1
|
Ghizzi LG, Del Valle TA, de Castro Zilio EM, da Silva Dias MS, Nunes AT, Gheller LS, de Paula E Silva TB, Marques JA, Grigoletto NTS, Takiya CS, Rennó FP. Influence of different growing stages of whole-plant soybeans on their nutrient content and silage quality for cattle. Arch Anim Nutr 2023; 77:437-451. [PMID: 38012071 DOI: 10.1080/1745039x.2023.2282277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
The objective of this study was to determine the effects of growing stage (GS) on morphological and chemical composition of whole-plant soybean (WPS), and fermentative profile and chemical composition of whole-plant soybean silage (SS). This study was divided into two trials conducted in a complete randomised block design. The first trial evaluated the effect of GS from R1 to R8 (59-135 d after sowing) on morphological and chemical composition of WPS and its botanical components. The second trial determined the effects of GS from R3 (71 d after sowing) to R7 (124 d after sowing) on dry matter (DM) losses, fermentative profile, chemical composition and aerobic stability of SS. The proportion of leaves in WPS was reduced, while stem and pod proportions were increased as the GS progressed. Ensiling WPS at R6 and R7 decreased the contents of acetic acid, lactic acid and branched-chain fatty acids, and ethanol, and increased the contents of propionic acid and NH3-N. However, silage butyric acid concentrations in R6 and R7 were relatively high (18.1 and 19.9 g/kg DM, respectively). Butyric acid and buffering capacity varied according to GS with the lowest values observed in silages derived from GS R3, R5 and R7, and the highest values observed in silages made from GS R5. Later GS resulted in greater contents of DM, crude protein and ether extract, and lower contents of acid detergent fibre and non-fibre carbohydrate in SS. The high fat of SS produced from later GS limits high inclusion levels in ruminant diets. Morphological components impacted chemical composition of SS, whereas the R7 stage improved fermentative profile and resulted in an SS with greater in situ degradability of DM and neutral detergent fibre.
Collapse
Affiliation(s)
- Lucas Ghedin Ghizzi
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil
| | | | | | | | - Alanne Tenório Nunes
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil
| | | | | | - Júlia Avansi Marques
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil
| | | | - Caio Seiti Takiya
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil
- Academic Department of Agrarian Sciences, Federal University of Technology - Paraná, Pato Branco, Brazil
| | - Francisco Palma Rennó
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
2
|
Gordiano L, Ferreira F, Ribeiro CDM, de Carvalho G, Silva F, de Araújo M, Alba H, e Silva R, Azevedo J, Freitas Jr JED. Association between chitosan and unsaturated fatty acids supplementation on ruminal fermentation, digestive metabolism, and ruminal kinetics in beef heifers. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals (Basel) 2022; 12:ani12091082. [PMID: 35565509 PMCID: PMC9101957 DOI: 10.3390/ani12091082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Camelina sativa, belonging to the Brassicaceae family, has been grown since 4000 B.C. as an oilseed crop that is more drought- and cold-resistant. Increased demand for its oil, meal, and other derivatives has increased researchers’ interest in this crop. Its anti-nutritional factors can be reduced by solvent, enzyme and heat treatments, and genetic engineering. Inclusion of camelina by-products increases branched-chain volatile fatty acids, decreases neutral detergent fiber digestibility, has no effect on acid detergent fiber digestibility, and lowers acetate levels in dairy cows. Feeding camelina meal reduces ruminal methane, an environmental benefit of using camelina by-products in ruminant diets. The addition of camelina to dairy cow diets decreases ruminal cellulolytic bacteria and bio-hydrogenation. This reduced bio-hydrogenation results in an increase in desirable fatty acids and a decrease in saturated fatty acids in milk obtained from cows fed diets with camelina seeds or its by-products. Studies suggest that by-products of C. sativa can be used safely in dairy cows at appropriate inclusion levels. However, suppression in fat milk percentage and an increase in trans fatty acid isomers should be considered when increasing the inclusion rate of camelina by-products, due to health concerns.
Collapse
|
4
|
Paszczyk B, Czarnowska-Kujawska M. Fatty Acid Profile, Conjugated Linoleic Acid Content, and Lipid Quality Indices in Selected Yogurts Available on the Polish Market. Animals (Basel) 2022; 12:96. [PMID: 35011202 PMCID: PMC8749727 DOI: 10.3390/ani12010096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to determine the fatty acid composition, the content of cis9trans11 C18:2 acid (CLA), and lipid quality indices in yogurts made of cow's milk, available on the Polish market. The test material consisted of: natural yogurts, natural yogurts with additives (muesli, cereal grains), bio yogurts, bio yogurts with additives (millet groats, quinoa, chestnuts), probiotic yogurts, and eco yogurts. All the products were bought in the period from May to June 2021. The conducted research showed that the analyzed yoghurts were characterized by a varying content of fatty acid groups, different values of the calculated lipid quality indices, as well as a different content of conjugated linoleic acid cis9trans11 C18: 2 (CLA). Natural yogurts with additives had the highest content of polyunsaturated fatty acids (PUFAs) and n-3 PUFAs. Natural and bio yogurts with additives had a higher content of n-6 PUF than the other analyzed yogurts. The n-6/n-3 ratio was lower in bio yogurts and eco yogurts. Natural yogurts with additives featured the lowest index of atherogenicity (AI) and index of thrombogenicity (TI) and the highest hypocholesterolemic/hypercholesterolemic ratio (H/H). The fat extracted from the bio yogurts had the highest (0.90% of total fatty acids) mean content of cis9trans11 C18:2 (CLA). In fat of the other analyzed yogurts, mean CLA content in total content of fatty acids varied from 0.48% in natural yogurts with additives to 0.81% in bio yogurts with additives.
Collapse
Affiliation(s)
| | - Marta Czarnowska-Kujawska
- Department of Commodity and Food Analysis, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| |
Collapse
|
5
|
Osorio JAC, Daniel JLP, Cabral JF, Almeida KV, Guimarães KL, Sippert MR, Lourenço JCS, De Marchi FE, Velho JP, Santos GT. Annatto seeds as Antioxidants Source with Linseed Oil for Dairy Cows. Animals (Basel) 2021; 11:ani11051465. [PMID: 34065215 PMCID: PMC8161327 DOI: 10.3390/ani11051465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Currently, functional foods are gaining widespread attention. Polyunsaturated fatty acids (PUFA) and antioxidant compounds have beneficial effects on health. It is possible to increase the concentration of these compounds in the milk obtained from dairy cows by manipulating their diets, thereby improving milk quality and consequently the health of animals and humans who consume this milk. Annatto seed (Bixa orellana L.) is a source of antioxidants, whereas linseed oil is rich in omega 3 fatty acid. We evaluated the inclusion of annatto seeds and linseed oil in the diets of dairy cows and their effects on dry matter intake (DMI), nutrient digestibility, milk yield, milk composition and antioxidant capacity in milk and blood. There was no effect of treatment on nutrient digestibility and antioxidant capacity, but the addition of annatto seeds decreased DMI and milk production and linseed oil supplementation reduced milk fat content. Abstract This study aimed to evaluate the effects of annatto seeds, linseed oil and their combination on DMI, apparent total tract digestibility, antioxidant capacity and milk composition of dairy cows. Four lactating Holstein cows (120 ± 43 days in milk; 15.98 ± 2.02 kg of milk/day, mean ± SD) were allocated in a 4 × 4 Latin square with a 2 × 2 factorial arrangement (with or without annatto seeds at 15 g/kg of dry matter (DM); with or without linseed oil at 30 g/kg of DM) and provided four different diets: control (no annatto seeds or linseed oil); annatto seeds (15 g/kg of DM); linseed oil (30 g/kg of DM); and a combination of both annatto seeds and linseed oil. Annatto seeds reduced DM intake, and milk yield, protein and lactose, but increased content of fat, total solids and short chain fatty acid, with no effect on total antioxidant capacity of milk. Linseed oil supplementation decreased medium chain fatty acid proportion and n-6/n-3 ratio, conversely it increased long chain fatty acids and n-3 fatty acid content of milk, ether extract intake and total-tract digestibility. Thus, linseed oil supplementation in dairy cow diets improved the milk FA profile but decreased milk fat concentration, whereas annatto seeds did not influence antioxidant capacity and depressed feed intake and milk yield.
Collapse
Affiliation(s)
- Jesus A. C. Osorio
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - João L. P. Daniel
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Jakeline F. Cabral
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Kleves V. Almeida
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Karoline L. Guimarães
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Micheli R. Sippert
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Jean C. S. Lourenço
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Francilaine E. De Marchi
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - João P. Velho
- Department of Animal Science, Santa Maria Federal University, Palmeira das Missões, RS 98300-000, Brazil;
| | - Geraldo T. Santos
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
- Correspondence: ; Tel.: +55-449-8819-0091
| |
Collapse
|
6
|
Paula EM, da Silva LG, Brandao VLN, Dai X, Faciola AP. Feeding Canola, Camelina, and Carinata Meals to Ruminants. Animals (Basel) 2019; 9:E704. [PMID: 31546983 PMCID: PMC6826546 DOI: 10.3390/ani9100704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023] Open
Abstract
Soybean meal (SBM) is a byproduct from the oil-industry widely used as protein supplement to ruminants worldwide due to its nutritional composition, high protein concentration, and availability. However, the dependency on monocultures such as SBM is problematic due to price fluctuation, availability and, in some countries, import dependency. In this context, oilseeds from the mustard family such as rapeseed/canola (Brassica napus and Brassica campestris), camelina (Camelina sativa), and carinata (Brassica carinata) have arisen as possible alternative protein supplements for ruminants. Therefore, the objective of this comprehensive review was to summarize results from studies in which canola meal (CM), camelina meal (CMM), and carinata meal (CRM) were fed to ruminants. This review was based on published peer-reviewed articles that were obtained based on key words that included the oilseed plant in question and words such as "ruminal fermentation and metabolism, animal performance, growth, and digestion". Byproducts from oil and biofuel industries such as CM, CMM, and CRM have been evaluated as alternative protein supplements to ruminants in the past two decades. Among the three plants reviewed herein, CM has been the most studied and results have shown an overall improvement in nitrogen utilization when animals were fed CM. Camelina meal has a comparable amino acids (AA) profile and crude protein (CP) concentration to CM. It has been reported that by replacing other protein supplements with CMM in ruminant diets, similar milk and protein yields, and average daily gain have been observed. Carinata meal has protein digestibility similar to SBM and its CP is highly degraded in the rumen. Overall, we can conclude that CM is at least as good as SBM as a protein supplement; and although studies evaluating the use of CMN and CRM for ruminants are scarce, it has been demonstrated that both oilseeds may be valuable feedstuff for livestock animals. Despite the presence of erucic acid and glucosinolates in rapeseed, no negative effect on animal performance was observed when feeding CM up to 20% and feeding CMN and CRM up to 10% of the total diet.
Collapse
Affiliation(s)
| | | | | | - Xiaoxia Dai
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA.
| | | |
Collapse
|
7
|
Alothman M, Hogan SA, Hennessy D, Dillon P, Kilcawley KN, O'Donovan M, Tobin J, Fenelon MA, O'Callaghan TF. The "Grass-Fed" Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019; 8:E350. [PMID: 31426489 PMCID: PMC6723057 DOI: 10.3390/foods8080350] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Milk is a highly nutritious food that contains an array of macro and micro components, scientifically proven to be beneficial to human health. While the composition of milk is influenced by a variety of factors, such as genetics, health, lactation stage etc., the animal's diet remains a key mechanism by which its nutrition and processing characteristics can be altered. Pasture feeding has been demonstrated to have a positive impact on the nutrient profile of milk, increasing the content of some beneficial nutrients such as Omega-3 polyunsaturated fatty acids, vaccenic acid, and conjugated linoleic acid (CLA), while reducing the levels of Omega-6 fatty acids and palmitic acid. These resultant alterations to the nutritional profile of "Grass-Fed" milk resonate with consumers that desire healthy, "natural", and sustainable dairy products. This review provides a comprehensive comparison of the impact that pasture and non-pasture feeding systems have on bovine milk composition from a nutritional and functional (processability) perspective, highlighting factors that will be of interest to dairy farmers, processors, and consumers.
Collapse
Affiliation(s)
- Mohammad Alothman
- Department of Food Chemistry & Technology, Teagasc Food Research Center, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Sean A Hogan
- Department of Food Chemistry & Technology, Teagasc Food Research Center, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Deirdre Hennessy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Pat Dillon
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Kieran N Kilcawley
- Department of Food Quality & Sensory Science, Teagasc Food Research Center, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Michael O'Donovan
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - John Tobin
- Department of Food Chemistry & Technology, Teagasc Food Research Center, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Mark A Fenelon
- Department of Food Chemistry & Technology, Teagasc Food Research Center, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Tom F O'Callaghan
- Department of Food Chemistry & Technology, Teagasc Food Research Center, Moorepark, Fermoy, P61 C996 Cork, Ireland.
| |
Collapse
|
8
|
Dietary verbascoside supplementation in donkeys: effects on milk fatty acid profile during lactation, and serum biochemical parameters and oxidative markers. Animal 2017; 11:1505-1512. [PMID: 28264745 DOI: 10.1017/s1751731117000441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Various uses of donkeys' milk have been recently proposed for human consumption on the basis of its nutritional characteristics. Improvements in milk fatty acid profile and animal oxidative status can be induced through dietary supplementation of phenolic compounds. The study aimed to evaluate in donkeys the effects of dietary supplementation with verbascoside (VB) on: (i) the fatty acid profile and vitamins A and E contents of milk during a whole lactation, and (ii) blood biochemical parameters and markers of oxidative status of the animals. At foaling, 12 lactating jennies were subdivided into two groups (n 6): control, without VB supplement; VB, receiving a lipid-encapsulated VB supplement. Gross composition, fatty acid profile and vitamins A and E contents in milk were assessed monthly over the 6 months of lactation. Serum total cholesterol, high-density lipoproteins cholesterol and low-density lipoproteins cholesterol, tryglicerides, non-esterified fatty acid, bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase, reactive oxygen metabolites, thiobarbituric acid reactive substances (TBARs), vitamin A and vitamin E were evaluated at 8 days after foaling (D0) and then at D90, D105 and D120 of lactation. In milk, the VB supplementation decreased the saturated fatty acids (P<0.05) and increased the monounsaturated fatty acids (P<0.05), and vitamins A and E (P<0.01) values. On the serum parameters, the VB supplementation decreased total cholesterol (P<0.01), tryglicerides, bilirubin, ALT and TBARs, and increased (P<0.01) vitamin E. In conclusion, the VB dietary supplementation affects the nutritional quality of donkey's milk with a benefit on the oxidative status and serum lipidic profile of the animals.
Collapse
|
9
|
Lock A, Givens D, Bauman D. Dairy Fat: Perceptions and Realities. MILK AND DAIRY PRODUCTS AS FUNCTIONAL FOODS 2014:174-197. [DOI: 10.1002/9781118635056.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Ducháček J, Stádník L, Beran J, Okrouhlá M, Vacek M, Doležalová M. Body condition score and milk fatty acid composition in early lactation of Czech Fleckvieh cows. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2013. [DOI: 10.11118/actaun201361061621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Bauman DE, Harvatine KJ, Lock AL. Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu Rev Nutr 2011; 31:299-319. [PMID: 21568706 DOI: 10.1146/annurev.nutr.012809.104648] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammary synthesis of milk fat continues to be an active research area, with significant advances in the regulation of lipid synthesis by bioactive fatty acids (FAs). The biohydrogenation theory established that diet-induced milk fat depression (MFD) in the dairy cow is caused by an inhibition of mammary synthesis of milk fat by specific FAs produced during ruminal biohydrogenation. The first such FA shown to affect milk fat synthesis was trans-10, cis-12 conjugated linoleic acid, and its effects have been well characterized, including dose-response relationships. During MFD, lipogenic capacity and transcription of key mammary lipogenic genes are coordinately down-regulated. Results provide strong evidence for sterol response element-binding protein-1 (SREBP1) and Spot 14 as biohydrogenation intermediate responsive lipogenic signaling pathway for ruminants and rodents. The study of MFD and its regulation by specific rumen-derived bioactive FAs represents a successful example of nutrigenomics in present-day animal nutrition research and offers several potential applications in animal agriculture.
Collapse
Affiliation(s)
- Dale E Bauman
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
12
|
Osborne V, Odongo N, Cant J, Swanson K, McBride B. Effects of supplementing glycerol and soybean oil in drinking water on feed and water intake, energy balance, and production performance of periparturient dairy cows. J Dairy Sci 2009; 92:698-707. [DOI: 10.3168/jds.2008-1554] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition. Animal 2008; 2:1850-8. [DOI: 10.1017/s1751731108003078] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
AbuGhazaleh AA, Holmes LD. Diet Supplementation with Fish Oil and Sunflower Oil to Increase Conjugated Linoleic Acid Levels in Milk Fat of Partially Grazing Dairy Cows. J Dairy Sci 2007; 90:2897-904. [PMID: 17517729 DOI: 10.3168/jds.2006-684] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine the long-term effect on milk conjugated linoleic acid (cis-9, trans-11 CLA) of adding fish oil (FO) and sunflower oil (SFO) to the diets of partially grazing dairy cows. Fourteen Holstein cows were divided into 2 groups (7 cows/treatment) and fed either a control or oil-supplemented diet for 8 wk while partially grazing pasture. Cows in group 1 were fed a grain mix diet (8.0 kg/d, DM basis) containing 400 g of saturated animal fat (control). Cows in the second group were fed the same grain mix diet except the saturated animal fat was replaced with 100 g of FO and 300 g of SFO. Cows were milked twice a day and milk samples were collected weekly throughout the trial. Both groups grazed together on alfalfa-based pasture ad libitum and were fed their treatment diets after the morning and afternoon milking. Milk production (30.0 and 31.2 kg/d), milk fat percentages (3.64 and 3.50), milk fat yield (1.08 and 1.09 kg/d), milk protein percentages (2.97 and 2.88), and milk protein yield (0.99 and 0.91 kg/d) for diets 1 and 2, respectively, were not affected by the treatment diets. The concentrations of cis-9, trans-11 CLA (1.64 vs. 0.84 g/100 g of fatty acids) and vaccenic acid (5.11 vs. 2.20 g/100 g of fatty acids) in milk fat were higher for cows fed the oil-supplemented diet over the 8 wk of oil supplementation. The concentration of cis-9, trans-11 CLA in milk fat reached a maximum (1.0 and 1.64 g/100 g of fatty acids for diets 1 and 2, respectively) in wk 1 for both diets and remained relatively constant thereafter. The concentration of vaccenic acid in milk fat followed the same temporal pattern as cis-9, trans-11 CLA. In conclusion, supplementing the diet of partially grazing cows with FO and SFO increased the milk cis-9, trans-11 CLA content, and that increase remained relatively constant after 1 wk of oil supplementation.
Collapse
Affiliation(s)
- A A AbuGhazaleh
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale 62901, USA.
| | | |
Collapse
|
15
|
Jones EL, Shingfield KJ, Kohen C, Jones AK, Lupoli B, Grandison AS, Beever DE, Williams CM, Calder PC, Yaqoob P. Chemical, Physical, and Sensory Properties of Dairy Products Enriched with Conjugated Linoleic Acid. J Dairy Sci 2005; 88:2923-37. [PMID: 16027207 DOI: 10.3168/jds.s0022-0302(05)72973-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have illustrated the effects of cis-9,trans-11 conjugated linoleic acid (CLA) on human health. Ruminant-derived meat, milk and dairy products are the predominant sources of cis-9,trans-11 CLA in the human diet. This study evaluated the processing properties, texture, storage characteristics, and organoleptic properties of UHT milk, Caerphilly cheese, and butter produced from a milk enriched to a level of cis-9,trans-11 CLA that has been shown to have biological effects in humans. Forty-nine early-lactation Holstein-British Friesian cows were fed total mixed rations containing 0 (control) or 45 g/kg (on dry matter basis) of a mixture (1:2 wt/wt) of fish oil and sunflower oil during two consecutive 7-d periods to produce a control and CLA-enhanced milk, respectively. Milk produced from cows fed the control and fish and sunflower oil diets contained 0.54 and 4.68 g of total CLA/100 g of fatty acids, respectively. Enrichment of CLA in raw milk from the fish and sunflower oil diet was also accompanied by substantial increases in trans C18:1 levels, lowered C18:0, cis-C18:1, and total saturated fatty acid concentrations, and small increases in n-3 polyunsaturated fatty acid content. The CLA-enriched milk was used for the manufacture of UHT milk, butter, and cheese. Both the CLA-enhanced butter and cheese were less firm than control products. Although the sensory profiles of the CLA-enriched milk, butter, and cheese differed from those of the control products with respect to some attributes, the overall impression and flavor did not differ. In conclusion, it is feasible to produce CLA-enriched dairy products with acceptable storage and sensory characteristics.
Collapse
Affiliation(s)
- E L Jones
- School of Food Biosciences, The University of Reading, Reading RG6 6AP, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|