1
|
Morris ED, Emvalomenos GM, Hoye J, Meikle SR. Modeling PET Data Acquired During Nonsteady Conditions: What If Brain Conditions Change During the Scan? J Nucl Med 2024; 65:1824-1837. [PMID: 39448268 PMCID: PMC11619587 DOI: 10.2967/jnumed.124.267494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
Researchers use dynamic PET imaging with target-selective tracer molecules to probe molecular processes. Kinetic models have been developed to describe these processes. The models are typically fitted to the measured PET data with the assumption that the brain is in a steady-state condition for the duration of the scan. The end results are quantitative parameters that characterize the molecular processes. The most common kinetic modeling endpoints are estimates of volume of distribution or the binding potential of a tracer. If the steady state is violated during the scanning period, the standard kinetic models may not apply. To address this issue, time-variant kinetic models have been developed for the characterization of dynamic PET data acquired while significant changes (e.g., short-lived neurotransmitter changes) are occurring in brain processes. These models are intended to extract a transient signal from data. This work in the PET field dates back at least to the 1990s. As interest has grown in imaging nonsteady events, development and refinement of time-variant models has accelerated. These new models, which we classify as belonging to the first, second, or third generation according to their innovation, have used the latest progress in mathematics, image processing, artificial intelligence, and statistics to improve the sensitivity and performance of the earliest practical time-variant models to detect and describe nonsteady phenomena. This review provides a detailed overview of the history of time-variant models in PET. It puts key advancements in the field into historical and scientific context. The sum total of the methods is an ongoing attempt to better understand the nature and implications of neurotransmitter fluctuations and other brief neurochemical phenomena.
Collapse
Affiliation(s)
- Evan D Morris
- Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut;
- Biomedical Engineering, Yale University, New Haven, Connecticut
- Psychiatry, Yale University, New Haven, Connecticut
| | | | - Jocelyn Hoye
- Psychiatry, Yale University, New Haven, Connecticut
| | - Steven R Meikle
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; and
- Sydney Imaging Core Research Facility, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
van Hooijdonk CF, Drukker M, van de Giessen E, Booij J, Selten JP, van Amelsvoort TA. Dopaminergic alterations in populations at increased risk for psychosis: a systematic review of imaging findings. Prog Neurobiol 2022; 213:102265. [DOI: 10.1016/j.pneurobio.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
3
|
Frydecka D, Misiak B, Piotrowski P, Bielawski T, Pawlak E, Kłosińska E, Krefft M, Al Noaimy K, Rymaszewska J, Moustafa AA, Drapała J. The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders. Brain Sci 2021; 12:brainsci12010007. [PMID: 35053751 PMCID: PMC8774082 DOI: 10.3390/brainsci12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Schizophrenia spectrum disorders (SZ) are characterized by impairments in probabilistic reinforcement learning (RL), which is associated with dopaminergic circuitry encompassing the prefrontal cortex and basal ganglia. However, there are no studies examining dopaminergic genes with respect to probabilistic RL in SZ. Thus, the aim of our study was to examine the impact of dopaminergic genes on performance assessed by the Probabilistic Selection Task (PST) in patients with SZ in comparison to healthy control (HC) subjects. In our study, we included 138 SZ patients and 188 HC participants. Genetic analysis was performed with respect to the following genetic polymorphisms: rs4680 in COMT, rs907094 in DARP-32, rs2734839, rs936461, rs1800497, and rs6277 in DRD2, rs747302 and rs1800955 in DRD4 and rs28363170 and rs2975226 in DAT1 genes. The probabilistic RL task was completed by 59 SZ patients and 95 HC subjects. SZ patients performed significantly worse in acquiring reinforcement contingencies during the task in comparison to HCs. We found no significant association between genetic polymorphisms and RL among SZ patients; however, among HC participants with respect to the DAT1 rs28363170 polymorphism, individuals with 10-allele repeat genotypes performed better in comparison to 9-allele repeat carriers. The present study indicates the relevance of the DAT1 rs28363170 polymorphism in RL in HC participants.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
- Correspondence:
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Patryk Piotrowski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Edyta Pawlak
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigel Street 12, 53-114 Wroclaw, Poland;
| | - Ewa Kłosińska
- Day-Care Psychiatric Unit, University Clinical Hospital, Pasteur Street 10, 50-367 Wroclaw, Poland;
| | - Maja Krefft
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Kamila Al Noaimy
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Ahmed A. Moustafa
- School of Psychology, Marcs Institute for Brain and Behaviour, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia;
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| | - Jarosław Drapała
- Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wrocław, Poland;
| |
Collapse
|
4
|
McCutcheon RA, Merritt K, Howes OD. Dopamine and glutamate in individuals at high risk for psychosis: a meta-analysis of in vivo imaging findings and their variability compared to controls. World Psychiatry 2021; 20:405-416. [PMID: 34505389 PMCID: PMC8429330 DOI: 10.1002/wps.20893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopaminergic and glutamatergic dysfunction is believed to play a central role in the pathophysiology of schizophrenia. However, it is unclear if abnormalities predate the onset of schizophrenia in individuals at high clinical or genetic risk for the disorder. We systematically reviewed and meta-analyzed studies that have used neuroimaging to investigate dopamine and glutamate function in individuals at increased clinical or genetic risk for psychosis. EMBASE, PsycINFO and Medline were searched form January 1, 1960 to November 26, 2020. Inclusion criteria were molecular imaging measures of striatal presynaptic dopaminergic function, striatal dopamine receptor availability, or glutamate function. Separate meta-analyses were conducted for genetic high-risk and clinical high-risk individuals. We calculated standardized mean differences between high-risk individuals and controls, and investigated whether the variability of these measures differed between the two groups. Forty-eight eligible studies were identified, including 1,288 high-risk individuals and 1,187 controls. Genetic high-risk individuals showed evidence of increased thalamic glutamate + glutamine (Glx) concentrations (Hedges' g=0.36, 95% CI: 0.12-0.61, p=0.003). There were no significant differences between high-risk individuals and controls in striatal presynaptic dopaminergic function, striatal D2/D3 receptor availability, prefrontal cortex glutamate or Glx, hippocampal glutamate or Glx, or basal ganglia Glx. In the meta-analysis of variability, genetic high-risk individuals showed reduced variability of striatal D2/D3 receptor availability compared to controls (log coefficient of variation ratio, CVR=-0.24, 95% CI: -0.46 to -0.02, p=0.03). Meta-regressions of publication year against effect size demonstrated that the magnitude of differences between clinical high-risk individuals and controls in presynaptic dopaminergic function has decreased over time (estimate=-0.06, 95% CI: -0.11 to -0.007, p=0.025). Thus, other than thalamic glutamate concentrations, no neurochemical measures were significantly different between individuals at risk for psychosis and controls. There was also no evidence of increased variability of dopamine or glutamate measures in high-risk individuals compared to controls. Significant heterogeneity, however, exists between studies, which does not allow to rule out the existence of clinically meaningful differences.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Camacho E, Brady RO, Lizano P, Keshavan M, Torous J. Advancing translational research through the interface of digital phenotyping and neuroimaging: A narrative review. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Martin-Soelch C, Guillod M, Gaillard C, Recabarren RE, Federspiel A, Mueller-Pfeiffer C, Homan P, Hasler G, Schoebi D, Horsch A, Gomez P. Increased Reward-Related Activation in the Ventral Striatum During Stress Exposure Associated With Positive Affect in the Daily Life of Young Adults With a Family History of Depression. Preliminary Findings. Front Psychiatry 2021; 11:563475. [PMID: 33584359 PMCID: PMC7873952 DOI: 10.3389/fpsyt.2020.563475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Being the offspring of a parent with major depression disorder (MDD) is a strong predictor for developing MDD. Blunted striatal responses to reward were identified in individuals with MDD and in asymptomatic individuals with family history of depression (FHD). Stress is a major etiological factor for MDD and was also reported to reduce the striatal responses to reward. The stress-reward interactions in FHD individuals has not been explored yet. Extending neuroimaging results into daily-life experience, self-reported ambulatory measures of positive affect (PA) were shown to be associated with striatal activation during reward processing. A reduction of self-reported PA in daily life is consistently reported in individuals with current MDD. Here, we aimed to test (1) whether increased family risk of depression is associated with blunted neural and self-reported reward responses. (2) the stress-reward interactions at the neural level. We expected a stronger reduction of reward-related striatal activation under stress in FHD individuals compared to HC. (3) the associations between fMRI and daily life self-reported data on reward and stress experiences, with a specific interest in the striatum as a crucial region for reward processing. Method: Participants were 16 asymptomatic young adults with FHD and 16 controls (HC). They performed the Fribourg Reward Task with and without stress induction, using event-related fMRI. We conducted whole-brain analyses comparing the two groups for the main effect of reward (rewarded > not-rewarded) during reward feedback in control (no-stress) and stress conditions. Beta weights extracted from significant activation in this contrast were correlated with self-reported PA and negative affect (NA) assessed over 1 week. Results: Under stress induction, the reward-related activation in the ventral striatum (VS) was higher in the FHD group than in the HC group. Unexpectedly, we did not find significant group differences in the self-reported daily life PA measures. During stress induction, VS reward-related activation correlated positively with PA in both groups and negatively with NA in the HC group. Conclusion: As expected, our results indicate that increased family risk of depression was associated with specific striatum reactivity to reward in a stress condition, and support previous findings that ventral striatal reward-related response is associated with PA. A new unexpected finding is the negative association between NA and reward-related ventral striatal activation in the HC group.
Collapse
Affiliation(s)
- Chantal Martin-Soelch
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Matthias Guillod
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Claudie Gaillard
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
- Section on Neurobiology of Fear and Anxiety, National Institutes of Mental Health, Bethesda, MD, United States
| | - Romina Evelyn Recabarren
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Christoph Mueller-Pfeiffer
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Homan
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, United States
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, United States
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| | - Dominik Schoebi
- Unit of Clinical Family Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Antje Horsch
- Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
| | - Patrick Gomez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Ros T, Kwiek J, Andriot T, Michela A, Vuilleumier P, Garibotto V, Ginovart N. PET Imaging of Dopamine Neurotransmission During EEG Neurofeedback. Front Physiol 2021; 11:590503. [PMID: 33584328 PMCID: PMC7873858 DOI: 10.3389/fphys.2020.590503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Neurofeedback (NFB) is a brain-based training method that enables users to control their own cortical oscillations using real-time feedback from the electroencephalogram (EEG). Importantly, no investigations to date have directly explored the potential impact of NFB on the brain's key neuromodulatory systems. Our study's objective was to assess the capacity of NFB to induce dopamine release as revealed by positron emission tomography (PET). Thirty-two healthy volunteers were randomized to either EEG-neurofeedback (NFB) or EEG-electromyography (EMG), and scanned while performing self-regulation during a single session of dynamic PET brain imaging using the high affinity D2/3 receptor radiotracer, [18F]Fallypride. NFB and EMG groups down-regulated cortical alpha power and facial muscle tone, respectively. Task-induced effects on endogenous dopamine release were estimated in the frontal cortex, anterior cingulate cortex, and thalamus, using the linearized simplified reference region model (LSRRM), which accounts for time-dependent changes in radiotracer binding following task initiation. Contrary to our hypothesis of a differential effect for NFB vs. EMG training, significant dopamine release was observed in both training groups in the frontal and anterior cingulate cortex, but not in thalamus. Interestingly, a significant negative correlation was observed between dopamine release in frontal cortex and pre-to-post NFB change in spontaneous alpha power, suggesting that intra-individual changes in brain state (i.e., alpha power) could partly result from changes in neuromodulatory tone. Overall, our findings constitute the first direct investigation of neurofeedback's effect on the endogenous release of a key neuromodulator, demonstrating its feasibility and paving the way for future studies using this methodology.
Collapse
Affiliation(s)
- Tomas Ros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Jessica Kwiek
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Theo Andriot
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Abele Michela
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Nathalie Ginovart
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Montagnese M, Knolle F, Haarsma J, Griffin JD, Richards A, Vertes PE, Kiddle B, Fletcher PC, Jones PB, Owen MJ, Fonagy P, Bullmore ET, Dolan RJ, Moutoussis M, Goodyer IM, Murray GK. Reinforcement learning as an intermediate phenotype in psychosis? Deficits sensitive to illness stage but not associated with polygenic risk of schizophrenia in the general population. Schizophr Res 2020; 222:389-396. [PMID: 32389614 PMCID: PMC7594641 DOI: 10.1016/j.schres.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/20/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schizophrenia is a complex disorder in which the causal relations between risk genes and observed clinical symptoms are not well understood and the explanatory gap is too wide to be clarified without considering an intermediary level. Thus, we aimed to test the hypothesis of a pathway from molecular polygenic influence to clinical presentation occurring via deficits in reinforcement learning. METHODS We administered a reinforcement learning task (Go/NoGo) that measures reinforcement learning and the effect of Pavlovian bias on decision making. We modelled the behavioural data with a hierarchical Bayesian approach (hBayesDM) to decompose task performance into its underlying learning mechanisms. Study 1 included controls (n = 29, F|M = 0.81), At Risk Mental State for psychosis (ARMS, n = 23, F|M = 0.35) and FEP (First-episode psychosis, n = 26, F|M = 0.18). Study 2 included healthy adolescents (n = 735, F|M = 1.06), 390 of whom had their polygenic risk scores for schizophrenia (PRSs) calculated. RESULTS Patients with FEP showed significant impairments in overriding Pavlovian conflict, a lower learning rate and a lower sensitivity to both reward and punishment. Less widespread deficits were observed in ARMS. PRSs did not significantly predict performance on the task in the general population, which only partially correlated with measures of psychopathology. CONCLUSIONS Reinforcement learning deficits are observed in first episode psychosis and, to some extent, in those at clinical risk for psychosis, and were not predicted by molecular genetic risk for schizophrenia in healthy individuals. The study does not support the role of reinforcement learning as an intermediate phenotype in psychosis.
Collapse
Affiliation(s)
| | - Franziska Knolle
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Joost Haarsma
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Juliet D Griffin
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Alex Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Petra E Vertes
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Beatrix Kiddle
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, United Kingdom; Wellcome Trust MRC Institute of Metabolic Science, Cambridge, Biomedical Campus, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge,United Kingdom
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge,United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Peter Fonagy
- Research Department of Clinical, Educational and Health Psychology, University College London, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge,United Kingdom
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, United Kingdom
| | - Michael Moutoussis
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, United Kingdom
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge,United Kingdom
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge,United Kingdom.
| |
Collapse
|
9
|
van Duin EDA, Ceccarini J, Booij J, Kasanova Z, Vingerhoets C, van Huijstee J, Heinzel A, Mohammadkhani-Shali S, Winz O, Mottaghy F, Myin-Germeys I, van Amelsvoort T. Lower [ 18F]fallypride binding to dopamine D 2/3 receptors in frontal brain areas in adults with 22q11.2 deletion syndrome: a positron emission tomography study. Psychol Med 2020; 50:799-807. [PMID: 30935427 PMCID: PMC7168654 DOI: 10.1017/s003329171900062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11DS) is caused by a deletion on chromosome 22 locus q11.2. This copy number variant results in haplo-insufficiency of the catechol-O-methyltransferase (COMT) gene, and is associated with a significant increase in the risk for developing cognitive impairments and psychosis. The COMT gene encodes an enzyme that primarily modulates clearance of dopamine (DA) from the synaptic cleft, especially in the prefrontal cortical areas. Consequently, extracellular DA levels may be increased in prefrontal brain areas in 22q11DS, which may underlie the well-documented susceptibility for cognitive impairments and psychosis in affected individuals. This study aims to examine DA D2/3 receptor binding in frontal brain regions in adults with 22q11DS, as a proxy of frontal DA levels. METHODS The study was performed in 14 non-psychotic, relatively high functioning adults with 22q11DS and 16 age- and gender-matched healthy controls (HCs), who underwent DA D2/3 receptor [18F]fallypride PET imaging. Frontal binding potential (BPND) was used as the main outcome measure. RESULTS BPND was significantly lower in adults with 22q11DS compared with HCs in the prefrontal cortex and the anterior cingulate gyrus. After Bonferroni correction significance remained for the anterior cingulate gyrus. There were no between-group differences in BPND in the orbitofrontal cortex and anterior cingulate cortex. CONCLUSIONS This study is the first to demonstrate lower frontal D2/3 receptor binding in adults with 22q11DS. It suggests that a 22q11.2 deletion affects frontal dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Esther D. A. van Duin
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, University Hospital Leuven, KU Leuven, Belgium
| | - Jan Booij
- Academic Medical Center, Amsterdam, The Netherlands
| | - Zuzana Kasanova
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Academic Medical Center, Amsterdam, The Netherlands
| | - Jytte van Huijstee
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | | | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherland
| | - Inez Myin-Germeys
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Thérèse van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Social and non-social reward learning reduced and related to a familial vulnerability in schizophrenia spectrum disorders. Schizophr Res 2020; 215:256-262. [PMID: 31753593 DOI: 10.1016/j.schres.2019.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/16/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022]
Abstract
Patients with a disorder in the schizophrenia spectrum (SZ) demonstrate impairments in reward learning. A reduced sensitivity to social reward may impede social beyond non-social reward learning mechanisms. The aim of the current study was to investigate social and non-social reward learning in SZ by means of two interactive game-theoretical investment paradigms. Unaffected first-degree relatives of patients were included to examine whether (social) reward-learning impairments are part of a familial vulnerability of SZ. We included 50 patients with a SZ disorder, 20 unaffected first-degree relatives of patients and 49 healthy controls. The trust game (social) and the lottery game (non-social) were used, consisting of 20 game trials each. The game paradigms were programmed to increase the likelihood of higher repayments in response to increased investments. Multilevel regression analyses were used to examine learning over trials in both contexts. The results showed that controls learned equally well in social and non-social contexts, as reflected in an increase of investments over game rounds in both paradigms. In contrast, patients and relatives showed reduced reward learning, regardless of its social or non-social nature, reflected by flatter or decreasing slopes over game rounds in both paradigms. The findings suggest that patients and relatives have a general reduced sensitivity to reward, which appears to reflect a familial vulnerability rather than illness related mechanisms. Results indicate that reward learning may be an important marker for the familial risk to SZ.
Collapse
|
11
|
Kasanova Z, Ceccarini J, Frank MJ, van Amelsvoort T, Booij J, Heinzel A, Mottaghy FM, Myin-Germeys I. Daily-life stress differentially impacts ventral striatal dopaminergic modulation of reward processing in first-degree relatives of individuals with psychosis. Eur Neuropsychopharmacol 2018; 28:1314-1324. [PMID: 30482598 DOI: 10.1016/j.euroneuro.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022]
Abstract
Emerging evidence shows that stress can impair the ability to learn from and pursue rewards, which in turn has been linked to motivational impairments characteristic of the psychotic disorder. Ventral striatal dopaminergic neurotransmission has been found to modulate reward processing, and appears to be disrupted by exposure to stress. We investigated the hypothesis that stress experienced in the everyday life has a blunting effect on reward-induced dopamine release in the ventral striatum of 16 individuals at a familial risk for psychosis compared to 16 matched control subjects. Six days of ecological momentary assessments quantified the amount of daily-life stress prior to [18F]fallypride PET imaging while performing a probabilistic reinforcement learning task. Relative to the controls, individuals at a familial risk for psychosis who encountered more daily-life stress showed significantly diminished extent of reward-induced dopamine release in the right ventral striatum, as well as poorer performance on the reward task. These findings provide the first neuromolecular evidence for stress-related deregulation of reward processing in familial predisposition to psychosis. The implication of daily-life stress in compromised modulation of reward function may facilitate the design of targeted neuropharmacological and ecological interventions.
Collapse
Affiliation(s)
- Zuzana Kasanova
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Kapucijnenvoer 33, blok i, Leuven, 3000, Belgium.
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Department of Nuclear Medicine and Radiology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Inez Myin-Germeys
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Kapucijnenvoer 33, blok i, Leuven, 3000, Belgium
| |
Collapse
|
12
|
van Duin EDA, Kasanova Z, Hernaus D, Ceccarini J, Heinzel A, Mottaghy F, Mohammadkhani-Shali S, Winz O, Frank M, Beck MCH, Booij J, Myin-Germeys I, van Amelsvoort T. Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome. Eur Neuropsychopharmacol 2018; 28:732-742. [PMID: 29703646 DOI: 10.1016/j.euroneuro.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk for developing psychosis. The catechol-O-methyltransferase (COMT) gene is located in the deleted region and involved in dopamine (DA) breakdown. Impaired reinforcement learning (RL) is a recurrent feature in psychosis and thought to be related to abnormal striatal DA function. This study aims to examine RL and the potential association with striatal DA-ergic neuromodulation in 22q11DS. Twelve non-psychotic adults with 22q11DS and 16 healthy controls (HC) were included. A dopamine D2/3 receptor [18F]fallypride positron emission tomography (PET) scan was acquired while participants performed a modified version of the probabilistic stimulus selection task. RL-task performance was significantly worse in 22q11DS compared to HC. There were no group difference in striatal nondisplaceable binding potential (BPND) and task-induced DA release. In HC, striatal task-induced DA release was positively associated with task performance, but no such relation was found in 22q11DS subjects. Moreover, higher caudate nucleus task-induced DA release was found in COMT Met hemizygotes relative to Val hemizygotes. This study is the first to show impairments in RL in 22q11DS. It suggests that potentially motivational impairments are not only present in psychosis, but also in this genetic high risk group. These deficits may be underlain by abnormal striatal task-induced DA release, perhaps as a consequence of COMT haplo-insufficiency.
Collapse
Affiliation(s)
- Esther D A van Duin
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands.
| | - Zuzana Kasanova
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Leuven, Belgium
| | - Dennis Hernaus
- University of Maryland School of Medicine, Department of Psychiatry; Maryland Psychiatric Research Center, MD, USA
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, University Hospital Leuven, KU Leuven, Belgium
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Germany
| | - Michael Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Merrit C H Beck
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Academic Medical Center Amsterdam, The Netherlands
| | - Inez Myin-Germeys
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Leuven, Belgium
| | - Thérèse van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Myin-Germeys I, Kasanova Z, Vaessen T, Vachon H, Kirtley O, Viechtbauer W, Reininghaus U. Experience sampling methodology in mental health research: new insights and technical developments. World Psychiatry 2018; 17:123-132. [PMID: 29856567 PMCID: PMC5980621 DOI: 10.1002/wps.20513] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the mental health field, there is a growing awareness that the study of psychiatric symptoms in the context of everyday life, using experience sampling methodology (ESM), may provide a powerful and necessary addition to more conventional research approaches. ESM, a structured self-report diary technique, allows the investigation of experiences within, and in interaction with, the real-world context. This paper provides an overview of how zooming in on the micro-level of experience and behaviour using ESM adds new insights and additional perspectives to standard approaches. More specifically, it discusses how ESM: a) contributes to a deeper understanding of psychopathological phenomena, b) allows to capture variability over time, c) aids in identifying internal and situational determinants of variability in symptomatology, and d) enables a thorough investigation of the interaction between the person and his/her environment and of real-life social interactions. Next to improving assessment of psychopathology and its underlying mechanisms, ESM contributes to advancing and changing clinical practice by allowing a more fine-grained evaluation of treatment effects as well as by providing the opportunity for extending treatment beyond the clinical setting into real life with the development of ecological momentary interventions. Furthermore, this paper provides an overview of the technical details of setting up an ESM study in terms of design, questionnaire development and statistical approaches. Overall, although a number of considerations and challenges remain, ESM offers one of the best opportunities for personalized medicine in psychiatry, from both a research and a clinical perspective.
Collapse
Affiliation(s)
- Inez Myin-Germeys
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Zuzana Kasanova
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Thomas Vaessen
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Hugo Vachon
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Olivia Kirtley
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wolfgang Viechtbauer
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ulrich Reininghaus
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
- Centre for Epidemiology and Public Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|