1
|
Chen L, Liu M, Dai X, He C, Wang K, Tang J, Yang Y. Untargeted Metabolomics Reveals Metabolic Link Between Histone H3K27 Demethylase UTX and Neurodevelopment. J Cell Mol Med 2025; 29:e70334. [PMID: 39779477 PMCID: PMC11710934 DOI: 10.1111/jcmm.70334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). We found that UTX knockout in neurones leads to cell death and apoptosis in the hippocampus and cortex, as well as induces impaired learning and memory functions in mice. Moreover, UTX deletion contributed to significant metabolic perturbations in brain tissues. A total of 223 differential metabolites were identified between wild-type (WT) and UTX cKO mice. Pathway analysis indicated that the metabolic pathways mainly affected by UTX deletion were alanine, aspartate, and glutamate metabolism, resulting in significant alterations in L-alanine, L-aspartate, D-aspartate, N-acetylaspartylglutamate, L-glutamate, and argininosuccinic acid. These data emphasised that UTX may exert a key effect in neurodevelopment and that the underlying mechanism may be related to the regulation of the alanine, aspartate, and glutamate metabolism pathways, especially the characteristic metabolites involved in this pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Maozhu Liu
- Center of Infectious Diseases, West China HospitalSichuan UniversityChengduChina
| | - Xinhua Dai
- Department of Laboratory Medicine, West China HospitalSichuan UniversityChengduChina
| | - Cuilin He
- Department of PharmacyThe First People's Hospital of Shuangliu DistrictChengduChina
| | - Kejing Wang
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jinhua Tang
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yang Yang
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Demirlek C, Verim B, Zorlu N, Demir M, Yalincetin B, Eyuboglu MS, Cesim E, Uzman-Özbek S, Süt E, Öngür D, Bora E. Functional brain networks in clinical high-risk for bipolar disorder and psychosis. Psychiatry Res 2024; 342:116251. [PMID: 39488942 DOI: 10.1016/j.psychres.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Abnormal connectivity in the brain has been linked to the pathophysiology of severe mental illnesses, including bipolar disorder and schizophrenia. The current study aimed to investigate large-scale functional networks and global network metrics in clinical high-risk for bipolardisorder (CHR-BD, n = 25), clinical high-risk for psychosis (CHR-P, n = 30), and healthy controls (HCs, n = 19). Help-seeking youth at CHR-BD and CHR-P were recruited from the early intervention program at Dokuz Eylul University, Izmir, Turkey. Resting-state functional magnetic resonance imaging scans were obtained from youth at CHR-BD, CHR-P, and HCs. Graph theoretical analysis and network-based statistics were employed to construct and examine the topological features of the whole-brain metrics and large-scale functional networks. Connectivity was increased (i) between the visual and default mode, (ii) between the visual and salience, (iii) between the visual and cingulo-opercular networks, and decreased (i) within the default mode and (ii) between the default mode and fronto-parietal networks in the CHR-P compared to HCs. Decreased global efficiency was found in CHR-P compared to CHR-BD. Functional networks were not different between CHR-BD and HCs. Global efficiency was negatively correlated with subthreshold positive symptoms and thought disorder in the high-risk groups. The current results suggest disrupted networks in CHR-P compared to HCs and CHR-BD. Moreover, transdiagnostic psychosis features are linked to functional brain networks in the at-risk groups. However, given the small, medicated sample, results are exploratory and hypothesis-generating.
Collapse
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Burcu Verim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Muhammed Demir
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Merve S Eyuboglu
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Simge Uzman-Özbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ekin Süt
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Dost Öngür
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Victoria, Australia
| |
Collapse
|
3
|
Demirlek C. The need for youth psychiatry fellowship: a physician-scientist trainee perspective. Mol Psychiatry 2024; 29:3287-3288. [PMID: 38654125 DOI: 10.1038/s41380-024-02571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
4
|
Rahman T, Purves-Tyson T, Geddes AE, Huang XF, Newell KA, Weickert CS. N-Methyl-d-Aspartate receptor and inflammation in dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2022; 240:61-70. [PMID: 34952289 DOI: 10.1016/j.schres.2021.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Lower N-methyl-d-aspartate receptor (NMDAR) GluN1 subunit levels and heightened neuroinflammation are found in the cortex in schizophrenia. Since neuroinflammation can lead to changes in NMDAR function, it is possible that these observations are linked in schizophrenia. We aimed to extend our previous studies by measuring molecular indices of NMDARs that define key functional properties of this receptor - particularly the ratio of GluN2A and GluN2B subunits - in dorsolateral prefrontal cortex (DLPFC) from schizophrenia and control cases (37/37). We sought to test whether changes in these measures are specific to the subset of schizophrenia cases with high levels of inflammation-related mRNAs, defined as a high inflammatory subgroup. Quantitative autoradiography was used to detect 'functional' NMDARs ([3H]MK-801), GluN1-coupled-GluN2A subunits ([3H]CGP-39653), and GluN1-coupled-GluN2B subunits ([3H]Ifenprodil). Quantitative RT-PCR was used to measure NMDAR subunit transcripts (GRIN1, GRIN2A and GRIN2B). The ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were calculated as an index of putative NMDAR composition. We found: 1) GluN2A binding, and 2) the ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were lower in schizophrenia cases versus controls (p < 0.05), and 3) lower GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNA ratios were exaggerated in the high inflammation/schizophrenia subgroup compared to the low inflammation/control subgroup (p < 0.05). No other NMDAR-related indices were significantly changed in the high inflammation/schizophrenia subgroup. This suggests that neuroinflammation may alter NMDAR stoichiometry rather than targeting total NMDAR levels overall, and future studies could aim to determine if anti-inflammatory treatment can alleviate this aspect of NMDAR-related pathology.
Collapse
Affiliation(s)
- Tasnim Rahman
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tertia Purves-Tyson
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Amy E Geddes
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Xu-Feng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Kelly A Newell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia.
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
5
|
Baker-Ericzén MJ, Brookman-Frazee L, Brodkin ES. Accelerating research on treatment and services for transition age youth and adults on the autism spectrum. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2019; 22:2-5. [PMID: 29369717 DOI: 10.1177/1362361317738646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|