1
|
Naz A, Gul F, Azam SS. Recursive dynamics of GspE through machine learning enabled identification of inhibitors. Comput Biol Chem 2024; 113:108217. [PMID: 39369611 DOI: 10.1016/j.compbiolchem.2024.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Type II secretion System has been increasingly recognized as a key driver of virulence in many pathogenic bacteria including Achromobacter xylosoxidans. ATPase GspE is the powerhouse of the T2SS. It powers the entire secretion process by binding with ATP and hydrolyzing it. Therefore, targeting it was thought to have a profound effect on the normal functioning of the whole T2SS. A. xylosoxidans is a Gram-negative bacterium that poses a rising concern to immunocompromised people. It is responsible for many opportunistic infections mostly in people with cystic fibrosis. Due to its intrinsic and acquired resistance mechanisms, it is challenging to treat. In this current study, an extensive machine learning-enabled computational investigation was carried out. Drug libraries were screened using machine learning random forest algorithm trained on non-redundant dataset of 8722 antibacterial compounds with reported IC50 values. Active compounds were then further subjected to molecular docking. To unravel the dynamics and better understand the stability of complexes, the top complexes were subjected to MD Simulations followed by various post-simulation analyses including Trajectory analysis, Atom Contacts, SASA, Hydrogen Bond, RDF, binding free energy calculations, PCA, and AFD analysis. Findings from the study unanimously unveiled Asinex-BAS00263070-28551 as the best inhibitor as it instigated the recursive dynamics of the target by making key hydrogen bond interactions with Walker A motif, suggesting it could serve as the promising drug candidate against GspE. Further experimental in-vivo and in-vitro validation is still required to authenticate the therapeutic effects of these drugs.
Collapse
Affiliation(s)
- Aliza Naz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Fouzia Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
2
|
Bosák J, Hrala M, Micenková L, Šmajs D. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther 2020; 19:309-322. [PMID: 32856960 DOI: 10.1080/14787210.2020.1816824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The emergence and spread of antibiotic resistance among pathogenic bacteria drives the search for alternative antimicrobial therapies. Bacteriocins represent a potential alternative to antibiotic treatment. In contrast to antibiotics, bacteriocins are peptides or proteins that have relatively narrow spectra of antibacterial activities and are produced by a wide range of bacterial species. Bacteriocins of Escherichia coli are historically classified as microcins and colicins, and, until now, more than 30 different bacteriocin types have been identified and characterized. AREAS COVERED We performed bibliographical searches of online databases to review the literature regarding bacteriocins produced by E. coli with respect to their occurrence, bacteriocin role in bacterial colonization and pathogenicity, and application of their antimicrobial effect. EXPERT OPINION The potential use of bacteriocins for applications in human and animal medicine and the food industry includes (i) the use of bacteriocin-producing probiotic strains, (ii) recombinant production in plants and application in food, and (iii) application of purified bacteriocins.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Villa TG, Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, de Miguel-Bouzas T. Fecal Matter Implantation as a Way to Fight Diarrhea-Causing Microorganisms. NEW WEAPONS TO CONTROL BACTERIAL GROWTH 2016:315-352. [DOI: 10.1007/978-3-319-28368-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Lu C, Korotkov KV, Hol WGJ. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J Struct Biol 2014; 187:223-235. [PMID: 25092625 DOI: 10.1016/j.jsb.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/15/2022]
Abstract
The type II secretion system (T2SS) is present in many Gram-negative bacteria and is responsible for secreting a large number of folded proteins, including major virulence factors, across the outer membrane. The T2SS consists of 11-15 different proteins most of which are present in multiple copies in the assembled secretion machinery. The ATPase GspE, essential for the functioning of the T2SS, contains three domains (N1E, N2E and CTE) of which the N1E domain is associated with the cytoplasmic domain of the inner membrane protein GspL. Here we describe and analyze the structure of the GspE•cyto-GspL complex from Vibrio vulnificus in the presence of an ATP analog, AMPPNP. There are three such ∼83 kDa complexes per asymmetric unit with essentially the same structure. The N2E and CTE domains of a single V. vulnificus GspE subunit adopt a mutual orientation that has not been seen before in any of the previous GspE structures, neither in structures of related ATPases from other secretion systems. This underlines the tremendous conformational flexibility of the T2SS secretion ATPase. Cyto-GspL interacts not only with the N1E domain, but also with the CTE domain and is even in contact with AMPPNP. Moreover, the cyto-GspL domains engage in two types of mutual interactions, resulting in two essentially identical, but crystallographically independent, "cyto-GspL rods" that run throughout the crystal. Very similar rods are present in previous crystals of cyto-GspL and of the N1E•cyto-GspL complex. This arrangement, now seen four times in three entirely different crystal forms, involves contacts between highly conserved residues suggesting a role in the biogenesis or the secretion mechanism or both of the T2SS.
Collapse
Affiliation(s)
- Connie Lu
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA 98195, United States
| | - Konstantin V Korotkov
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA 98195, United States
| | - Wim G J Hol
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
5
|
Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. THE LANCET. INFECTIOUS DISEASES 2013; 13:889-99. [PMID: 24070562 DOI: 10.1016/s1473-3099(13)70179-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotics and probiotics are widely used as growth promoters in agriculture. Most antibiotics prescribed in clinical practice are natural products that originate from Streptomyces spp, which were first used as agricultural probiotics. Antibiotics and probiotics both modify the gut microbiota. The effect of a probiotic species on the digestive flora depends on the strain and is largely determined by bacteriocin production. In human beings, as in animals, specific probiotics are associated with weight gain or loss. Improved understanding of the ability of specific probiotics to harvest energy from the host diet might lead to development of new treatments for obesity and malnutrition. In this Review, we present the effects of probiotics and antibiotics on the gut microbiota of human beings and animals and discuss their potential therapeutic use as interventions for weight gain and loss in human beings.
Collapse
Affiliation(s)
- Emmanouil Angelakis
- Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
6
|
Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 2012; 78:4065-73. [PMID: 22504816 DOI: 10.1128/aem.00217-12] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In 2011, Germany experienced the largest outbreak with a Shiga toxin-producing Escherichia coli (STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregative E. coli (EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagic E. coli (EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment.
Collapse
|
7
|
Budič M, Rijavec M, Petkovšek Ž, Žgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One 2011; 6:e28769. [PMID: 22205967 PMCID: PMC3242755 DOI: 10.1371/journal.pone.0028769] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/15/2011] [Indexed: 11/23/2022] Open
Abstract
Bacteriocins are antimicrobial peptides generally active against bacteria closely related to the producer. Escherichia coli produces two types of bacteriocins, colicins and microcins. The in vitro efficacy of isolated colicins E1, E6, E7, K and M, was assessed against Escherichia coli strains from patients with bacteraemia of urinary tract origin. Colicin E7 was most effective, as only 13% of the tested strains were resistant. On the other hand, 32%, 33%, 43% and 53% of the tested strains exhibited resistance to colicins E6, K, M and E1. Moreover, the inhibitory activity of individual colicins E1, E6, E7, K and M and combinations of colicins K, M, E7 and E1, E6, E7, K, M were followed in liquid broth for 24 hours. Resistance against individual colicins developed after 9 hours of treatment. On the contrary, resistance development against the combined action of 5 colicins was not observed. One hundred and five E. coli strains from patients with bacteraemia were screened by PCR for the presence of 5 colicins and 7 microcins. Sixty-six percent of the strains encoded at least one bacteriocin, 43% one or more colicins, and 54% one or more microcins. Microcins were found to co-occur with toxins, siderophores, adhesins and with the Toll/Interleukin-1 receptor domain-containing protein involved in suppression of innate immunity, and were significantly more prevalent among strains from non-immunocompromised patients. In addition, microcins were highly prevalent among non-multidrug-resistant strains compared to multidrug-resistant strains. Our results indicate that microcins contribute to virulence of E. coli instigating bacteraemia of urinary tract origin.
Collapse
Affiliation(s)
- Maruška Budič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Rijavec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Petkovšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Darja Žgur-Bertok
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
8
|
Abstract
It is probable that nearly every natural product structure results from interactions between organisms. Symbiosis, a subset of inter-organism interactions involving closely associated partners, has recently provided new and interesting experimental systems for the study of these interactions. This review discusses new observations about natural product function and structural evolution that emerge from the study of symbiotic systems. In particular, these advances directly address long-standing 'how' and 'why' questions about natural products, providing fundamental insights about the evolution, origin and purpose of natural products that are inaccessible by other methods.
Collapse
Affiliation(s)
- Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
9
|
Momose Y, Hirayama K, Itoh K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie Van Leeuwenhoek 2008; 94:165-71. [PMID: 18247153 DOI: 10.1007/s10482-008-9222-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
Previously, we produced two groups of gnotobiotic mice, GB-3 and GB-4, which showed different responses to Escherichia coli O157:H7 challenge. E. coli O157:H7 was eliminated from GB-3, whereas GB-4 mice became carriers. It has been reported that the lag time of E. coli O157:H7 growth in 50% GB-3 caecal suspension was extended when compared to GB-4 caecal suspension. In this study, competition for nutrients between intestinal microbiota of GB-3 and GB-4 mice and E. coli O157:H7 was examined. Amino acid concentrations in the caecal contents of GB-3 and GB-4 differed, especially the concentration of proline. The supplementation of proline into GB-3 caecal suspension decreased the lag time of E. coli O157:H7 growth in vitro. When E. coli O157:H7 was cultured with each of the strains used to produce GB-3 mice in vitro, 2 strains of E. coli (proline consumers) out of 5 enterobacteriaceae strains strongly suppressed E. coli O157:H7 growth and the suppression was attenuated by the addition of proline into the medium. These results indicate that competition for proline with indigenous E. coli affected the growth of E. coli O157:H7 in vivo and may contribute to E. coli O157:H7 elimination from the intestine.
Collapse
Affiliation(s)
- Yoshika Momose
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
10
|
Enhancement of Shiga toxin production in enterohemorrhagic Escherichia coli serotype O157:H7 by DNase colicins. Appl Environ Microbiol 2007; 73:7582-8. [PMID: 17933918 DOI: 10.1128/aem.01326-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Colicins are proteins produced by and active against several strains of Escherichia coli. Previously we reported that colicinogenic bacteria seemed beneficial in preventing the clinical manifestations of infectious disease caused by enterohemorrhagic E. coli O157 in humans. The inhibitory effects could be due to a decrease in O157 levels and/or pathogenicity. This study investigated the effects of colicinogenic E. coli on the production of Shiga toxin (Stx) by O157. Standard strains of colicinogenic bacteria carrying plasmids for each type of colicin (E3/5/8/9) were used for the study. The O157 strains were cultured in the presence of colicinogenic bacteria or extracted colicins. Compared with results for controls, DNase colicins (E8/9) facilitated an 8- to 64-fold increase in production of Stx2, while RNase colicins (E3/5) suppressed Stx production in only two strains. Stx prophages were induced in synchrony with Stx production. Semiquantitative real-time reverse transcription-PCR (RT-PCR) was then performed to examine SOS gene expression. The RT-PCR results clearly indicated a marked increase in mRNA levels of SOS reaction-associated genes after the addition of DNase colicins. We believe that Stx prophages are induced by the SOS response to DNA damage caused by DNase colicins, thus leading to higher Stx production. These findings suggest that while colicinogenic bacteria can be antagonistic to O157 infection, DNase colicins may enhance Stx production. Thus, colicinogenic flora is likely to be involved in the complex pathogenic pathways of O157 infection, and further investigation should be performed before the use of colicinogenic bacteria as an intervention method.
Collapse
|