1
|
Engda T, Tessema B, Mesifin N, Nuru A, Belachew T, Moges F. Shiga toxin-producing Escherichia coli O157:H7 among diarrheic patients and their cattle in Amhara National Regional State, Ethiopia. PLoS One 2023; 18:e0295266. [PMID: 38127993 PMCID: PMC10734908 DOI: 10.1371/journal.pone.0295266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli O157:H7 (STEC O157:H7) is a zoonotic pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome worldwide. This study aimed to determine the prevalence, antibiotic susceptibility, and associated risk factors of STEC O157:H7 among diarrheic patients and their cattle. METHODS A cross-sectional study was conducted among diarrheic patients and their cattle in Amhara National Regional State, Ethiopia from December- 2020 to June- 2022. A total of 1,149 diarrheic patients and 229 cattle were included in the study. STEC O157:H7 detection was done using culture, latex agglutination test, and polymerase chain reaction on diarrheic stool samples and recto-anal mucosal swabs of cattle. Antibiotic susceptibility tests were performed using disk diffusion techniques. Risk factors association were identified using binary and multivariable logistic regression analysis. RESULTS The overall prevalence of STEC O157:H7 in diarrheic patients and their cattle was 11.1% (128/1149) and 14.4% (33/229) respectively. High percentage of the study subjects were found in under-five children (34.5%). Age less than 5 (AOR: 4.02, 95%CI:1.608-10.058,P = 0.003), and greater than 64 years old (AOR:3.36, 95% CI:1.254-8.986, P = 0.016), presence of diarrheic patient in the house (AOR:2.11, 95%CI:1.309-3.390, P = 0.002), availability of cattle in the house (AOR:2.52, 95%CI:1.261-5.049, P = 0.009), and habit of consuming raw foods (AOR:4.35, 95%CI:2.645-7.148, P = 0.000) were risk factors. Antibiotic resistance was shown in 109(85.2%), and 31(93.9%) isolates from diarrheic patients and their cattle respectively. The highest levels of antibiotic resistance were found to tetracycline (54.7%, 69.7%) in diarrheic patients and their cattle respectively. Multiple drug resistance was also observed among 56(43.8%) and 11(33.3%) isolates in diarrheic patients and their cattle respectively. CONCLUSION Our study showed high prevalence of STEC O157:H7 in diarrheic patients and their cattle. Therefore, health education should be given to the community on how to care for animals, proper sanitation, and the impact of raw food consumption.
Collapse
Affiliation(s)
- Tigist Engda
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belay Tessema
- Faculty of Medicine, Institute of Medical Microbiology and Virology, University of Leipzig, Leipzig, Germany
| | - Nebiyu Mesifin
- Department of Internal Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Anwar Nuru
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshome Belachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
|
3
|
Shahzad A, Ullah F, Irshad H, Ahmed S, Shakeela Q, Mian AH. Molecular detection of Shiga toxin-producing Escherichia coli (STEC) O157 in sheep, goats, cows and buffaloes. Mol Biol Rep 2021; 48:6113-6121. [PMID: 34374895 DOI: 10.1007/s11033-021-06631-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) are important foodborne pathogens that causing serious public health consequences worldwide. The present study aimed to estimate the prevalence ratio and to identify the zoonotic potential of E. coli O157 isolates in slaughtered adult sheep, goats, cows and buffaloes. MATERIALS AND METHODS A total of 400 Recto-anal samples were collected from two targeted sites Rawalpindi and Islamabad. Among them, 200 samples were collected from the slaughterhouse of Rawalpindi included sheep (n = 75) and goats (n = 125). While, 200 samples were collected from the slaughterhouse of Islamabad included cows (n = 120) and buffalos (n = 80). All samples were initially processed in buffered peptone water and then amplified by conventional PCR. Samples positive for E. coli O157 were then streaked onto SMAC media plates. From each positive sample, six different Sorbitol fermented pink-colored colonies were isolated and analyzed again via conventional PCR to confirm the presence of rfbE O157 gene. Isolates positive for rfbE O157 gene were then further analyzed by multiplex PCR for the presence of STEC other virulent genes (sxt1, stx2, eae and ehlyA) simultaneously. RESULTS Of 400 RAJ samples only 2 (0.5%) showed positive results for E. coli O157 gene, included sheep 1/75 (1.33%) and buffalo 1/80 (1.25%). However, goats (n = 125) and cows (n = 120) found negative for E. coli O157. Only 2 isolates from each positive sample of sheep (1/6) and buffalo (1/6) harbored rfbE O157 genes, while five isolates could not. The rfbE O157 isolate (01) of sheep sample did not carry any of STEC genes, while the rfbE O157 isolate (01) of buffalo sample carried sxt1, stx2, eae and ehlyA genes simultaneously. CONCLUSION It was concluded that healthy adult sheep and buffalo are possibly essential carriers of STEC O157. However, rfbE O157 isolate of buffalo RAJ sample carried 4 STEC virulent genes, hence considered an important source of STEC infection to humans and environment which should need to devise proper control systems.
Collapse
Affiliation(s)
- Asim Shahzad
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan
| | - Fahim Ullah
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan
| | - Hamid Irshad
- Animal Health Program, Animal Sciences Institute, National Agricultural Research Centre (NARC), Park Road, Islamabad, 44000, Pakistan
| | - Shehzad Ahmed
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan.
| | - Qismat Shakeela
- Department of Microbiology, Abbottabad University of Science & Technology, Havelian, 22010, Pakistan
| | - Abrar Hussain Mian
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan.
| |
Collapse
|
4
|
McCarthy SC, Burgess CM, Fanning S, Duffy G. An Overview of Shiga-Toxin Producing Escherichia coli Carriage and Prevalence in the Ovine Meat Production Chain. Foodborne Pathog Dis 2021; 18:147-168. [PMID: 33395551 DOI: 10.1089/fpd.2020.2861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) are zoonotic foodborne pathogens that are capable of causing serious human illness. Ovine ruminants are recognized as an important source of STEC and a notable contributor to contamination within the food industry. This review examined the prevalence of STEC in the ovine food production chain from farm-to-fork, reporting carriage in sheep herds, during abattoir processing, and in raw and ready-to-eat meats and meat products. Factors affecting the prevalence of STEC, including seasonality and animal age, were also examined. A relative prevalence can be obtained by calculating the mean prevalence observed over multiple surveys, weighted by sample number. A relative mean prevalence was obtained for STEC O157 and all STEC serogroups at multiple points along the ovine production chain by using suitable published surveys. A relative mean prevalence (and range) for STEC O157 was calculated: for feces 4.4% (0.2-28.1%), fleece 7.6% (0.8-12.8%), carcass 2.1% (0.2-9.8%), and raw ovine meat 1.9% (0.2-6.3%). For all STEC independent of serotype, a relative mean prevalence was calculated: for feces 33.3% (0.9-90.0%), carcass 58.7% (2.0-81.6%), and raw ovine meat 15.4% (2.7-35.5%). The prevalence of STEC in ovine fleece was reported in only one earlier survey, which recorded a prevalence of 86.2%. Animal age was reported to affect shedding in many surveys, with younger animals typically reported as having a higher prevalence of the pathogen. The prevalence of STEC decreases significantly along the ovine production chain after the application of postharvest interventions. Ovine products pose a small risk of potential STEC contamination to the food supply chain.
Collapse
Affiliation(s)
- Siobhán C McCarthy
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Geraldine Duffy
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
5
|
Barth SA, Bauerfeind R, Berens C, Menge C. Shiga Toxin-Producing E. coli in Animals: Detection, Characterization, and Virulence Assessment. Methods Mol Biol 2021; 2291:19-86. [PMID: 33704748 DOI: 10.1007/978-1-0716-1339-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cattle and other ruminants are primary reservoirs for Shiga toxin-producing Escherichia coli (STEC) strains which have a highly variable, but unpredictable, pathogenic potential for humans. Domestic swine can carry and shed STEC, but only STEC strains producing the Shiga toxin (Stx) 2e variant and causing edema disease in piglets are considered pathogens of veterinary medical interest. In this chapter, we present general diagnostic workflows for sampling livestock animals to assess STEC prevalence, magnitude, and duration of host colonization. This is followed by detailed method protocols for STEC detection and typing at genetic and phenotypic levels to assess the relative virulence exerted by the strains.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Gießen, Gießen, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany.
| |
Collapse
|
6
|
Abreham S, Teklu A, Cox E, Sisay Tessema T. Escherichia coli O157:H7: distribution, molecular characterization, antimicrobial resistance patterns and source of contamination of sheep and goat carcasses at an export abattoir, Mojdo, Ethiopia. BMC Microbiol 2019; 19:215. [PMID: 31510932 PMCID: PMC6740007 DOI: 10.1186/s12866-019-1590-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cattle have been identified as a major reservoir of E. coli O157:H7 for human infection; the ecology of the organism in sheep and goats is less understood. This study was carried out to determine prevalence, source of infection, antibiotic resistance and molecular characterization of Escherichia coli O157: H7 isolated from sheep and goat. METHODS Systematic random sampling was carried out at Modjo export abattoir, Ethiopia, from November 2012 to April 2013 to collect 408 samples from 72 sheep and 32 goats. Samples collected were skin swabs, fecal samples, intestinal mucosal swabs and the inside and outside part of carcasses as well as carcass in contacts such as workers hands, knife, hook and carcass washing water. Then, samples were processed following standard bacteriological procedures. Non-Sorbitol fermenting colonies were tested on latex agglutination test and the positives are subjected to PCR for detection of attaching and effacing genes (eaeA) and shiga toxin producing genes (stx1 and stx2). All E. coli O157:H7 isolates were checked for their susceptibility pattern towards 15 selected antibiotics. RESULTS E. coli O157:H7 were detected in only 20/408 samples (4.9%). Among these 20 positive samples, 70% (14/20), 25% (5/20) and 5% (1/20) were from sheep, goats and knife samples, respectively. No significant associations were found between carcasses and the assumed sources of contaminations. Of all the 20 isolates virulence genes were found in 10 (50%) of them; 3 (15%) with only the eaeA gene and 7(35%) expressing eaeA and stx2 genes. All the isolates were susceptible to Norfloxacin (NOR) (100%). CONCLUSIONS The presence of virulence genes shows E. coli O157:H7 is a potential source of human infection in Ethiopia.
Collapse
Affiliation(s)
- Solomon Abreham
- Veterinary Drug and Feed Administration and Control Authority of Ethiopia (VDFACA), Veterinary drug registration, certification and administration directorate director, Addis Ababa, Ethiopia
| | - Akafete Teklu
- Department of Microbiology, Immunology & Veterinary Public Health, College of Veterinary Medicine and Agriculture, Debre Zeit/ Bishoftu, Ethiopia
| | - Eric Cox
- Faculty of Veterinary Medicine, Gent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | | |
Collapse
|
7
|
Macori G, McCarthy SC, Burgess CM, Fanning S, Duffy G. A quantitative real time PCR assay to detect and enumerate Escherichia coli O157 and O26 serogroups in sheep recto-anal swabs. J Microbiol Methods 2019; 165:105703. [PMID: 31454506 DOI: 10.1016/j.mimet.2019.105703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
Abstract
A quantitative PCR method is described for the detection and quantification of E. coli O157 and O26 in sheep recto-anal junction swabs. The method incorporated a short enrichment step (5 h) and the use of a developed standard calibration curve relating the real time PCR cycle threshold (Ct) values to the initial concentration of pathogen in the sheep sample.
Collapse
Affiliation(s)
| | - Siobhán C McCarthy
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | | |
Collapse
|
8
|
Schlager S, Lepuschitz S, Ruppitsch W, Ableitner O, Pietzka A, Neubauer S, Stöger A, Lassnig H, Mikula C, Springer B, Allerberger F. Petting zoos as sources of Shiga toxin-producing Escherichia coli (STEC) infections. Int J Med Microbiol 2018; 308:927-932. [PMID: 30257809 DOI: 10.1016/j.ijmm.2018.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/31/2022] Open
Abstract
Despite their general low incidence, Shiga toxin-producing Escherichia (E.) coli (STEC) infections are considered an important public health issue due to the severity of illness that can develop, particularly in young children. We report on two Austrian petting zoos, one in Tyrol (2015) and one in Vorarlberg (2016), which were identified as highly likely infection sources of STEC infections. The petting zoo related cases involved a case of hemolytic uremic syndrome (HUS) due to STEC O157:HNM in 2015 and an outbreak of STEC O157:H7 infections affecting five young children and two adults in 2016. The HUS case accounted for 2.8% of the 36 STEC O157:HNM/H7 infections notified in Austria in 2015 (5,9% of 17 HUS cases). The seven cases described for 2016 accounted for 4.0% of the 177 human STEC infections documented for Austria in 2016, and for 19.4% of the 36 STEC O157:HNM/H7 infections notified that year. The evaluation of the STEC infections described here clearly underlines the potential of sequence-based typing methods to offer suitable resolutions for public health applications. Furthermore, we give a state-of-the-art mini-review on the risks of petting zoos concerning exposure to the zoonotic hazard STEC and on proper measures of risk-prevention.
Collapse
Affiliation(s)
- Sabine Schlager
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Sarah Lepuschitz
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Werner Ruppitsch
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Oksana Ableitner
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Ariane Pietzka
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Sabine Neubauer
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Anna Stöger
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Heimo Lassnig
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Claudia Mikula
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Burkhard Springer
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria
| | - Franz Allerberger
- National Reference Centre for Escherichia coli including Verotoxin producing E. coli, Austrian Agency for Health and Food Safety (AGES), Beethovenstraße 6, A-8010 Graz, Austria.
| |
Collapse
|
9
|
Paquette SJ, Stanford K, Thomas J, Reuter T. Quantitative surveillance of shiga toxins 1 and 2, Escherichia coli O178 and O157 in feces of western-Canadian slaughter cattle enumerated by droplet digital PCR with a focus on seasonality and slaughterhouse location. PLoS One 2018; 13:e0195880. [PMID: 29649278 PMCID: PMC5897018 DOI: 10.1371/journal.pone.0195880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 01/06/2023] Open
Abstract
Often Escherichia coli are harmless and/or beneficial bacteria inhabiting the gastrointestinal tract of livestock and humans. However, Shiga toxin-producing E. coli (STEC) have been linked to human disease. Cattle are the primary reservoir for STEC and STEC “super-shedders” are considered to be a major contributor in animal to animal transmission. Among STEC, O157:H7 is the most recognized serotype, but in recent years, non-O157 STEC have been increasingly linked to human disease. In Argentina and Germany, O178 is considered an emerging pathogen. Our objective was to compare populations of E. coli O178, O157, shiga toxin 1 and 2 in western Canadian cattle feces from a sampling pool of ~80,000 beef cattle collected at two slaughterhouses. Conventional PCR was utilized to screen 1,773 samples for presence/absence of E. coli O178. A subset of samples (n = 168) was enumerated using droplet digital PCR (ddPCR) and proportions of O178, O157 and shiga toxins 1 & 2 specific-fragments were calculated as a proportion of generic E. coli (GEC) specific-fragments. Distribution of stx1 and stx2 was determined by comparing stx1, stx2 and O157 enumerations. Conventional PCR detected the presence of O178 in 873 of 1,773 samples and ddPCR found the average proportion of O178, O157, stx1 and stx2 in the samples 2.8%, 0.6%, 1.4% and 0.5%, respectively. Quantification of stx1 and stx2 revealed more virulence genes than could be exclusively attributed to O157. Our results confirmed the presence of E. coli O178 in western Canadian cattle and ddPCR revealed O178 as a greater proportion of GEC than was O157. Our results suggests: I) O178 may be an emerging subgroup in Canada and II) monitoring virulence genes may be a more relevant target for food-safety STEC surveillance compared to current serogroup screening.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - James Thomas
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
10
|
Presence of Salmonella and Escherichia coli O157 on the hide, and presence of Salmonella, Escherichia coli O157 and Campylobacter in feces from small-ruminant (goat and lamb) samples collected in the United States, Bahamas and Mexico. Meat Sci 2018; 135:1-5. [DOI: 10.1016/j.meatsci.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 11/18/2022]
|
11
|
Conrad CC, Stanford K, Narvaez-Bravo C, Callaway T, McAllister T. Farm Fairs and Petting Zoos: A Review of Animal Contact as a Source of Zoonotic Enteric Disease. Foodborne Pathog Dis 2017; 14:59-73. [DOI: 10.1089/fpd.2016.2185] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Cheyenne C. Conrad
- Lethbridge Agricultural Research Centre, Lethbridge, Alberta, Canada
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- Canadian Association of Fairs and Exhibitions, Brandon, Manitoba, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | | | - Todd Callaway
- United States Department of Agriculture, Agricultural Research Service, College Station, Texas
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| |
Collapse
|
12
|
Kamel M, El-Hassan DGA, El-Sayed A. Epidemiological studies on Escherichia coli O157:H7 in Egyptian sheep. Trop Anim Health Prod 2015; 47:1161-7. [DOI: 10.1007/s11250-015-0843-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
|