (fasciolids and amphistomes), and insect larvae or adults (lecithodendriids, plagiorchiids, and pancreatic flukes). Praziquantel has been proven to be highly effective against almost all kinds of trematode infections except Fasciola spp. Epidemiological surveys and detection of human infections are required for a better understanding of the prevalence, intensity of infection, and geographical distribution of each trematode species.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bong-Kwang Jung
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, Republic of Korea
| |
Collapse
|
5
|
Valadão MC, Alves PV, López-Hernández D, Assis JCA, Coelho PRS, Geiger SM, Pinto HA. A new cryptic species of Echinostoma (Trematoda: Echinostomatidae) closely related to Echinostoma paraensei found in Brazil. Parasitology 2023; 150:337-347. [PMID: 36632020 PMCID: PMC10090611 DOI: 10.1017/s003118202300001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023]
Abstract
Echinostoma paraensei, described in Brazil at the end of the 1960s and used as a biological model for a range of studies, belongs to the ‘revolutum’ complex of Echinostoma comprising species with 37 collar spines. However, molecular data are available only for a few isolates maintained under laboratory conditions, with molecular prospecting based on specimens originating from naturally infected hosts virtually lacking. The present study describes Echinostoma maldonadoi Valadão, Alves & Pinto n. sp., a species cryptically related to E. paraensei found in Brazil. Larval stages (cercariae, metacercariae and rediae) of the new species were found in the physid snail Stenophysa marmorata in the State of Minas Gerais, Brazil, the same geographical area where E. paraensei was originally described. Adult parasites obtained experimentally in Meriones unguiculatus were used for morphological (optical microscopy) and molecular [28S, internal transcribed spacer (ITS), nad1 and cox1] characterization. The morphology of larval and adult parasites (most notable the small-sized dorsal spines in the head collar), associated with low (0–0.1%) molecular divergence for 28S gene or ITS region, and only moderate divergence for the mitochondrial cox1 gene (3.83%), might suggest that the newly collected specimens should be assigned to E. paraensei. However, higher genetic divergence (6.16–6.39%) was found in the mitochondrial nad1, revealing that it is a genetically distinct, cryptic lineage. In the most informative phylogenetic reconstruction, based on nad1, E. maldonadoi n. sp. exhibited a strongly supported sister relationship with E. paraensei, which may indicate a very recent speciation event giving rise to these 2 species.
Collapse
Affiliation(s)
- Marisa C. Valadão
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Philippe V. Alves
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
- Section of Parasitology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689, Botucatu, São Paulo, Brazil
| | - Danimar López-Hernández
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana C. A. Assis
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo R. S. Coelho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Stefan M. Geiger
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Hudson A. Pinto
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Sokolov SG, Ieshko EP, Gorbach VV. Parasites of Perccottus glenii Dybowski, 1877 (Actinopterygii: Odontobutidae) in the native and the introduced host range: Abundance-occupancy and abundance-variance relationships. Parasitol Int 2023; 93:102699. [PMID: 36375773 DOI: 10.1016/j.parint.2022.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The Chinese sleeper Perccottus glenii Dybowski, 1877 is an invasive fish species rapidly expanding in Siberia and Europe. Its native range encompasses the Far East region of Russia, northeastern China and northern North Korea. We studied species composition, prevalence, mean abundance and variance of mean abundance of macroparasites of the Chinese sleeper in the native and the introduced range. The species composition of the parasite component communities differed considerably in the native and the introduced range. The frequency distributions of prevalence, mean abundance and variance of mean abundance of the parasites did not demonstrate any significant differentiation between the two parts of the host range. However, an analysis of the abundance-occupancy and the abundance-variance relationships revealed that the parasite component communities in the two parts of the host range were quite distinct. In the native range, prevalence increased faster and variance increased more slowly with the increasing abundance of the parasites than in the introduced range. These features are mostly associated with considerably increased prevalence, abundance and aggregation of the host-specific cestode Nippotaenia mogurndae in recipient water bodies as compared with the native habitats.
Collapse
Affiliation(s)
- Sergey G Sokolov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Evgeny P Ieshko
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, 185035 Petrozavodsk, Russia
| | - Vyacheslav V Gorbach
- Department of Zoology and Ecology, Petrozavodsk State University, 185910 Petrozavodsk, Russia
| |
Collapse
|
7
|
Abstract
In the present paper, we review two of the most neglected intestinal food-borne trematodiases: echinostomiasis, caused by members of the family Echinostomatidae, and gastrodiscoidiasis produced by the amphistome Gastrodiscoides hominis. Both parasitic infections are important intestinal food-borne diseases. Humans become infected after ingestion of raw or insufficiently cooked molluscs, fish, crustaceans, amphibians or aquatic vegetables. Thus, eating habits are essential to determine the distribution of these parasitic diseases and, traditionally, they have been considered as minor diseases confined to low-income areas, mainly in Asia. However, this scenario is changing and the population at risk are currently expanding in relation to factors such as new eating habits in developed countries, growing international markets, improved transportation systems and demographic changes. These aspects determine the necessity of a better understanding of these parasitic diseases. Herein, we review the main features of human echinostomiasis and gastrodiscoidiasis in relation to their biology, epidemiology, immunology, clinical aspects, diagnosis and treatment.
Collapse
|
8
|
Valadão MC, López-Hernández D, Alves PV, Pinto HA. A new species of Echinostoma (Trematoda: Echinostomatidae) from the ' revolutum' group found in Brazil: refuting the occurrence of Echinostoma miyagawai (= E. robustum) in the Americas. Parasitology 2022; 149:325-336. [PMID: 35264265 PMCID: PMC11010529 DOI: 10.1017/s0031182021001864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 11/06/2022]
Abstract
Although Echinostoma robustum (currently a synonym of E. miyagawai) was reported in the Americas based on molecular data, morphological support on adult parasites is still required. Herein, a new species of Echinostoma is described based on worms found in a chicken from Brazil. Molecular phylogenetic analyses based on 28S (1063 bp), ITS (947 bp) and Nad-1 (442 bp) datasets reveal the inclusion of the new species within Echinostoma ‘revolutum’ species complex. Moreover, it was verified the conspecificity between cercariae previously identified as E. robustum in Brazil [identical ITS and only 0.3% of divergence (1 nucleotide) in Nad-1]. Species discovery analyses show that these two isolates form an independent lineage (species) among Echinostoma spp. Compared to E. miyagawai, the new species presents relatively high divergence in Nad-1 (7.88–9.09%). Morphologically, the specimens are distinguished from all nominal species from the ‘revolutum’ species complex by the more posterior position of the testes (length of post-testicular field as a proportion of body length about 20%). They further differ from E. miyagawai and South American Echinostoma spp. by the higher proportion of forebody to the body length. Therefore, combined molecular and morphological evidence supports the proposal of the species named here as Echinostoma pseudorobustum sp. nov.
Collapse
Affiliation(s)
- Marisa C. Valadão
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Danimar López-Hernández
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Philippe V. Alves
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Hudson A. Pinto
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|