1
|
da Rocha Zurchimitten G, Camerini L, Izídio GS, Ghisleni G. Identifying genetic variants associated with side effects of antidepressant treatment: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111154. [PMID: 39369809 DOI: 10.1016/j.pnpbp.2024.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Major Depressive Disorder (MDD) is one of the most prevalent neurobiological disorders globally. Antidepressant medications are the first-line treatment for managing symptoms. However, over time, pharmacotherapy has been linked to several challenges, primarily due to the wide array of side effects that often reduce patient adherence to treatment. The literature suggests that these side effects may be influenced by polymorphisms in genes related to the pharmacokinetics and pharmacodynamics of antidepressants. Thus, this systematic review aimed to identify studies that investigated the association between genetic variants and side effects resulting from antidepressant treatment in individuals with MDD. Original articles indexed in the electronic databases Cochrane Library, EMBASE, MEDLINE via PubMed, and Scopus were identified. A total of 55 studies were included in the review, and data regarding the outcomes of interest were extracted. Due to the exploratory nature of the review, a narrative/descriptive synthesis of the results was performed. The risk of bias was evaluated using the Joanna Briggs Institute's tools, tailored to the design of each study. Polymorphisms in 35 genes were statistically associated with the development of side effects. A subsequent Protein-Protein Interaction Network analysis helped elucidate the key biological pathways involved in antidepressant side effects, with a view toward exploring the potential application of pharmacogenetic markers in clinical practice.
Collapse
Affiliation(s)
| | - Laísa Camerini
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Geison Souza Izídio
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Gabriele Ghisleni
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Wang KW, Yuan YX, Zhu B, Zhang Y, Wei YF, Meng FS, Zhang S, Wang JX, Zhou JY. X chromosome-wide association study of quantitative biomarkers from the Alzheimer's Disease Neuroimaging Initiative study. Front Aging Neurosci 2023; 15:1277731. [PMID: 38035272 PMCID: PMC10682795 DOI: 10.3389/fnagi.2023.1277731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a complex neurodegenerative disease with high heritability. Compared to autosomes, a higher proportion of disorder-associated genes on X chromosome are expressed in the brain. However, only a few studies focused on the identification of the susceptibility loci for AD on X chromosome. Methods Using the data from the Alzheimer's Disease Neuroimaging Initiative Study, we conducted an X chromosome-wide association study between 16 AD quantitative biomarkers and 19,692 single nucleotide polymorphisms (SNPs) based on both the cross-sectional and longitudinal studies. Results We identified 15 SNPs statistically significantly associated with different quantitative biomarkers of the AD. For the cross-sectional study, six SNPs (rs5927116, rs4596772, rs5929538, rs2213488, rs5920524, and rs5945306) are located in or near to six genes DMD, TBX22, LOC101928437, TENM1, SPANXN1, and ZFP92, which have been reported to be associated with schizophrenia or neuropsychiatric diseases in literature. For the longitudinal study, four SNPs (rs4829868, rs5931111, rs6540385, and rs763320) are included in or near to two genes RAC1P4 and AFF2, which have been demonstrated to be associated with brain development or intellectual disability in literature, while the functional annotations of other five novel SNPs (rs12157031, rs428303, rs5953487, rs10284107, and rs5955016) have not been found. Discussion 15 SNPs were found statistically significantly associated with the quantitative biomarkers of the AD. Follow-up study in molecular genetics is needed to verify whether they are indeed related to AD. The findings in this article expand our understanding of the role of the X chromosome in exploring disease susceptibility, introduce new insights into the molecular genetics behind the AD, and may provide a mechanistic clue to further AD-related studies.
Collapse
Affiliation(s)
- Kai-Wen Wang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yu-Xin Yuan
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Bin Zhu
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yi Zhang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yi-Fang Wei
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Fan-Shuo Meng
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Shun Zhang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing-Xuan Wang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ji-Yuan Zhou
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | | |
Collapse
|
3
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Arıkan MK, İlhan R, Pogarell O, Metin B. When to stop medication in unipolar depression: A systematic review and a meta-analysis of randomized controlled trials. J Affect Disord 2023; 325:7-13. [PMID: 36623560 DOI: 10.1016/j.jad.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Currently, there is no clear answer to the question of how long antidepressants should be continued or when they can be safely discontinued. METHODS Pubmed/Medline was systematically searched from inception to Feb 20, 2021. Double-blind, randomized placebo-controlled trials (RCTs) with maintenance phase were selected to examine the relationship between relapse rate and treatment duration. Among 5351 screened records, 37 RCTs meeting inclusion criteria were selected. Odds ratios were calculated from relapse rates for each study and pooled in random-effect models. Possible predictors of effect sizes, i.e., open-label treatment duration, double-blind phase duration, age, medication type, history of recurrence, were analyzed by meta-regression. RESULTS The random-effects model showed the superiority of active medication over placebo for relapse during the follow-up phase (OR = 0.37; 95 % CI, 0.32-0.42). The meta-regression did not show a relationship between treatment duration and the effect sizes. Other clinical variables were not related with effect sizes. Subgroup analysis revealed that, for atypical ADs the effect size increased as the treatment duration increased. Further analysis showed that the relapse rate in the placebo group decreased as function of time, which reduced the absolute benefit of continued treatment. CONCLUSION The results may indicate that long term use of antidepressants may not be justified, and this strategy may expose the patients to more adverse effects.
Collapse
Affiliation(s)
| | - Reyhan İlhan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | - Oliver Pogarell
- Department of Psychiatry, Division of Clinical Neurophysiology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Barış Metin
- Department of Neurology, Medical Faculty, Uskudar University, Istanbul, Turkey.
| |
Collapse
|
5
|
Jensen KHR, Dam VH, Ganz M, Fisher PM, Ip CT, Sankar A, Marstrand-Joergensen MR, Ozenne B, Osler M, Penninx BWJH, Pinborg LH, Frokjaer VG, Knudsen GM, Jørgensen MB. Deep phenotyping towards precision psychiatry of first-episode depression - the Brain Drugs-Depression cohort. BMC Psychiatry 2023; 23:151. [PMID: 36894940 PMCID: PMC9999625 DOI: 10.1186/s12888-023-04618-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/19/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a heterogenous brain disorder, with potentially multiple psychosocial and biological disease mechanisms. This is also a plausible explanation for why patients do not respond equally well to treatment with first- or second-line antidepressants, i.e., one-third to one-half of patients do not remit in response to first- or second-line treatment. To map MDD heterogeneity and markers of treatment response to enable a precision medicine approach, we will acquire several possible predictive markers across several domains, e.g., psychosocial, biochemical, and neuroimaging. METHODS All patients are examined before receiving a standardised treatment package for adults aged 18-65 with first-episode depression in six public outpatient clinics in the Capital Region of Denmark. From this population, we will recruit a cohort of 800 patients for whom we will acquire clinical, cognitive, psychometric, and biological data. A subgroup (subcohort I, n = 600) will additionally provide neuroimaging data, i.e., Magnetic Resonance Imaging, and Electroencephalogram, and a subgroup of patients from subcohort I unmedicated at inclusion (subcohort II, n = 60) will also undergo a brain Positron Emission Tomography with the [11C]-UCB-J tracer binding to the presynaptic glycoprotein-SV2A. Subcohort allocation is based on eligibility and willingness to participate. The treatment package typically lasts six months. Depression severity is assessed with the Quick Inventory of Depressive Symptomatology (QIDS) at baseline, and 6, 12 and 18 months after treatment initiation. The primary outcome is remission (QIDS ≤ 5) and clinical improvement (≥ 50% reduction in QIDS) after 6 months. Secondary endpoints include remission at 12 and 18 months and %-change in QIDS, 10-item Symptom Checklist, 5-item WHO Well-Being Index, and modified Disability Scale from baseline through follow-up. We also assess psychotherapy and medication side-effects. We will use machine learning to determine a combination of characteristics that best predict treatment outcomes and statistical models to investigate the association between individual measures and clinical outcomes. We will assess associations between patient characteristics, treatment choices, and clinical outcomes using path analysis, enabling us to estimate the effect of treatment choices and timing on the clinical outcome. DISCUSSION The BrainDrugs-Depression study is a real-world deep-phenotyping clinical cohort study of first-episode MDD patients. TRIAL REGISTRATION Registered at clinicaltrials.gov November 15th, 2022 (NCT05616559).
Collapse
Affiliation(s)
- Kristian Høj Reveles Jensen
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Vibeke H Dam
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cheng-Teng Ip
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Anjali Sankar
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maja Rou Marstrand-Joergensen
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Merete Osler
- Center for Clinical Research and Prevention, Bispebjerg & Frederiksberg Hospitals, Copenhagen, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lars H Pinborg
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibe Gedsø Frokjaer
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. .,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. .,Psychiatric Centre Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Scala JJ, Ganz AB, Snyder MP. Precision Medicine Approaches to Mental Health Care. Physiology (Bethesda) 2023; 38:0. [PMID: 36099270 PMCID: PMC9870582 DOI: 10.1152/physiol.00013.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
Developing a more comprehensive understanding of the physiological underpinnings of mental illness, precision medicine has the potential to revolutionize psychiatric care. With recent breakthroughs in next-generation multi-omics technologies and data analytics, it is becoming more feasible to leverage multimodal biomarkers, from genetic variants to neuroimaging biomarkers, to objectify diagnostics and treatment decisions in psychiatry and improve patient outcomes. Ongoing work in precision psychiatry will parallel progress in precision oncology and cardiology to develop an expanded suite of blood- and neuroimaging-based diagnostic tests, empower monitoring of treatment efficacy over time, and reduce patient exposure to ineffective treatments. The emerging model of precision psychiatry has the potential to mitigate some of psychiatry's most pressing issues, including improving disease classification, lengthy treatment duration, and suboptimal treatment outcomes. This narrative-style review summarizes some of the emerging breakthroughs and recurring challenges in the application of precision medicine approaches to mental health care.
Collapse
Affiliation(s)
- Jack J Scala
- Department of Genetics, Stanford University, Stanford, California
| | - Ariel B Ganz
- Department of Genetics, Stanford University, Stanford, California
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
7
|
Huang SS, Chen YT, Su MH, Tsai SJ, Chen HH, Yang AC, Liu YL, Kuo PH. Investigating genetic variants for treatment response to selective serotonin reuptake inhibitors in syndromal factors and side effects among patients with depression in Taiwanese Han population. THE PHARMACOGENOMICS JOURNAL 2023; 23:50-59. [PMID: 36658263 DOI: 10.1038/s41397-023-00298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Major depressive disorder (MDD) is associated with high heterogeneity in clinical presentation. In addition, response to treatment with selective serotonin reuptake inhibitors (SSRIs) varies considerably among patients. Therefore, identifying genetic variants that may contribute to SSRI treatment responses in MDD is essential. In this study, we analyzed the syndromal factor structures of the Hamilton Depression Rating Scale in 479 patients with MDD by using exploratory factor analysis. All patients were followed up biweekly for 8 weeks. Treatment response was defined for all syndromal factors and total scores. In addition, a genome-wide association study was performed to investigate the treatment outcomes at week 4 and repeatedly assess all visits during follow-up by using mixed models adjusted for age, gender, and population substructure. Moreover, the role of genetic variants in suicidal and sexual side effects was explored, and five syndromal factors for depression were derived: core, insomnia, somatic anxiety, psychomotor-insight, and anorexia. Subsequently, several known genes were mapped to suggestive signals for treatment outcomes, including single-nucleotide polymorphisms (SNPs) in PRF1, UTP20, MGAM, and ENSG00000286536 for psychomotor-insight and in C4orf51 for anorexia. In total, 33 independent SNPs for treatment responses were tested in a mixed model, 12 of which demonstrated a p value <0.05. The most significant SNP was rs2182717 in the ENSR00000803469 gene located on chromosome 6 for the core syndromal factor (β = -0.638, p = 1.8 × 10-4) in terms of symptom improvement over time. Patients with a GG or GA genotype with the rs2182717 SNP also exhibited a treatment response (β = 0.089, p = 2.0 × 10-6) at week 4. Moreover, rs1836075352 was associated with sexual side effects (p = 3.2 × 10-8). Pathway and network analyses using the identified SNPs revealed potential biological functions involved in treatment response, such as neurodevelopment-related functions and immune processes. In conclusion, we identified loci that may affect the clinical response to treatment with antidepressants in the context of empirically defined depressive syndromal factors and side effects among the Taiwanese Han population, thus providing novel biological targets for further investigation.
Collapse
Affiliation(s)
- Shiau-Shian Huang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Bali Psychiatric Center, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Ting Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Hsin Su
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shih-Jen Tsai
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsi-Han Chen
- Department of Psychiatry, Yang Ji Mental Hospital, Keelung, Taiwan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.,Institute of Brain Science, National Yang Ming Chiao Tung University, Keelung, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan. .,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan. .,Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Tsermpini EE, Serretti A, Dolžan V. Precision Medicine in Antidepressants Treatment. Handb Exp Pharmacol 2023; 280:131-186. [PMID: 37195310 DOI: 10.1007/164_2023_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precision medicine uses innovative approaches to improve disease prevention and treatment outcomes by taking into account people's genetic backgrounds, environments, and lifestyles. Treatment of depression is particularly challenging, given that 30-50% of patients do not respond adequately to antidepressants, while those who respond may experience unpleasant adverse drug reactions (ADRs) that decrease their quality of life and compliance. This chapter aims to present the available scientific data that focus on the impact of genetic variants on the efficacy and toxicity of antidepressants. We compiled data from candidate gene and genome-wide association studies that investigated associations between pharmacodynamic and pharmacokinetic genes and response to antidepressants regarding symptom improvement and ADRs. We also summarized the existing pharmacogenetic-based treatment guidelines for antidepressants, used to guide the selection of the right antidepressant and its dose based on the patient's genetic profile, aiming to achieve maximum efficacy and minimum toxicity. Finally, we reviewed the clinical implementation of pharmacogenomics studies focusing on patients on antidepressants. The available data demonstrate that precision medicine can increase the efficacy of antidepressants and reduce the occurrence of ADRs and ultimately improve patients' quality of life.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Mezzavilla M, Cocca M, Maisano Delser P, Badii R, Abbaszadeh F, Hadi KA, Giorgia G, Gasparini P. Ancestry-related distribution of Runs of homozygosity and functional variants in Qatari population. BMC Genom Data 2022; 23:73. [PMID: 36131251 PMCID: PMC9490902 DOI: 10.1186/s12863-022-01087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Describing how genetic history shapes the pattern of medically relevant variants could improve the understanding of how specific loci interact with each other and affect diseases and traits prevalence. The Qatari population is characterized by a complex history of admixture and substructure, and the study of its population genomic features would provide valuable insights into the genetic landscape of functional variants. Here, we analyzed the genomic variation of 186 newly-genotyped healthy individuals from the Qatari peninsula. Results We discovered an intricate genetic structure using ancestry related analyses. In particular, the presence of three different clusters, Cluster 1, Cluster 2 and Cluster 3 (with Near Eastern, South Asian and African ancestry, respectively), was detected with an additional fourth one (Cluster 4) with East Asian ancestry. These subpopulations show differences in the distribution of runs of homozygosity (ROH) and admixture events in the past, ranging from 40 to 5 generations ago. This complex genetic history led to a peculiar pattern of functional markers under positive selection, differentiated in shared signals and private signals. Interestingly we found several signatures of shared selection on SNPs in the FADS2 gene, hinting at a possible common evolutionary link to dietary intake. Among the private signals, we found enrichment for markers associated with HDL and LDL for Cluster 1(Near Eastern ancestry) and Cluster 3 (South Asian ancestry) and height and blood traits for Cluster 2 (African ancestry). The differences in genetic history among these populations also resulted in the different frequency distribution of putative loss of function variants. For example, homozygous carriers for rs2884737, a variant linked to an anticoagulant drug (warfarin) response, are mainly represented by individuals with predominant Bedouin ancestry (risk allele frequency G at 0.48). Conclusions We provided a detailed catalogue of the different ancestral pattern in the Qatari population highlighting differences and similarities in the distribution of selected variants and putative loss of functions. Finally, these results would provide useful guidance for assessing genetic risk factors linked to consanguinity and genetic ancestry.
Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01087-1.
Collapse
|
10
|
Yoshino Y, Roy B, Dwivedi Y. Corticosterone-mediated regulation and functions of miR-218-5p in rat brain. Sci Rep 2022; 12:194. [PMID: 34996981 PMCID: PMC8742130 DOI: 10.1038/s41598-021-03863-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic stress is one of the key precipitating factors in major depressive disorder (MDD). Stress associated studies have underscored the mechanistic role of epigenetic master players like microRNAs (miRNAs) in depression pathophysiology at both preclinical and clinical levels. Previously, we had reported changes in miR-218-5p expression in response to corticosterone (CORT) induced chronic stress. MiR-218-5p was one of the most significantly induced miRNAs in the prefrontal cortex (PFC) of rats under chronic stress. In the present report, we have investigated how chronic CORT exposure mechanistically affected miR-218-5p expression in the rat brain and how miR-218 could trigger molecular changes on its downstream regulatory pathways. Elevated expression of miR-218-5p was found in the PFC of CORT-treated rats. A glucocorticoid receptor (GR) targeted Chromatin-Immunoprecipitation (ChIP) assay revealed high GR occupancy on the promoter region of Slit3 gene hosting miR-218-2 in its 3rd intron. RNA-sequencing data based on RNA Induced silencing Complex Immunoprecipitation (RISC-IP) with AGO2 in SH-SY5Y cells detected six consistent target genes of miR-218-5p (APOL4, DTWD1, BNIP1, METTL22, SNAPC1, and HDAC6). The expression of all five genes, except APOL4, was successfully validated with qPCR in CORT-treated rat PFC. Further, Hdac6-based ChIP-seq experiment helped in mapping major genomic loci enriched for intergenic regions in the PFC of CORT-treated rat. A proximity-based gene ontology (GO) analysis revealed a majority of the intergenic sites to be part of key genes implicated in central nervous system functions, notably synapse organization, neuron projection morphogenesis, and axonogenesis. Our results suggest that the upregulation of miR-218-5p in PFC of CORT-treated rats possibly resulted from GR biding in the promoter region of Slit3 gene. Interestingly, Hdac6 was one of the consistent target genes potentially found to regulate CNS related genes by chromatin modification. Collectively, these findings establish the role of miR-218-5p in chronic stress and the epigenetic function it plays to induce chromatin-based transcriptional changes of several CNS genes in triggering stress-induced disorders, including depression. This also opens up the scope to understand the role of miR-218-5p as a potential target for noncoding RNA therapeutics in clinical depression.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- UAB Mood Disorder Program, Division of Behavioral Neurobiology, Department of Psychiatry and Behavioral Neurobiology, UAB Depression and Suicide Center, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, USA.
| |
Collapse
|
11
|
Li Y, Li J, Yuan Q, Bian X, Long F, Duan R, Gao F, Gao S, Wei S, Wang A, Liu A, Li X, Sun W, Liu Q. Deficiency in WDFY4 reduces the number of CD8 + T cells via reactive oxygen species-induced apoptosis. Mol Immunol 2021; 139:131-138. [PMID: 34482201 DOI: 10.1016/j.molimm.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/18/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022]
Abstract
WDFY4 (WD repeat and FYVE domain-containing 4) is a susceptibility gene involved in several autoimmune diseases and plays an important role in the immune system. However, it is not clear how WDFY4 affects T cells. We have generated a Wdfy4-knockout mouse and found that selective deficiency of Wdfy4 in T cells led to a reduction in the number of CD8+ T cells in the periphery, thus promoting tumor growth when mice were challenged with a transplantable tumor. Moreover, conditional ablation of Wdfy4 in T cells enhanced the apoptosis of CD8+ T cells and increased the intracellular levels of reactive oxygen species accompanied by the upregulation of Nox2. Mechanistically, the decrease in the CD8+ T-cell numbers in Wdfy4-knockout mice was associated with activation of the p53 pathway and inhibition of the extracellular signal-regulated kinase pathway. In addition, WDFY4 participated in cell proliferation. In conclusion, our results elucidate the biological role of WDFY4 in apoptosis and establish a link between WDFY4 and T cells.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qianqian Yuan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xianli Bian
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Long
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruonan Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fei Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shang Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shijun Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Anran Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ai Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xi Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjie Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Langmia IM, Just KS, Yamoune S, Brockmöller J, Masimirembwa C, Stingl JC. CYP2B6 Functional Variability in Drug Metabolism and Exposure Across Populations-Implication for Drug Safety, Dosing, and Individualized Therapy. Front Genet 2021; 12:692234. [PMID: 34322158 PMCID: PMC8313315 DOI: 10.3389/fgene.2021.692234] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adverse drug reactions (ADRs) are one of the major causes of morbidity and mortality worldwide. It is well-known that individual genetic make-up is one of the causative factors of ADRs. Approximately 14 million single nucleotide polymorphisms (SNPs) are distributed throughout the entire human genome and every patient has a distinct genetic make-up which influences their response to drug therapy. Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of antiretroviral, antimalarial, anticancer, and antidepressant drugs. These drug classes are commonly in use worldwide and face specific population variability in side effects and dosing. Parts of this variability may be caused by single nucleotide polymorphisms (SNPs) in the CYP2B6 gene that are associated with altered protein expression and catalytic function. Population variability in the CYP2B6 gene leads to changes in drug metabolism which may result in adverse drug reactions or therapeutic failure. So far more than 30 non-synonymous variants in CYP2B6 gene have been reported. The occurrence of these variants show intra and interpopulation variability, thus affecting drug efficacy at individual and population level. Differences in disease conditions and affordability of drug therapy further explain why some individuals or populations are more exposed to CYP2B6 pharmacogenomics associated ADRs than others. Variabilities in drug efficacy associated with the pharmacogenomics of CYP2B6 have been reported in various populations. The aim of this review is to highlight reports from various ethnicities that emphasize on the relationship between CYP2B6 pharmacogenomics variability and the occurrence of adverse drug reactions. In vitro and in vivo studies evaluating the catalytic activity of CYP2B6 variants using various substrates will also be discussed. While implementation of pharmacogenomic testing for personalized drug therapy has made big progress, less data on pharmacogenetics of drug safety has been gained in terms of CYP2B6 substrates. Therefore, reviewing the existing evidence on population variability in CYP2B6 and ADR risk profiles suggests that, in addition to other factors, the knowledge on pharmacogenomics of CYP2B6 in patient treatment may be useful for the development of personalized medicine with regards to genotype-based prescription.
Collapse
Affiliation(s)
- Immaculate M. Langmia
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Katja S. Just
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
13
|
Zhang H, Zhou J, Xiao P, Lin Y, Gong X, Liu S, Xu Q, Wang M, Ren H, Lu M, Wang Y, Zhu J, Xie Z, Li H, Lu K. PtdIns4P restriction by hydrolase SAC1 decides specific fusion of autophagosomes with lysosomes. Autophagy 2020; 17:1907-1917. [PMID: 32693712 DOI: 10.1080/15548627.2020.1796321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Biogenesis of autophagosomes is the early step of macroautophagy/autophagy and requires membrane acquisition mainly from ER-Golgi-sourced precursor vesicles. Matured autophagosomes fuse with lysosomes for final degradation. However, how this selective fusion is determined remains elusive. Here, we identified Sac1 by a high throughput screen in Saccharomyces cerevisiae to show it was critical for autophagosome-lysosome fusion through its PtdIns4P phosphatase activity. Sac1 deficiency caused a dramatic increase of PtdIns4P at early Golgi apparatus and abnormal incorporation of PtdIns4P into Atg9 vesicles and autophagosomes, which caused failure to recruit SNARE proteins for autophagosome fusion with vacuoles. Sac1 function in autophagy was highly conserved from yeast to mammalian cells. Our work thus suggested that correct upstream lipid incorporation was important for downstream fusion step of autophagy and that Sac1 played a critical and ancient role in this surveillance of lipid integration.Abbreviations: Ape1: aminopeptidase Ι; ATG: autophagy related; EBSS: Earle's balanced salt solution; ER: endoplasmic reticulum; ERGIC: Golgi apparatus and ER-Golgi intermediate compartment; HOPS: homotypic fusion and protein sorting complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4K: phosphoinositide-4-kinase; PtdIns4P: phosphatidylinositol-4-phosphate; SD-N: nitrogen starvation medium; SNARE: soluble N-ethylamide-sensitive factor attachment protein receptor.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Xiao
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Lin
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin Gong
- Department of Respiratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qingjia Xu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Clinical Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyan Ren
- Department of Respiratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuan Wang
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Koromina M, Koutsilieri S, Patrinos GP. Delineating significant genome-wide associations of variants with antipsychotic and antidepressant treatment response: implications for clinical pharmacogenomics. Hum Genomics 2020; 14:4. [PMID: 31941550 PMCID: PMC6964087 DOI: 10.1186/s40246-019-0254-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have significantly contributed to the association of many clinical conditions and phenotypic characteristics with genomic variants. The majority of these genomic findings have been deposited to the GWAS catalog. So far, findings uncovering associations of single nucleotide polymorphisms (SNPs) with treatment efficacy in mood disorders are encouraging, but not adequate. Methods Statistical, genomic, and literature information was retrieved from EBI’s GWAS catalog, while we also searched for potential clinical information/clinical guidelines in well-established pharmacogenomics databases regarding the assessed drug-SNP correlations of the present study. Results Here, we provide an overview of significant genome-wide associations of SNPs with the response to commonly prescribed antipsychotics and antidepressants. Up to date, this is the first study providing novel insight in previously reported pharmacogenomics associations for antipsychotic/antidepressant treatment. We also show that although there are published CPIC guidelines for antidepressant agents, as well as the FDA labels include genome-based drug prescription information for both antipsychotic and antidepressant treatments, there are no specific clinical guidelines for the assessed drug-SNP correlations of this study. Conclusions Our present findings suggest that more effort should be implemented towards identifying GWA-significant antipsychotic and antidepressant pharmacogenomics correlations. Moreover, additional functional studies are required in order to characterise the potential role of the assessed SNPs as biomarkers for the response of patients to antipsychotic/antidepressant treatment.
Collapse
Affiliation(s)
- Maria Koromina
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, GR-265 04, Patras, Greece.
| | - Stefania Koutsilieri
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, GR-265 04, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, GR-265 04, Patras, Greece.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
15
|
Yrondi A, Fiori LM, Frey BN, Lam RW, MacQueen GM, Milev R, Müller DJ, Foster JA, Kennedy SH, Turecki G. Association Between Side Effects and Blood microRNA Expression Levels and Their Targeted Pathways in Patients With Major Depressive Disorder Treated by a Selective Serotonin Reuptake Inhibitor, Escitalopram: A CAN-BIND-1 Report. Int J Neuropsychopharmacol 2019; 23:88-95. [PMID: 31819986 PMCID: PMC7093997 DOI: 10.1093/ijnp/pyz066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/06/2019] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Antidepressant drugs are effective therapies for major depressive disorder; however, they are frequently associated with side effects. Although there is some evidence for a relationship between genetic variation and side effects, little is known regarding the role of dynamic molecular factors as moderators of side effects. The aim of this study was to assess microRNA (miRNA) changes associated with side effects during escitalopram treatment and their downstream effects on target gene expression. METHODS A total 160 patients with major depressive disorder from the CAN-BIND-1 cohort were included. Side effects were assessed with the Toronto Side Effect Scale after 2 weeks of treatment with escitalopram. We assessed the relationship between side effects and changes in peripheral expression of miRNAs between baseline and week 2. For miRNA whose expression changed, we used target prediction algorithms to identify putative messenger RNA (mRNA) targets and assessed their expression. RESULTS Nausea was experienced by 42.5% of patients. We identified 45 miRNAs whose expression changed on initiation of escitalopram treatment, of which 10 displayed a negative association with intensity of nausea (miR15b-5p, miR17-5p, miR20a-5p, miR20b-5p, miR103a-3p, miR103b, miR106a-5p, miR182-5p, miR185-5p, and miR660-5p). Additionally, we found negative associations between 4 microRNAs (miR20a-5p, miR106a-5p, miR185-5p, miR660-5p) and mRNA targets. The expression of the miR185-5p target, CAMK2δ was significantly decreased [log 2 mean = -0.048 (0.233)] between weeks 0 and 2 (P = .01)]. CONCLUSIONS We identified an overexpression of miR185-5p during escitalopram treatment of major depressive disorder, which was negatively associated with intensity of nausea, and identified a potential mRNA target that may mediate this effect.
Collapse
Affiliation(s)
- Antoine Yrondi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Benicio N Frey
- McMaster University and St Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glenda M MacQueen
- University of Calgary Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Roumen Milev
- Providence Care Hospital, Kingston, Ontario, Canada
| | - Daniel J Müller
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jane A Foster
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada,St Michael’s Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide, Studies, Toronto, Ontario, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada,Correspondence: Gustavo Turecki, MD, PhD, Douglas Mental Health University Institute, Frank B Common Pavilion Room F-3125, 6875 LaSalle Boulevard, Montreal, Quebec, H4H 1R3 Canada ()
| |
Collapse
|
16
|
Xia L, Ou J, Li K, Guo H, Hu Z, Bai T, Zhao J, Xia K, Zhang F. Genome-wide association analysis of autism identified multiple loci that have been reported as strong signals for neuropsychiatric disorders. Autism Res 2019; 13:382-396. [PMID: 31647196 DOI: 10.1002/aur.2229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
Abstract
Autism is a common neurodevelopmental disorder with a moderate to a high degree of heritability, but only a few common genetic variants that explain the heritability have been associated. We performed a genome-wide transmission disequilibrium test analysis of a newly genotyped autism case-parent triad samples (127 trios) in Han Chinese, identified top association signals at multiple single nucleotide polymorphisms (SNPs), including rs9839376 (OR = 2.59, P = 1.27 × 10-05 ) at KCNMB2, rs6044680 (OR = 0.319, P = 4.82 × 10-05 ) and rs7274133 (OR = 0.313, P = 3.22 × 10-05 ) at PCSK2, and rs310619 (OR = 2.40, P = 7.44 × 10-05 ) at EEF1A2. Furthermore, a genome-wide combined P-value of individual SNPs in two independent case-parent triad samples (total 402 triads, n = 1,206) identified SNPs at EGFLAM, ZDHHC2, AGBL1, and SNX29 as additional association signals for autism. While none of these signals achieved a genome-wide significance in the two samples of our study, they have been reported in a previous genome-wide association study of neuropsychiatric disorders, and the majority of these SNP have a significant cis-regulatory association with mRNA in human tissues (false discovery rate (FDR) < 0.05). Our study warrants further study or replication with additional sample for association with autism and other neuropsychiatric disorders. Autism Res 2020, 13: 382-396. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Autism is a common neurodevelopmental disorder, heritable, but only a few common genetic variants that explain the heritability have been associated. We conducted a genome-wide association study with two cohorts of autism case-parent triad samples in Han Chinese and identified multiple single nucleotide polymorphisms that were reported as strong association signals in a previous genome-wide association study of other neuropsychiatric disorders or related traits. Our study provides evidence for shared genetic variants among autism and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lu Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jianjun Ou
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hui Guo
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Bai
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai, China.,Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
| | - Fengyu Zhang
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China.,Global Clinical and Translational Research Institute, Bethesda, Maryland.,Peking University Huilongguan Clinical Medical School and Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
17
|
Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol 2019; 12:407-442. [DOI: 10.1080/17512433.2019.1597706] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| |
Collapse
|
18
|
Budde M, Friedrichs S, Alliey-Rodriguez N, Ament S, Badner JA, Berrettini WH, Bloss CS, Byerley W, Cichon S, Comes AL, Coryell W, Craig DW, Degenhardt F, Edenberg HJ, Foroud T, Forstner AJ, Frank J, Gershon ES, Goes FS, Greenwood TA, Guo Y, Hipolito M, Hood L, Keating BJ, Koller DL, Lawson WB, Liu C, Mahon PB, McInnis MG, McMahon FJ, Meier SM, Mühleisen TW, Murray SS, Nievergelt CM, Nurnberger JI, Nwulia EA, Potash JB, Quarless D, Rice J, Roach JC, Scheftner WA, Schork NJ, Shekhtman T, Shilling PD, Smith EN, Streit F, Strohmaier J, Szelinger S, Treutlein J, Witt SH, Zandi PP, Zhang P, Zöllner S, Bickeböller H, Falkai PG, Kelsoe JR, Nöthen MM, Rietschel M, Schulze TG, Malzahn D. Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. Eur Neuropsychopharmacol 2019; 29:156-170. [PMID: 30503783 DOI: 10.1016/j.euroneuro.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022]
Abstract
Genome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies. As proof of concept, FIERS was used for the first genome-wide single nucleotide polymorphism (SNP)-based investigation on bipolar disorder (BD) that focuses on an important aspect of disease course, the functional outcome. FIERS identified a significantly associated locus on chromosome 15 (hg38: chr15:48965004 - 49464789 bp) with consistent effect strength between two independent studies (GAIN/TGen: European Americans, BOMA: Germans; n = 1592 BD patients in total). Protective and risk haplotypes were found on the most strongly associated SNPs. They contain a CTCF binding site (rs586758); CTCF sites are known to regulate sets of genes within a chromatin domain. The rs586758 - rs2086256 - rs1904317 haplotype is located in the promoter flanking region of the COPS2 gene, close to microRNA4716, and the EID1, SHC4, DTWD1 genes as plausible biological candidates. While implication with BD is novel, COPS2, EID1, and SHC4 are known to be relevant for neuronal differentiation and function and DTWD1 for psychopharmacological side effects. The test strategy FIERS that enabled this discovery is equally applicable for tag SNPs and sequence data.
Collapse
Affiliation(s)
- Monika Budde
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany
| | - Stefanie Friedrichs
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August-University, Göttingen 37099, Germany
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, United States
| | - Seth Ament
- Institute for Systems Biology, Seattle, WA 98109, United States
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical Center, Chicago, IL 60612, United States
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Cinnamon S Bloss
- University of California San Diego, La Jolla, CA 92093, United States
| | - William Byerley
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94103, United States
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel 4031, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany
| | - Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - William Coryell
- University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States
| | - David W Craig
- The Translational Genomics Research Institute, Phoenix, AZ 85004, United States
| | - Franziska Degenhardt
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn 53127, Germany
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Andreas J Forstner
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn 53127, Germany; Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel 4031, Switzerland; Department of Psychiatry (UPK), University of Basel, Basel 4012, Switzerland
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, United States
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA 19104, United States; Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China
| | - Maria Hipolito
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC 20060, United States
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, United States
| | - Brendan J Keating
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-5159, United States; Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, United States
| | - Daniel L Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - William B Lawson
- Dell Medical School, University of Texas at Austin, Austin, TX 78723, United States
| | - Chunyu Liu
- SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Pamela B Mahon
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, United States
| | - Francis J McMahon
- U.S. Department of Health & Human Services, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20894, United States
| | - Sandra M Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany; National Centre for Register-Based Research, Aarhus University, Aarhus V 8210, Denmark
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - Sarah S Murray
- Scripps Genomic Medicine & The Scripps Translational Sciences Institute (STSI), La Jolla, CA 92037, United States; Department of Pathology, University of California San Diego, La Jolla, CA 92093, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Evaristus A Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC 20060, United States
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa School of Medicine, Iowa City, IA 52242, United States
| | - Danjuma Quarless
- J. Craig Venter Institute, La Jolla, CA 92037, United States; University of California San Diego, La Jolla, CA 92093, United States
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Jared C Roach
- Institute for Systems Biology, Seattle, WA 98109, United States
| | | | - Nicholas J Schork
- J. Craig Venter Institute, La Jolla, CA 92037, United States; The Translational Genomics Research Institute, Phoenix, AZ 85004, United States; University of California San Diego, La Jolla, CA 92093, United States
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Erin N Smith
- Scripps Genomic Medicine & The Scripps Translational Sciences Institute (STSI), La Jolla, CA 92037, United States; Department of Pediatrics and Rady's Children's Hospital, School of Medicine, University of California San Diego, La Jolla, CA 92037, United States
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Szabolcs Szelinger
- The Translational Genomics Research Institute, Phoenix, AZ 85004, United States
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Peng Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, United States
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August-University, Göttingen 37099, Germany
| | - Peter G Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, United States
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn 53127, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstr. 7, Munich 80336, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68159, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States; U.S. Department of Health & Human Services, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20894, United States.
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center Göttingen, Georg-August-University, Göttingen 37099, Germany.
| |
Collapse
|
19
|
Calabrò M, Mandelli L, Crisafulli C, Lee SJ, Jun TY, Wang SM, Patkar AA, Masand PS, Benedetti F, Han C, Pae CU, Serretti A. Neuroplasticity, Neurotransmission and Brain-Related Genes in Major Depression and Bipolar Disorder: Focus on Treatment Outcomes in an Asiatic Sample. Adv Ther 2018; 35:1656-1670. [PMID: 30178121 PMCID: PMC6182627 DOI: 10.1007/s12325-018-0781-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mood disorders are common and disabling disorders. Despite the availability of over 100 psychotropic compounds, only one-third of patients benefit from first-line treatments. Over the past 20 years, many studies have focused on the biological factors modulating disease risk and response to treatments, but with still inconclusive data. In order to improve our current knowledge, in this study, we investigated the role of a set of genes involved in different pathways (neurotransmission, neuroplasticity, circadian rhythms, transcription factors, signal transduction and cellular metabolism) in the treatment outcome of major depressive disorder (MDD) and bipolar disorder (BD) after naturalistic pharmacological treatment. METHODS Totals of 242 MDD, 132 BD patients and 326 healthy controls of Asian ethnicity (Koreans) were genotyped for polymorphisms within 19 genes. Response and remission after 6-8 weeks of treatment with antidepressants and mood stabilizers were evaluated. In secondary analyses, genetic associations with disease risk and some disease-associated features (age of onset, suicide attempt and psychotic BD) were also tested. RESULTS None of the variants within the investigated genes was significantly associated with treatment outcomes. Some marginal association (uncorrected p < 0.01) was observed for HTR2A, BDNF, CHL1, RORA and HOMER1 SNPs. In secondary analyses, HTR2A (rs643627, p = 0.002) and CHL1 (rs4003413, p = 0.002) were found associated with risk for BD, HOMER1 (rs6872497, p = 0.002) with lifetime history of suicide attempt in patients, and RORA with early onset and presence of psychotic features in BD. Marginal results were also observed for ST8SIA2 and COMT. DISCUSSION Despite limitations linked to multiple testing on small samples, methodological shortcomings and small significance of the findings, this study may support the involvement of some candidate genes in the outcomes of treatments for mood disorders, as well as in BD risk and other disease features.
Collapse
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Laura Mandelli
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Tae-Youn Jun
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | | | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 2018; 194:22-43. [PMID: 30189291 DOI: 10.1016/j.pharmthera.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of promising preclinical results there is a decreasing number of new registered medications in major depression. The main reason behind this fact is the lack of confirmation in clinical studies for the assumed, and in animals confirmed, therapeutic results. This suggests low predictive value of animal studies for central nervous system disorders. One solution for identifying new possible targets is the application of genetics and genomics, which may pinpoint new targets based on the effect of genetic variants in humans. The present review summarizes such research focusing on depression and its therapy. The inconsistency between most genetic studies in depression suggests, first of all, a significant role of environmental stress. Furthermore, effect of individual genes and polymorphisms is weak, therefore gene x gene interactions or complete biochemical pathways should be analyzed. Even genes encoding target proteins of currently used antidepressants remain non-significant in genome-wide case control investigations suggesting no main effect in depression, but rather an interaction with stress. The few significant genes in GWASs are related to neurogenesis, neuronal synapse, cell contact and DNA transcription and as being nonspecific for depression are difficult to harvest pharmacologically. Most candidate genes in replicable gene x environment interactions, on the other hand, are connected to the regulation of stress and the HPA axis and thus could serve as drug targets for depression subgroups characterized by stress-sensitivity and anxiety while other risk polymorphisms such as those related to prominent cognitive symptoms in depression may help to identify additional subgroups and their distinct treatment. Until these new targets find their way into therapy, the optimization of current medications can be approached by pharmacogenomics, where metabolizing enzyme polymorphisms remain prominent determinants of therapeutic success.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bagdy
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
21
|
Abstract
Mental illness represents a major health issue both at the individual and at the socioeconomical level. This is partly due to the current suboptimal treatment options: existing psychotropic medications, including antidepressants, antipsychotics, and mood stabilizers, are effective only in a subset of patients or produce partial response and they are often associated with debilitating side effects that discourage adherence. Pharmacogenetics is the study of how genetic information impacts on drug response/side effects with the goal to provide tailored treatments, thereby maximizing efficacy and tolerability. The first pharmacogenetic studies focused on candidate genes, previously known to be relevant to the pharmacokinetics and pharmacodynamics of psychotropic drugs. Results were mainly inconclusive, but some replicated candidates were identified and included as pharmacogenetic biomarkers in drug labeling and in some commercial kits. With the advent of the genomic revolution, it became possible to study the genetic variation on an unprecedented scale, throughout the whole genome with no need of a priori hypothesis. This may lead to the personalized prescription of existing medications and potentially to the development of innovative ones, thanks to new insights into the genetics of mental illness. Promising findings were obtained, but methods for the generation and analysis of genome-wide and sequencing data are still in evolution. Future pharmacogenetic tests may consist of hundreds/thousands of polymorphisms throughout the genome or selected pathways in order to take into account the complex interactions across variants in a number of genes.
Collapse
Affiliation(s)
- Filippo Corponi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
22
|
Abdel-Hamid IA, Ali OI. Delayed Ejaculation: Pathophysiology, Diagnosis, and Treatment. World J Mens Health 2018; 36:22-40. [PMID: 29299903 PMCID: PMC5756804 DOI: 10.5534/wjmh.17051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Delayed ejaculation (DE) is a poorly defined and uncommon form of male sexual dysfunction, characterized by a marked delay in ejaculation or an inability to achieve ejaculation. It is often quite concerning to patients and their partners, and sometimes frustrates couples' attempts to conceive. This article aims to review the pathophysiology of DE and anejaculation (AE), to explore our current understanding of the diagnosis, and to present the treatment options for this condition. Electronic databases were searched from 1966 to October 2017, including PubMed (MEDLINE) and Embase. We combined “delayed ejaculation,” “retarded ejaculation,” “inhibited ejaculation,” or “anejaculation” as Medical Subject Headings (MeSH) terms or keywords with “epidemiology,” “etiology,” “pathophysiology,” “clinical assessment,” “diagnosis,” or “treatment.” Relevant sexual medicine textbooks were searched as well. The literature suggests that the pathophysiology of DE/AE is multifactorial, including both organic and psychosocial factors. Despite the many publications on this condition, the exact pathogenesis is not yet known. There is currently no single gold standard for diagnosing DE/AE, as operationalized criteria do not exist. The history is the key to the diagnosis. Treatment should be cause-specific. There are many approaches to treatment planning, including various psychological interventions, pharmacotherapy, and specific treatments for infertile men. An approved form of drug therapy does not exist. A number of approaches can be employed for infertile men, including the collection of nocturnal emissions, prostatic massage, prostatic urethra catheterization, penile vibratory stimulation, probe electroejaculation, sperm retrieval by aspiration from either the vas deferens or the epididymis, and testicular sperm extraction.
Collapse
Affiliation(s)
| | - Omar I Ali
- Faculty of Medicine and Surgery, 6th October University, 6th October City, Egypt
| |
Collapse
|
23
|
Amare AT, Schubert KO, Baune BT. Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry. EPMA J 2017; 8:211-227. [PMID: 29021832 DOI: 10.1007/s13167-017-0112-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023]
Abstract
Personalized medicine (personalized psychiatry in a specific setting) is a new model towards individualized care, in which knowledge from genomics and other omic pillars (microbiome, epigenomes, proteome, and metabolome) will be combined with clinical data to guide efforts to new drug development and targeted prescription of the existing treatment options. In this review, we summarize pharmacogenomic studies in mood disorders that may lay the foundation towards personalized psychiatry. In addition, we have discussed the possible strategies to integrate data from omic pillars as a future path to personalized psychiatry. So far, the progress of uncovering single nucleotide polymorphisms (SNPs) underpinning treatment efficacy in mood disorders (e.g., SNPs associated with selective serotonin re-uptake inhibitors or lithium treatment response in patients with bipolar disorder and major depressive disorder) are encouraging, but not adequate. Genetic studies have pointed to a number of SNPs located at candidate genes that possibly influence response to; (a) antidepressants COMT, HTR2A, HTR1A, CNR1, SLC6A4, NPY, MAOA, IL1B, GRIK4, BDNF, GNB3, FKBP5, CYP2D6, CYP2C19, and ABCB1 and (b) mood stabilizers (lithium) 5-HTT, TPH, DRD1, FYN, INPP1, CREB1, BDNF, GSK3β, ARNTL, TIM, DPB, NR3C1, BCR, XBP1, and CACNG2. We suggest three alternative and complementary strategies to implement knowledge gained from pharmacogenomic studies. The first strategy can be to implement diagnostic, therapeutic, or prognostic genetic testing based on candidate genes or gene products. The second alternative is an integrative analysis (systems genomics approach) to combine omics data obtained from the different pillars of omics investigation, including genomics, epigenomes, proteomics, metabolomics and microbiomes. The main goal of system genomics is an identification and understanding of biological pathways, networks, and modules underlying drug-response. The third strategy aims to the development of multivariable diagnostic or prognostic algorithms (tools) combining individual's genomic information (polygenic score) with other predictors (e.g., omics pillars, neuroimaging, and clinical characteristics) to finally predict therapeutic outcomes. An integration of molecular science with that of traditional clinical practice is the way forward to drug discoveries and novel therapeutic approaches and to characterize psychiatric disorders leading to a better predictive, preventive, and personalized medicine (PPPM) in psychiatry. With future advances in the omics technology and methodological developments for data integration, the goal of PPPM in psychiatry is promising.
Collapse
Affiliation(s)
- Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5005 Australia.,Northern Adelaide Local Health Network, Mental Health Services, Adelaide, SA Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| |
Collapse
|
24
|
Rohde PD, Gaertner B, Ward K, Sørensen P, Mackay TFC. Genomic Analysis of Genotype-by-Social Environment Interaction for Drosophila melanogaster Aggressive Behavior. Genetics 2017; 206:1969-1984. [PMID: 28550016 PMCID: PMC5560801 DOI: 10.1534/genetics.117.200642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Human psychiatric disorders such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder often include adverse behaviors including increased aggressiveness. Individuals with psychiatric disorders often exhibit social withdrawal, which can further increase the probability of conducting a violent act. Here, we used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to investigate the genetic basis of variation in male aggressive behavior for flies reared in a socialized and socially isolated environment. We identified genetic variation for aggressive behavior, as well as significant genotype-by-social environmental interaction (GSEI); i.e., variation among DGRP genotypes in the degree to which social isolation affected aggression. We performed genome-wide association (GWA) analyses to identify genetic variants associated with aggression within each environment. We used genomic prediction to partition genetic variants into gene ontology (GO) terms and constituent genes, and identified GO terms and genes with high prediction accuracies in both social environments and for GSEI. The top predictive GO terms significantly increased the proportion of variance explained, compared to prediction models based on all segregating variants. We performed genomic prediction across environments, and identified genes in common between the social environments that turned out to be enriched for genome-wide associated variants. A large proportion of the associated genes have previously been associated with aggressive behavior in Drosophila and mice. Further, many of these genes have human orthologs that have been associated with neurological disorders, indicating partially shared genetic mechanisms underlying aggression in animal models and human psychiatric disorders.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- ISEQ, Center for Integrative Sequencing, Aarhus University, 8000 Aarhus, Denmark
| | - Bryn Gaertner
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Kirsty Ward
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
25
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 5: a hint from chromosome 5 high density association screen. Am J Transl Res 2017; 9:2473-2491. [PMID: 28559998 PMCID: PMC5446530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was systematically reported (Aukes, M. F. Genet Med 2012, 14, 338-341) and any two or even three of these disorders could co-exist in some families. In addition, evidence from symptomatology and psychopharmacology also imply that there are intrinsic connections between these three major disorders. A total of 56,569 single nucleotide polymorphism (SNPs) on chromosome 5 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD patients and 1000 controls. Associated SNPs and flanking genes was screen out systematically, and cadherin pathway genes (CDH6, CDH9, CDH10, CDH12, and CDH18) belong to outstanding genes. Unexpectedly, nearly all flanking genes of the associated SNPs distinctive for BPD and MDD were replicated in an enlarged cohort of 986 SCZ patients (P ≤ 9.9E-8). Considering multiple bits of evidence, our chromosome 5 analyses implicated that bipolar and major depressive disorder might be subtypes of schizophrenia rather than two independent disease entities. Also, cadherin pathway genes play important roles in the pathogenesis of the three major mental disorders.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Bin Cai
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Xiaohong Chen
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| |
Collapse
|
26
|
Onuki R, Yamaguchi R, Shibuya T, Kanehisa M, Goto S. Revealing phenotype-associated functional differences by genome-wide scan of ancient haplotype blocks. PLoS One 2017; 12:e0176530. [PMID: 28445522 PMCID: PMC5406033 DOI: 10.1371/journal.pone.0176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Genome-wide scans for positive selection have become important for genomic medicine, and many studies aim to find genomic regions affected by positive selection that are associated with risk allele variations among populations. Most such studies are designed to detect recent positive selection. However, we hypothesize that ancient positive selection is also important for adaptation to pathogens, and has affected current immune-mediated common diseases. Based on this hypothesis, we developed a novel linkage disequilibrium-based pipeline, which aims to detect regions associated with ancient positive selection across populations from single nucleotide polymorphism (SNP) data. By applying this pipeline to the genotypes in the International HapMap project database, we show that genes in the detected regions are enriched in pathways related to the immune system and infectious diseases. The detected regions also contain SNPs reported to be associated with cancers and metabolic diseases, obesity-related traits, type 2 diabetes, and allergic sensitization. These SNPs were further mapped to biological pathways to determine the associations between phenotypes and molecular functions. Assessments of candidate regions to identify functions associated with variations in incidence rates of these diseases are needed in the future.
Collapse
Affiliation(s)
- Ritsuko Onuki
- Bioinformatics Team, Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Rui Yamaguchi
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Tetsuo Shibuya
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Minoru Kanehisa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Susumu Goto
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
- * E-mail:
| |
Collapse
|
27
|
Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies. CNS Drugs 2016; 30:1169-1189. [PMID: 27752945 DOI: 10.1007/s40263-016-0385-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging-pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging-pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging-pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.
Collapse
|
28
|
Amitai M, Kronenberg S, Carmel M, Michaelovsky E, Frisch A, Brent D, Apter A, Chen A, Weizman A, Fennig S. Pharmacogenetics of citalopram-related side effects in children with depression and/or anxiety disorders. J Neural Transm (Vienna) 2016; 123:1347-1354. [PMID: 27324805 DOI: 10.1007/s00702-016-1585-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/12/2016] [Indexed: 01/26/2023]
Abstract
Pharmacogenetic approach to antidepressant (AD) response is a promising avenue toward individualizing AD treatment. This is particularly relevant in pediatric populations because of concerns about the suicide risk of serotonin selective reuptake inhibitors (SSRIs), resulting in a black-box warning. However, to date, no specific gene or polymorphism has been consistently implicated as a marker of AD side effect (SE) in the pediatric population. The aim of this study was to examine the association between polymorphisms in genes related to the serotonergic system and citalopram SE's in children and adolescents with major depressive disorder (MDD)/dysthymia and/or anxiety disorders. Outpatients (N = 87, 44 % males), aged 7-18 years with a DSM-IV-TR diagnosis of MDD/dysthymia and/or an anxiety disorder were treated in an 8-week open trial with 20-40 mg/day of citalopram. SE's were rated using a questionnaire devised specifically for this study. Association analysis between known/candidate genetic variants in three genes (5-HTR2A, 5-HTR1Dβ, 5-HTR2C) and SE's was conducted. Agitation was more common in boys than girls (male:female 42.1 vs. 18.7 %, χ 2 = 5.61, df = 1, p = 0.018). Subjects with 5-HTR1Dβ CC genotype showed more agitation vs. both CG and GG genotypes (CC:CG:GG 71.4 vs. 33.3 vs. 18.1 %, χ 2 = 8.99, df = 2, p = 0.011). The 5-HTR1Dβ CC genotype was associated with more reports of agitation. It has been suggested that agitation may be an intermediate phenotype to suicidal behavior. Thus, it seems that 5-HTR1Dβ polymorphism may be involved in citalopram-related agitation in children and adolescents treated for depression and/or anxiety.
Collapse
Affiliation(s)
- Maya Amitai
- Department of Psychological Medicine, Schneider Children's Medical Center of Israel, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Sefi Kronenberg
- Department of Psychiatry, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Miri Carmel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Elena Michaelovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Amos Frisch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - David Brent
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alan Apter
- Department of Psychological Medicine, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Chen
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Research Unit, Geha Mental Health Center, Petach Tikva, Israel
| | - Silvana Fennig
- Department of Psychological Medicine, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:334-40. [PMID: 25708651 DOI: 10.1016/j.pnpbp.2015.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) is a serious health concern worldwide. Currently there are no predictive tests for the effectiveness of any particular antidepressant in an individual patient. Thus, doctors must prescribe antidepressants based on educated guesses. With the recent advent of scientific research, genome-wide gene expression microarray studies are widely utilized to analyze hundreds of thousands of biomarkers by high-throughput technologies. In addition to the candidate-gene approach, the genome-wide approach has recently been employed to investigate the determinants of MDD as well as antidepressant response to therapy. In this review, we mainly focused on gene expression studies with genome-wide approaches using RNA derived from peripheral blood cells. Furthermore, we reviewed their limitations and future directions with respect to the genome-wide gene expression profiling in MDD pathogenesis as well as in antidepressant therapy.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Vita Genomics, Inc., Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
30
|
Abstract
Pleasurable sexual activity is important in many human relationships and can provide a sense of physical, emotional and social well-being. Depressive symptoms and depressive illness are associated with impairments in sexual function and sexual dissatisfaction in untreated and treated patients. Most currently available antidepressant drugs are associated with development or worsening of sexual dysfunction in a substantial proportion of patients. Sexual difficulties during antidepressant treatment often resolve as depression lifts, but can persist over long periods, reducing self-esteem and affecting mood and relationships adversely. Sexual difficulties during antidepressant treatment typically have many possible causes but the incidence and nature of dysfunction varies between drugs. Many interventions can be considered when managing sexual dysfunction associated with antidepressants but no approach is 'ideal'. Because treatment-emergent sexual difficulties are less frequent with certain drugs, presumably related to differences in pharmacological properties, and since current interventions are suboptimal, a lower incidence of sexual dysfunction is a relevant tolerability target when developing novel antidepressants.
Collapse
|
31
|
Abstract
Sexual problems are highly prevalent among patients with psychiatric disorders. They may be caused by the psychopathology of the psychiatric disorder but also by its pharmacotherapy. Both positive symptoms (e.g., psychosis, hallucinations) as well as negative symptoms (e.g., anhedonia) of schizophrenia may negatively interfere with interpersonal and sexual relationships. Atypical antipsychotics have fewer sexual side-effects than the classic antipsychotics. Mood disorders may affect libido, sexual arousal, orgasm, and erectile function. With the exception of bupropion, agomelatine, mirtazapine, vortioxetine, amineptine, and moclobemide, all antidepressants cause sexual side-effects. Selective serotonin reuptake inhibitors (SSRIs) may particularly delay ejaculation and female orgasm, but also can cause decreased libido and erectile difficulties. SSRI-induced sexual side-effects are dose-dependent and reversible. Very rarely, their sexual side-effects persist after SSRI discontinuation. This is often preceded by genital anesthesia. Some personality characteristics are a risk factor for sexual dysfunction. Also patients with eating disorders may suffer from sexual difficulties. So far, research into psychotropic-induced sexual side-effects suffers from substantial methodologic limitations. Patients tend not to talk with their clinician about their sexual life. Psychiatrists and other doctors need to take the initiative to talk about the patient's sexual life in order to become informed about potential medication-induced sexual difficulties.
Collapse
Affiliation(s)
- Marcel D Waldinger
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of BetaSciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Chan SL, Jin S, Loh M, Brunham LR. Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity. Pharmacogenomics 2015; 16:1161-78. [DOI: 10.2217/pgs.15.54] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major goal of the field of pharmacogenomics is to identify the genomic causes of serious adverse drug reactions (ADRs). Increasingly, genome-wide association studies (GWAS) have been used to achieve this goal. In this article, we review recent progress in the identification of genetic variants associated with ADRs using GWAS and discuss emerging themes from these studies. We also compare aspects of GWAS for ADRs to GWAS for common diseases. In the second part of the article, we review progress in performing pharmacogenomic research in multi-ethnic populations and discuss the challenges and opportunities of investigating genetic causes of ADRs in ethnically diverse patient populations.
Collapse
Affiliation(s)
- Sze Ling Chan
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
| | - Shengnan Jin
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
| | - Marie Loh
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
| | - Liam R Brunham
- Translational Laboratory in Genetic Medicine, Agency for Science Technology & Research, & the National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
33
|
Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood. Twin Res Hum Genet 2015; 18:335-47. [PMID: 26081443 DOI: 10.1017/thg.2015.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.
Collapse
|
34
|
Probst-Schendzielorz K, Scholl C, Efimkina O, Ersfeld E, Viviani R, Serretti A, Fabbri C, Gurwitz D, Lucae S, Ising M, Paul AM, Lehmann ML, Steffens M, Crisafulli C, Calabrò M, Holsboer F, Stingl J. CHL1, ITGB3 and SLC6A4 gene expression and antidepressant drug response: results from the Munich Antidepressant Response Signature (MARS) study. Pharmacogenomics 2015; 16:689-701. [DOI: 10.2217/pgs.15.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: The identification of antidepressant drugs (ADs) response biomarkers in depression is of high clinical importance. We explored CHL1 and ITGB3 expression as tentative response biomarkers. Materials & methods: In vitro sensitivity to ADs, as well as gene expression and genetic variants of the candidate genes CHL1, ITGB3 and SLC6A4 were measured in lymphoblastoid cell lines (LCLs) of 58 depressed patients. Results: An association between the clinical remission of depression and the basal expression of CHL1 and ITGB3 was discovered. Individuals whose LCLs expressed higher levels of CHL1 or ITGB3 showed a significantly better remission upon AD treatment. In addition individuals with the CHL1 rs1516338 TT genotype showed a significantly better remission after 5 weeks AD treatment than those carrying a CC genotype. No association between the in vitro sensitivity of LCLs toward AD and the clinical remission could be detected. Conclusion: CHL1 expression in patient-derived LCLs correlated with the clinical outcome. Thus, it could be a valid biomarker to predict the success of an antidepressant therapy. Original submitted 8 December 2014; Revision submitted 2 March 2015
Collapse
Affiliation(s)
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Olga Efimkina
- Institute for Pharmacology of Natural Products & Clinical Pharmacology, University Ulm, Ulm, Germany
| | - Eva Ersfeld
- Institute for Pharmacology of Natural Products & Clinical Pharmacology, University Ulm, Ulm, Germany
| | - Roberto Viviani
- Department of Psychiatry & Psychotherapy, University of Ulm, Ulm, Germany
| | - Alessandro Serretti
- Department of Biomedical & Neuromotor Sciences, University of Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical & Neuromotor Sciences, University of Bologna, Italy
| | - David Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna Maria Paul
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Marie-Louise Lehmann
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| | - Concetta Crisafulli
- Department of Biomedical Science & Morphological & Functional Images, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science & Morphological & Functional Images, University of Messina, Messina, Italy
| | | | - Julia Stingl
- Research Division, Federal Institute for Drugs & Medical Devices, Bonn, Germany
- Medical Faculty, Faculty Centre for Translational Medicine, University Bonn, Bonn, Germany
| |
Collapse
|
35
|
Lin E, Lane HY. Genome-wide association studies in pharmacogenomics of antidepressants. Pharmacogenomics 2015; 16:555-566. [PMID: 25916525 DOI: 10.2217/pgs.15.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Doctors must prescribe antidepressants based on educated guesses due to the fact that it is unmanageable to predict the effectiveness of any particular antidepressant in an individual patient. With the recent advent of scientific research, the genome-wide association study (GWAS) is extensively employed to analyze hundreds of thousands of single nucleotide polymorphisms by high-throughput genotyping technologies. In addition to the candidate-gene approach, the GWAS approach has recently been utilized to investigate the determinants of antidepressant response to therapy. In this study, we reviewed GWAS studies, their limitations and future directions with respect to the pharmacogenomics of antidepressants in MDD.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | | |
Collapse
|
36
|
Segraves RT, Balon R. Antidepressant-induced sexual dysfunction in men. Pharmacol Biochem Behav 2013; 121:132-7. [PMID: 24239785 DOI: 10.1016/j.pbb.2013.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/26/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
Most of the available antidepressant medications, including tricyclic antidepressants, monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, and dual noradrenergic/serotonergic reuptake inhibitors have been reported to be associated with sexual dysfunction in both sexes. This manuscript reviews evidence concerning the relative incidence of treatment emergent sexual dysfunction in men being treated with antidepressant drugs. Both double-blind controlled trials and large clinical series report a high incidence of sexual dysfunction, especially ejaculatory delay, with serotonergic drugs. The incidence of sexual dysfunction in men appears to be much lower with drugs whose primary mechanism of action involves adrenergic or dopaminergic systems.
Collapse
Affiliation(s)
- Robert Taylor Segraves
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Richard Balon
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
37
|
Oved K, Morag A, Pasmanik-Chor M, Rehavi M, Shomron N, Gurwitz D. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Transl Psychiatry 2013; 3:e313. [PMID: 24129413 PMCID: PMC3818017 DOI: 10.1038/tp.2013.86] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/15/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depression. However, the link between inhibition of serotonin reuptake and remission from depression remains controversial: in spite of the rapid onset of serotonin reuptake inhibition, remission from depression takes several weeks, presumably reflecting synaptogenesis/neurogenesis and neuronal rewiring. We compared genome-wide expression profiles of human lymphoblastoid cell lines from unrelated individuals following treatment with 1 μM paroxetine for 21 days with untreated control cells and examined which genes and microRNAs (miRNAs) showed the most profound and consistent expression changes. ITGB3, coding for integrin beta-3, showed the most consistent altered expression (1.92-fold increase, P=7.5 × 10(-8)) following chronic paroxetine exposure. Using genome-wide miRNA arrays, we observed a corresponding decrease in the expression of two miRNAs, miR-221 and miR-222, both predicted to target ITGB3. ITGB3 is crucial for the activity of the serotonin transporter (SERT), the drug target of SSRIs. Moreover, it is presumably required for the neuronal guidance activity of CHL1, whose expression was formerly identified as a tentative SSRI response biomarker. Further genes whose expression was significantly modulated by chronic paroxetine are also implicated in neurogenesis. Surprisingly, the expression of SERT or serotonin receptors was not modified. Our findings implicate ITGB3 in the mode of action of SSRI antidepressants and provide a novel link between CHL1 and the SERT. Our observations suggest that SSRIs may relieve depression primarily by promoting neuronal synaptogenesis/neurogenesis rather than by modulating serotonin neurotransmission per se.
Collapse
Affiliation(s)
- K Oved
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - A Morag
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
- Department of Physiology and Pharmacology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of
Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - M Rehavi
- Department of Physiology and Pharmacology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
| | - N Shomron
- Department of Cell and Developmental Biology,
Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv,
Israel
- Sagol School of Neuroscience, Tel-Aviv
University, Tel-Aviv, Israel
| | - D Gurwitz
- Department of Human Molecular Genetics and
Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University,
Tel-Aviv, Israel
| |
Collapse
|
38
|
Gurwitz D, McLeod HL. Genome-wide studies in pharmacogenomics: harnessing the power of extreme phenotypes. Pharmacogenomics 2013; 14:337-9. [PMID: 23438876 DOI: 10.2217/pgs.13.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
39
|
Murphy E, McMahon FJ. Pharmacogenetics of antidepressants, mood stabilizers, and antipsychotics in diverse human populations. DISCOVERY MEDICINE 2013; 16:113-122. [PMID: 23998447 PMCID: PMC6011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An increasing focus on personalized medicine is driving a renewed effort to understand the impact of ethnic and genetic background on treatment outcomes. Since responses to psychopharmacological treatments continue to be sub-optimal, there is a pressing need to identify markers of tolerability and efficacy. Pharmacogenomic studies aim to find such markers within the human genome, and have made some progress in recent years. Progress has been slower in populations with diverse racial and ethnic backgrounds. Here we review 10 genome-wide association studies (GWAS) that assessed outcomes after antidepressant, antipsychotic, or mood stabilizer treatment. These studies used samples collected by the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE), Sequenced Treatment Alternatives to Relieve Depression (STAR*D), and Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) studies. We highlight findings from African American and European American participants since they are the largest groups studied, but we also address issues related to Asian and Hispanic groups. None of the GWAS we reviewed identified individual genetic markers at genome-wide significance, probably due to limited sample sizes. However, all the studies found poorer outcomes among African American participants. Some of this disparity seems to be explained by psychosocial and economic disadvantages, but at least 2 studies found that widespread genetic differences between participants of European and African ancestry also play an important role. Non-European groups are underrepresented in these studies, but the differences that are evident so far suggest that poorer outcomes among African Americans are not inevitable and may be particularly suited to pharmacogenomic strategies. The vision of more personalized psychopharmacology may critically depend on larger studies in more diverse human populations.
Collapse
Affiliation(s)
- Eleanor Murphy
- Human Genetics Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
40
|
Evidence for shared genetic risk between methamphetamine-induced psychosis and schizophrenia. Neuropsychopharmacology 2013; 38:1864-70. [PMID: 23594818 PMCID: PMC3746703 DOI: 10.1038/npp.2013.94] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 02/04/2023]
Abstract
Methamphetamine (METH) use can provoke psychotic reactions requiring immediate treatment, namely METH-induced psychosis. Although the distinction between METH-induced and primary psychosis is important for understanding their clinical courses, we do not have clear diagnostic procedure by their symptoms. Not only are there similarities between the clinical features of METH-induced psychosis and schizophrenia (SCZ), but there is also epidemiological evidence of a shared genetic risk between 'METH-related' disorders and SCZ, which makes the differentiation of these two conditions difficult. In this study, we conducted a genome-wide association study (GWAS) targeting METH-dependent patients. The METH sample group, used in the METH-dependence GWAS, included 236 METH-dependent patients and 864 healthy controls. We also included a 'within-case' comparison between 194 METH-induced psychosis patients and 42 METH-dependent patients without psychosis in a METH-induced psychosis GWAS. To investigate the shared genetic components between METH dependence, METH-induced psychosis, and SCZ, data from our previous SCZ GWAS (total N=1108) were re-analyzed. In the SNP-based analysis, none of the SNPs showed genome-wide significance in either data set. By performing a polygenic component analysis, however, we found that a large number of 'risk' alleles for METH-induced psychosis are over-represented in individuals with SCZ (Pbest=0.0090). Conversely, we did not detect enrichment either between METH dependence and METH-induced psychosis or between METH dependence and SCZ. The results support previous epidemiological and neurobiological evidence for a relationship between METH-induced psychosis and SCZ. These also suggest that the overlap between genes scored as positive in these data sets can have higher probability as susceptibility genes for psychosis.
Collapse
|
41
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
42
|
Cardelli M, Marchegiani F, Corsonello A, Lattanzio F, Provinciali M. A review of pharmacogenetics of adverse drug reactions in elderly people. Drug Saf 2013; 35 Suppl 1:3-20. [PMID: 23446782 DOI: 10.1007/bf03319099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Older adults are more susceptible to the prevalence of therapeutic failure and adverse drug reactions (ADRs). Recent advances in genomic research have shed light on the crucial role of genetic variants, mainly involving genes encoding drug-metabolizing enzymes, drug transporters and genes responsible for a compound's mechanism of action, in driving different treatment responses among individuals, in terms of therapeutic efficacy and safety. The interindividual variations of these genes may account for the differences observed in drug efficacy and the appearance of ADRs in elderly people. The advent of whole genome mapping techniques has allowed researchers to begin to characterize the genetic components underlying serious ADRs. The identification and validation of these genetic markers will enable the screening of patients at risk of serious ADRs and to establish personalized treatment regimens.The aim of this review was to provide an update on the recent developments in geriatric pharmacogenetics in clinical practice by reviewing the available evidence in the PubMed database to September 2012. A Pubmed search was performed (years 1999-2012) using the following two search strategies: ('pharmacogenomic' OR 'pharmacogenetic ') AND ('geriatric' or 'elderly ') AND 'adverse drug reactions'; [gene name] AND ('geriatric' or 'elderly ') AND 'adverse drug reactions', in which the gene names were those contained in the Table of Pharmacogenomic Biomarkers in Drug Labels published online by the US Food and Drug Administration ( http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm ). Reference lists of included original articles and relevant review articles were also screened. The search was limited to studies published in the English language.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | | | | | | | | |
Collapse
|
43
|
Adkins DE, Souza RP, Aberg K, Clark SL, McClay JL, Sullivan PF, van den Oord EJCG. Genotype-based ancestral background consistently predicts efficacy and side effects across treatments in CATIE and STAR*D. PLoS One 2013; 8:e55239. [PMID: 23405125 PMCID: PMC3566192 DOI: 10.1371/journal.pone.0055239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022] Open
Abstract
Only a subset of patients will typically respond to any given prescribed drug. The time it takes clinicians to declare a treatment ineffective leaves the patient in an impaired state and at unnecessary risk for adverse drug effects. Thus, diagnostic tests robustly predicting the most effective and safe medication for each patient prior to starting pharmacotherapy would have tremendous clinical value. In this article, we evaluated the use of genetic markers to estimate ancestry as a predictive component of such diagnostic tests. We first estimated each patient’s unique mosaic of ancestral backgrounds using genome-wide SNP data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) (n = 765) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) (n = 1892). Next, we performed multiple regression analyses to estimate the predictive power of these ancestral dimensions. For 136/89 treatment-outcome combinations tested in CATIE/STAR*D, results indicated 1.67/1.84 times higher median test statistics than expected under the null hypothesis assuming no predictive power (p<0.01, both samples). Thus, ancestry showed robust and pervasive correlations with drug efficacy and side effects in both CATIE and STAR*D. Comparison of the marginal predictive power of MDS ancestral dimensions and self-reported race indicated significant improvements to model fit with the inclusion of MDS dimensions, but mixed evidence for self-reported race. Knowledge of each patient’s unique mosaic of ancestral backgrounds provides a potent immediate starting point for developing algorithms identifying the most effective and safe medication for a wide variety of drug-treatment response combinations. As relatively few new psychiatric drugs are currently under development, such personalized medicine offers a promising approach toward optimizing pharmacotherapy for psychiatric conditions.
Collapse
Affiliation(s)
- Daniel E Adkins
- Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Baldwin DS, Palazzo MC, Masdrakis VG. Reduced treatment-emergent sexual dysfunction as a potential target in the development of new antidepressants. DEPRESSION RESEARCH AND TREATMENT 2013; 2013:256841. [PMID: 23431429 PMCID: PMC3575662 DOI: 10.1155/2013/256841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/18/2012] [Accepted: 01/03/2013] [Indexed: 01/12/2023]
Abstract
Pleasurable sexual activity is an essential component of many human relationships, providing a sense of physical, psychological, and social well-being. Epidemiological and clinical studies show that depressive symptoms and depressive illness are associated with impairments in sexual function and satisfaction, both in untreated and treated patients. The findings of randomized placebo-controlled trials demonstrate that most of the currently available antidepressant drugs are associated with the development or worsening of sexual dysfunction, in a substantial proportion of patients. Sexual difficulties during antidepressant treatment often resolve as depression lifts but can endure over long periods and may reduce self-esteem and affect mood and relationships adversely. Sexual dysfunction during antidepressant treatment is typically associated with many possible causes, but the risk and type of dysfunction vary with differing compounds and should be considered when making decisions about the relative merits and drawbacks of differing antidepressants. A range of interventions can be considered when managing patients with sexual dysfunction associated with antidepressants, including the prescription of phosphodiesterase-5 inhibitors, but none of these approaches can be considered "ideal." As treatment-emergent sexual dysfunction is less frequent with certain drugs, presumably related to differences in their pharmacological properties, and because current management approaches are less than ideal, a reduced burden of treatment-emergent sexual dysfunction represents a tolerability target in the development of novel antidepressants.
Collapse
Affiliation(s)
- David S. Baldwin
- Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO14 3DT, UK
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - M. Carlotta Palazzo
- Department of Pathophysiology and Transplantation, University of Milan and Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Vasilios G. Masdrakis
- First Department of Psychiatry, Eginition Hospital, Athens University Medical School, 11528 Athens, Greece
| |
Collapse
|
45
|
Morag A, Oved K, Gurwitz D. Sex differences in human lymphoblastoid cells sensitivities to antipsychotic drugs. J Mol Neurosci 2012; 49:554-8. [PMID: 22760742 DOI: 10.1007/s12031-012-9852-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/26/2012] [Indexed: 12/30/2022]
Abstract
Adverse drug reactions (ADRs) are a major concern in pharmacotherapy and are more common among women. Immortalized human lymphoblastoid cell lines (LCLs) are emerging as a novel tool for studying interindividual variability in drug response, including ADRs. In the present study, we compared sensitivities of LCLs from unrelated healthy male and female donors to growth inhibition by a panel of common drugs. We observed large interindividual drug sensitivity variations with similar mean sensitivities recorded for LCLs from male and female donors for most tested drugs. A notable exception was observed for the typical antipsychotic haloperidol and the atypical antipsychotic risperidone, which exhibited, on average, more robust in vitro growth inhibition in male as compared with female LCLs. An opposite finding was observed for the antidepressant paroxetine, which was more potent for inhibiting the growth of female as compared with male LCLs. These observations are discussed in the context of the higher incidence of dystonia reported for male schizophrenia patients treated with haloperidol and the higher efficacy of paroxetine in female major depression patients.
Collapse
Affiliation(s)
- Ayelet Morag
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | | | | |
Collapse
|
46
|
McClay JL. Institutional Profile: The Center for Biomarker Research and Personalized Medicine at Virginia Commonwealth University: advancing psychiatric drug treatment. Per Med 2012; 9:479-483. [PMID: 29768775 DOI: 10.2217/pme.12.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Center for Biomarker Research and Personalized Medicine is a small, focused and technology-driven organization, sited within the School of Pharmacy on the Medical College of Virginia Campus of Virginia Commonwealth University. The Center was established in 2006, with a mission to improve understanding and treatment of psychiatric disease by employing the latest advances in molecular biology, informatics and statistics. We take the philosophy that large-scale, exploratory studies are crucial to achieve our aims because strong biological associations have been historically absent for psychiatric disorders. Our work follows two main streams: the first being disease biomarker research, such as discovering genes contributing risk for schizophrenia or depression. The second stream is the discovery of biomarkers for therapeutic drug response, where our genome-wide association studies of antipsychotic and antidepressant response have yielded multiple new leads. With the recent success of large-scale biological investigations of psychiatric disorders, we are very optimistic about the future. By engaging cutting-edge technologies such as next-generation DNA sequencing, coupled with biological data integration, we may further probe the biological underpinnings of psychiatric disorders and response to drug treatment.
Collapse
Affiliation(s)
- Joseph L McClay
- Center for Biomarker Research & Personalized Medicine, Virginia Commonwealth University, McGuire Hall, 1112 East Clay Street, Richmond, VA 23298, USA.
| |
Collapse
|
47
|
Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Rehavi M, Stingl JC, Gurwitz D. Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics 2012; 13:1129-39. [DOI: 10.2217/pgs.12.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Over 30% of patients with major depression do not respond well to first-line treatment with selective serotonin reuptake inhibitors (SSRIs). Using genome-wide expression profiling of human lymphoblastoid cell lines (LCLs) CHL1 was identified as a tentative SSRI sensitivity biomarker. This study reports on miRNAs implicated in SSRI sensitivity of LCLs. Methods: Eighty LCLs were screened from healthy adult female individuals for growth inhibition by paroxetine. Eight LCLs exhibiting high or low sensitivities to paroxetine were chosen for genome-wide expression profiling with miRNA microarrays. Results: The miRNA miR-151-3p had 6.7-fold higher basal expression in paroxetine-sensitive LCLs. This corresponds with lower expression of CHL1, a target of miR-151-3p. The additional miRNAs miR-212, miR-132, miR-30b*, let-7b and let-7c also differed by >1.5-fold (p < 0.05) between the two LCL groups. Conclusion: The potential value of these miRNAs as tentative SSRI response biomarkers awaits validation with lymphocyte samples of major depression patients. Original submitted 28 March 2012; Revision submitted 21 May 2012
Collapse
Affiliation(s)
- Keren Oved
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Morag
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Varda Oron-Karni
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Shomron
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Rehavi
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Julia C Stingl
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, University Ulm, Ulm, Germany
- Federal Institute for Drugs & Medical Devices, University Bonn, Bonn, Germany
| | - David Gurwitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|