1
|
Yoder EB, Parker E, Frédérich B, Tew A, Jones CD, Dornburg A. Multiple Pathways of Visual Adaptations for Water Column Usage in an Antarctic Adaptive Radiation. Ecol Evol 2025; 15:e70867. [PMID: 40065920 PMCID: PMC11890982 DOI: 10.1002/ece3.70867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 03/26/2025] Open
Abstract
Evolutionary transitions in water column usage have played a major role in shaping ray-finned fish diversity. However, the extent to which vision-associated trait complexity and water column usage is coupled remains unclear. Here we investigated the relationship between depth niche, eye size, and the molecular basis of light detection across the Antarctic notothenioid adaptive radiation. Integrating a phylogenetic comparative framework with data on eye size and depth occupancy, we provide support for an acceleration in the rate of eye size diversification nearly 20 million years after the initial radiation. Our results further reveal that levels of eye size divergence are often highest between closely related taxa. We further analyzed opsin tuning site sequences and found changes representing repeated instances of independent tuning site changes across the notothenioid phylogeny that are generally not associated with habitat depth or species eye size. Collectively, our results strongly support that multiple evolutionary pathways underlie the diversification of visual adaptations in this iconic adaptive radiation.
Collapse
Affiliation(s)
- Ella B. Yoder
- Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
- Research Triangle High SchoolDurhamNorth CarolinaUSA
| | - Elyse Parker
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
| | - Bruno Frédérich
- Laboratory of Evolutionary Ecology, FOCUSUniversity of LiègeLiègeBelgium
| | - Alexandra Tew
- Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Christopher D. Jones
- Ecosystem Science DivisionNOAA Southwest Fisheries Science CenterLa JollaCaliforniaUSA
| | - Alex Dornburg
- Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| |
Collapse
|
2
|
Tasnim M, Wahlquist P, Hill JT. Zebrafish: unraveling genetic complexity through duplicated genes. Dev Genes Evol 2024; 234:99-116. [PMID: 39079985 PMCID: PMC11612004 DOI: 10.1007/s00427-024-00720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 12/06/2024]
Abstract
The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.
Collapse
Affiliation(s)
- Maliha Tasnim
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Preston Wahlquist
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
| |
Collapse
|
3
|
Fujiyabu C, Sato K, Ohuchi H, Yamashita T. Diversification processes of teleost intron-less opsin genes. J Biol Chem 2023:104899. [PMID: 37295773 PMCID: PMC10339062 DOI: 10.1016/j.jbc.2023.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Opsins are universal photosensitive proteins in animals. Vertebrates have a variety of opsin genes for visual and non-visual photoreceptions. Analysis of the gene structures shows that most opsin genes have introns in their coding regions. However, teleosts exceptionally have several intron-less opsin genes which are presumed to have been duplicated by an RNA-based gene duplication mechanism, retroduplication. Among these retrogenes, we focused on the Opn4 (melanopsin) gene responsible for non-image-forming photoreception. Many teleosts have five Opn4 genes including one intron-less gene, which is speculated to have been formed from a parental intron-containing gene in the Actinopterygii. In this study, to reveal the evolutionary history of Opn4 genes, we analyzed them in teleost (zebrafish and medaka) and non-teleost (bichir, sturgeon and gar) fishes. Our synteny analysis suggests that the intron-less Opn4 gene emerged by retroduplication after branching of the bichir lineage. In addition, our biochemical and histochemical analyses showed that, in the teleost lineage, the newly acquired intron-less Opn4 gene became abundantly used without substantial changes of the molecular properties of the Opn4 protein. This stepwise evolutionary model of Opn4 genes is quite similar to that of rhodopsin genes in the Actinopterygii. The unique acquisition of rhodopsin and Opn4 retrogenes would have contributed to the diversification of the opsin gene repertoires in the Actinopterygii and the adaptation of teleosts to various aquatic environments.
Collapse
Affiliation(s)
- Chihiro Fujiyabu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Tang SL, Liang XF, Li L, Wu J, Lu K. Genome-wide identification and expression patterns of opsin genes during larval development in Chinese perch (Siniperca chuatsi). Gene X 2022; 825:146434. [PMID: 35304240 DOI: 10.1016/j.gene.2022.146434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vision is important for fish to forage food and fishes express opsin genes to receive visual signals. Chinese perch (Siniperca chuatsi) larvae prey on other fish species larvae at firstfeeding but donoteat any zooplankton, the expression of opsin genes in S. chuatsilarvae is unknown. In this study, we conducted a whole-genome analysis and demonstrated that S. chuatsihave5cone opsin genes (sws1, sws2Aα, sws2Aβ, rh2and lws)and 2 rod opsin genes (rh1and rh1-exorh). The syntenicanalysisshowedthe flanking genes ofall opsin genes were conserved during fish evolution, but the ancestorof S. chuatsimightlost some opsin gene copies duringtheevolution.The phylogeneticanalysisshowed sws1of S. chuatsiwas closest to those of Lates calcariferwhich had a truncated sws1gene; the sws2Aα, sws2Aβ,lws,rh2,rh1 andrh1-exorh of S. chuatsihad a closer relationship with those of Percomorpha fishes.Importantly, results of in situhybridization showed the sws1 opsingene,which is related to forage zooplankton,had extremely low levelexpression in retinaat early stages.Surprisingly, the rh2 opsin gene had a high level expression at firstfeeding stage. The sws2Aα, sws2Aβand lwshad a little expression at early stages but the lwsshowed a increasing trend with larval development, rh1 opsin gene expression appeared at15 dph. In thisstudy, we found a specialpattern of visual opsin genes expression in S. chuatsi, it might influence the larval first feeding and feeding habit.
Collapse
Affiliation(s)
- Shu-Lin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
5
|
Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135768] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro- and nano-plastic (MP/NP) pollution represents a threat not only to marine organisms and ecosystems, but also a danger for humans. The effects of these small particles resulting from the fragmentation of waste of various types have been well documented in mammals, although the consequences of acute and chronic exposure are not fully known yet. In this review, we summarize the recent results related to effects of MPs/NPs in different species of fish, both saltwater and freshwater, including zebrafish, used as model organisms for the evaluation of human health risk posed by MNPs. The expectation is that discoveries made in the model will provide insight regarding the risks of plastic particle toxicity to human health, with a focus on the effect of long-term exposure at different levels of biological complexity in various tissues and organs, including the brain. The current scientific evidence shows that plastic particle toxicity depends not only on factors such as particle size, concentration, exposure time, shape, and polymer type, but also on co-factors, which make the issue extremely complex. We describe and discuss the possible entry pathways of these particles into the fish body, as well as their uptake mechanisms and bioaccumulation in different organs and the role of blood response (hematochemical and hematological parameters) as biomarkers of micro- and nano-plastic water pollution.
Collapse
|
6
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
7
|
Oel AP, Neil GJ, Dong EM, Balay SD, Collett K, Allison WT. Nrl Is Dispensable for Specification of Rod Photoreceptors in Adult Zebrafish Despite Its Deeply Conserved Requirement Earlier in Ontogeny. iScience 2020; 23:101805. [PMID: 33299975 PMCID: PMC7702016 DOI: 10.1016/j.isci.2020.101805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor NRL (neural retina leucine zipper) has been canonized as the master regulator of photoreceptor cell fate in the retina. NRL is necessary and sufficient to specify rod cell fate and to preclude cone cell fate in mice. By engineering zebrafish, we tested if NRL function has conserved roles beyond mammals or beyond nocturnal species, i.e., in a vertebrate possessing a greater and more typical diversity of cone sub-types. Transgenic expression of Nrl from zebrafish or mouse was sufficient to induce rod photoreceptor cells. Zebrafish nrl−/− mutants lacked rods (and had excess UV-sensitive cones) as young larvae; thus, the conservation of Nrl function between mice and zebrafish appears sound. Strikingly, however, rods were abundant in adult nrl−/− null mutant zebrafish. Rods developed in adults despite Nrl protein being undetectable. Therefore, a yet-to-be-revealed non-canonical pathway independent of Nrl is able to specify the fate of some rod photoreceptors. Nrl is conserved and sufficient to specify rod photoreceptors in the zebrafish retina Nrl is necessary for rod photoreceptors in early ontogeny of zebrafish larvae Zebrafish Nrl is functionally conserved with mouse and human NRL Remarkably, Nrl is dispensable for rod specification in adult zebrafish
Collapse
Affiliation(s)
- A Phillip Oel
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Gavin J Neil
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Emily M Dong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Spencer D Balay
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Keon Collett
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada.,Department of Medical Genetics, University of Alberta, Edmonton AB, T6G 2R3, Canada
| |
Collapse
|
8
|
Escobar-Camacho D, Carleton KL, Narain DW, Pierotti MER. Visual pigment evolution in Characiformes: The dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning. Mol Ecol 2020; 29:2234-2253. [PMID: 32421918 DOI: 10.1111/mec.15474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/06/2023]
Abstract
Vision represents an excellent model for studying adaptation, given the genotype-to-phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1 /A2 -chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS- and RH1-duplicates originated from a teleost specific whole-genome duplication as well as characiform-specific duplication events. Both LWS-opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS-paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS-paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1 /A2 -chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.
Collapse
Affiliation(s)
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Devika W Narain
- Environmental Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Michele E R Pierotti
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
9
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
10
|
Liu Y, Zhang W, Du X, Liu Y, Qu J, Liu X, Liu J, Zhang Q. Genome-wide identification of nonvisual opsin family reveals amplification of RPE-retinal G protein receptor gene (RGR) and offers novel insights into functions of RGR(s) in Paralichthys olivaceus (Paralichthyidae, Teleostei). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:25-36. [PMID: 31743605 DOI: 10.1002/jez.b.22914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Opsins play important roles in the image-forming visual pathways and numerous biological systems such as the biological clock and circadian rhythm. However, the nonvisual opsins involved in nonimage forming process are not clear to date. The aim of this study was to characterize nonvisual opsins in Paralichthys olivaceus. A total of 24 nonvisual opsin genes were identified. Expressions of these genes in eye, brain, heart, testis, and fin were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Testis contained a surprisingly large number of nonvisual opsins including Opn4m2, Tmt2a, Tmt3b, Opn3, RRH, Opn7a, and Opn7b. Syntenic and phylogenetic analyses confirmed that the RGRa and RGRb originated from the teleost-specific genome duplication (TSGD). qRT-PCR results demonstrated high RGRa and RGRb expression in the eye, while the expression levels in the brain, heart, testis, and fin were relatively weak. In situ hybridization results presented here revealed the presence of both RGRa and RGRb mRNA-positive signals in the ganglion cell layer but absence in the intracellular compartment of retinal pigment epithelium (RPE) and Müller glial cells. Therefore, we hypothesized that RGRa and RGRb had undergone subfunctionalization in P. olivaceus after TSGD. In conclusion, this study provides novel insights into the evolutionary fates of the RGR genes, still, further studies need to be done to explore the mechanism about the lack of RGR genes' expression in RPE.
Collapse
Affiliation(s)
- Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Wei Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Xie X, Jin Y, Ma Z, Tang S, Peng H, Giesy JP, Liu H. Underlying mechanisms of reproductive toxicity caused by multigenerational exposure of 2, bromo-4, 6-dinitroaniline (BDNA) to Zebrafish (Danio rerio) at environmental relevant levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105285. [PMID: 31546070 DOI: 10.1016/j.aquatox.2019.105285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
2-bromo-4, 6-dinitroaniline (BDNA) is a mutagenic aromatic amine involved in the production and degradation of Disperse blue 79, one of the most extensively used brominated azo dyes. In our previous study, a multigenerational exposure of BDNA (0.5, 5, 50 and 500 μg/L) to zebrafish from F0 adult to F2 larvae including a recovery group in F2 larvae was conducted. The effects on apical points observed in individuals and the long-term effects predicted on population were all related to reproduction. In this study, we performed molecular analysis to elucidate the underlying mechanisms of the reproductive toxicity of BDNA. In F1 generation, measurement of vitellogenin and transcription levels of genes associated with hypothalamus-pituitary-gland (HPG) axis, estrogen receptor (ER) and androgen receptor (AR) were conducted. There was a decrease in VTG level in the blood of F1 female fish and transcription of genes related to ER was more affected than that of genes related to AR. These results were consistent with adverse effects that sexual differentiation was biased towards males and fecundity was impaired in a concentration-dependent manner in adults of F1 generation after 150 days exposure. In F2 generation, global gene transcriptions of F2 larvae were investigated. It was uncovered that processes related to apoptosis, development and DNA damage were strongly affected. Alterations to these biological pathways accounted for the irreversible parental influence on a significant decrease in hatchability and increase in abnormality of F2 larvae. All evidence suggested that the multigenerational exposure of BDNA posed lasting effects transmitted from parents to offspring that persisted after exposure ceased.
Collapse
Affiliation(s)
- Xianyi Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yaru Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Ontario, M5S 3H6, Canada
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SKS7N 5B3, Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Evolutionary history of teleost intron-containing and intron-less rhodopsin genes. Sci Rep 2019; 9:10653. [PMID: 31337799 PMCID: PMC6650399 DOI: 10.1038/s41598-019-47028-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/09/2019] [Indexed: 11/08/2022] Open
Abstract
Recent progress in whole genome sequencing has revealed that animals have various kinds of opsin genes for photoreception. Among them, most opsin genes have introns in their coding regions. However, it has been known for a long time that teleost retinas express intron-less rhodopsin genes, which are presumed to have been formed by retroduplication from an ancestral intron-containing rhodopsin gene. In addition, teleosts have an intron-containing rhodopsin gene (exo-rhodopsin) exclusively for pineal photoreception. In this study, to unravel the evolutionary origin of the two teleost rhodopsin genes, we analyzed the rhodopsin genes of non-teleost fishes in the Actinopterygii. The phylogenetic analysis of full-length sequences of bichir, sturgeon and gar rhodopsins revealed that retroduplication of the rhodopsin gene occurred after branching of the bichir lineage. In addition, analysis of the tissue distribution and the molecular properties of bichir, sturgeon and gar rhodopsins showed that the abundant and exclusive expression of intron-containing rhodopsin in the pineal gland and the short lifetime of its meta II intermediate, which leads to optimization for pineal photoreception, were achieved after branching of the gar lineage. Based on these results, we propose a stepwise evolutionary model of teleost intron-containing and intron-less rhodopsin genes.
Collapse
|
13
|
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, Mountford JK, Hanel R, Stenkamp DL, Jakobsen KS, Carleton KL, Jentoft S, Marshall J, Salzburger W. Vision using multiple distinct rod opsins in deep-sea fishes. Science 2019; 364:588-592. [PMID: 31073066 PMCID: PMC6628886 DOI: 10.1126/science.aav4632] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
Abstract
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fabio Cortesi
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland
| | - Wayne I L Davies
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA, Australia
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Sara M Stieb
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Center for Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Malmstrøm
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jessica K Mountford
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
| | | | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Chen JN, Samadi S, Chen WJ. Rhodopsin gene evolution in early teleost fishes. PLoS One 2018; 13:e0206918. [PMID: 30395593 PMCID: PMC6218077 DOI: 10.1371/journal.pone.0206918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/22/2018] [Indexed: 01/03/2023] Open
Abstract
Rhodopsin mediates an essential step in image capture and is tightly associated with visual adaptations of aquatic organisms, especially species that live in dim light environments (e.g., the deep sea). The rh1 gene encoding rhodopsin was formerly considered a single-copy gene in genomes of vertebrates, but increasing exceptional cases have been found in teleost fish species. The main objective of this study was to determine to what extent the visual adaptation of teleosts might have been shaped by the duplication and loss of rh1 genes. For that purpose, homologous rh1/rh1-like sequences in genomes of ray-finned fishes from a wide taxonomic range were explored using a PCR-based method, data mining of public genetic/genomic databases, and subsequent phylogenomic analyses of the retrieved sequences. We show that a second copy of the fish-specific intron-less rh1 is present in the genomes of most anguillids (Elopomorpha), Hiodon alosoides (Osteoglossomorpha), and several clupeocephalan lineages. The phylogenetic analysis and comparisons of alternative scenarios for putative events of gene duplication and loss suggested that fish rh1 was likely duplicated twice during the early evolutionary history of teleosts, with one event coinciding with the hypothesized fish-specific genome duplication and the other in the common ancestor of the Clupeocephala. After these gene duplication events, duplicated genes were maintained in several teleost lineages, whereas some were secondarily lost in specific lineages. Alternative evolutionary schemes of rh1 and comparison with previous studies of gene evolution are also reviewed.
Collapse
Affiliation(s)
- Jhen-Nien Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Sarah Samadi
- Institute de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle–CNRS, Sorbonne Université, EPHE, Paris, France
| | - Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Unal Eroglu A, Mulligan TS, Zhang L, White DT, Sengupta S, Nie C, Lu NY, Qian J, Xu L, Pei W, Burgess SM, Saxena MT, Mumm JS. Multiplexed CRISPR/Cas9 Targeting of Genes Implicated in Retinal Regeneration and Degeneration. Front Cell Dev Biol 2018; 6:88. [PMID: 30186835 PMCID: PMC6111214 DOI: 10.3389/fcell.2018.00088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/25/2018] [Indexed: 01/28/2023] Open
Abstract
Thousands of genes have been implicated in retinal regeneration, but only a few have been shown to impact the regenerative capacity of Müller glia—an adult retinal stem cell with untapped therapeutic potential. Similarly, among nearly 300 genetic loci associated with human retinal disease, the majority remain untested in animal models. To address the large-scale nature of these problems, we are applying CRISPR/Cas9-based genome modification strategies in zebrafish to target over 300 genes implicated in retinal regeneration or degeneration. Our intent is to enable large-scale reverse genetic screens by applying a multiplexed gene disruption strategy that markedly increases the efficiency of the screening process. To facilitate large-scale phenotyping, we incorporate an automated reporter quantification-based assay to identify cellular degeneration and regeneration-deficient phenotypes in transgenic fish. Multiplexed gene targeting strategies can address mismatches in scale between “big data” bioinformatics and wet lab experimental capacities, a critical shortfall limiting comprehensive functional analyses of factors implicated in ever-expanding multiomics datasets. This report details the progress we have made to date with a multiplexed CRISPR/Cas9-based gene targeting strategy and discusses how the methodologies applied can further our understanding of the genes that predispose to retinal degenerative disease and which control the regenerative capacity of retinal Müller glia cells.
Collapse
Affiliation(s)
- Arife Unal Eroglu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David T White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sumitra Sengupta
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cathy Nie
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noela Y Lu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lisha Xu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Sun C, Mitchell DM, Stenkamp DL. Isolation of photoreceptors from mature, developing, and regenerated zebrafish retinas, and of microglia/macrophages from regenerating zebrafish retinas. Exp Eye Res 2018; 177:130-144. [PMID: 30096325 DOI: 10.1016/j.exer.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
This paper describes experimental procedures for the dissociation of retinal cells of the zebrafish (Danio rerio) for subsequent fluorescence-activated cell sorting (FACS) and gene expression studies. Methods for dissociation of zebrafish retinas followed by FACS and RNA isolation were optimized. This methodology was applied to isolate pure sorted samples of rods, long wavelength-sensitive (LWS) cones, medium wavelength-sensitive (MWS; RH2-2) cones, short wavelength-sensitive (SWS2) cones, and UV-sensitive (SWS1) cones from retinas obtained at selective life-history stages of the zebrafish, and for some of these photoreceptors, following retinal regeneration. We also successfully separated lws1-expressing and lws2-expressing LWS cones from fish of a transgenic line in which lws1 is reported with green fluorescence protein (GFP) and lws2 is reported with red fluorescence protein (RFP). Microglia/macrophages were successfully sorted from regenerating retinas (7 days after a cytotoxic lesion) of a transgenic line in which these immune cells express GFP. Electropherograms verified downstream isolation of high-quality RNA from sorted samples. Examples of post-sorting analysis, as well as results of qRT-PCR studies, validated the purity of sorted populations. For example, qRT-PCR samples derived from isolated Rh2-2 cones contained detectable rh2-2 (opn1mw2) opsin transcripts, but lws opsin transcripts (lws1/opn1lw1, lws2/opn1lw2) were not detected, suggesting that the procedure likely separated double cone pairs. Through this method, pure, sorted cell samples can provide RNA that is reliable for downstream gene expression analyses, such as qRT-PCR and RNA-seq, which may reveal molecular signatures of photoreceptors and microglia for comparative transcriptomics studies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
17
|
Matsuo M, Ando Y, Kamei Y, Fukamachi S. A semi-automatic and quantitative method to evaluate behavioral photosensitivity in animals based on the optomotor response (OMR). Biol Open 2018; 7:7/6/bio033175. [PMID: 29921705 PMCID: PMC6031347 DOI: 10.1242/bio.033175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The optomotor response (OMR) is a locomotor behavior of animals that is induced by moving repetitive visual stimuli. This characteristic helps animals particularly when stabilizing and maintaining position in schools and herds. Here, we developed a simple but sensitive method for quantifying the OMR using medaka (Oryzias latipes) as a model. This method, which simply requires video-recorded behavior, free tracking software, and a generic spreadsheet program, enables the evaluation of spectral sensitivity by researchers with little knowledge about the behavioral characteristics of the test animal or of the OMR. Based on a manual method, we reported previously that wild-type and red-colorblind medaka exhibited an OMR up to λ=830 and 740 nm, respectively. However, the present method, which quantifies the OMR according to three parameters (starting time, duration, and total distance of swimming) that are calculated based on a series of x–y coordinates of the moving fish, supported that conclusion and further indicated that both strains perceive light at even longer wavelengths. This low-cost, quantitative, and semi-automatic method would widen the opportunities to unveil behavioral photosensitivity in animals of interest. This article has an associated First Person interview with the first author of the paper. Summary: A semi-automatic analytical method for the assessment of the optomotor response was developed. This procedure was animal friendly and enabled the quantitative evaluation of fish optic behavior.
Collapse
Affiliation(s)
- Megumi Matsuo
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo 112-8681, Japan
| | - Yoriko Ando
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi 444-8585, Japan
| | - Shoji Fukamachi
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo 112-8681, Japan
| |
Collapse
|
18
|
Sun C, Galicia C, Stenkamp DL. Transcripts within rod photoreceptors of the Zebrafish retina. BMC Genomics 2018; 19:127. [PMID: 29422031 PMCID: PMC5806438 DOI: 10.1186/s12864-018-4499-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/28/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The purpose of this study was to identify transcripts of retinal rod photoreceptors of the zebrafish. The zebrafish is an important animal model for vision science due to rapid and tractable development, persistent neurogenesis of rods throughout the lifespan, and capacity for functional retinal regeneration. RESULTS Zebrafish rods, and non-rod retinal cells of the xops:eGFP transgenic line, were separated by cell dissociation and fluorescence-activated cell sorting (FACS), followed by RNA-seq. At a false discovery rate of < 0.01, 597 transcripts were upregulated ("enriched") in rods vs. other retinal cells, and 1032 were downregulated ("depleted"). Thirteen thousand three hundred twenty four total transcripts were detected in rods, including many not previously known to be expressed by rods. Forty five transcripts were validated by qPCR in FACS-sorted rods vs. other retinal cells. Transcripts enriched in rods from adult retinas were also enriched in rods from larval and juvenile retinas, and were also enriched in rods sorted from retinas subjected to a neurotoxic lesion and allowed to regenerate. Many transcripts enriched in rods were upregulated in retinas of wildtype retinas vs. those of a zebrafish model for rod degeneration. CONCLUSIONS We report the generation and validation of an RNA-seq dataset describing the rod transcriptome of the zebrafish, which is now available as a resource for further studies of rod photoreceptor biology and comparative transcriptomics.
Collapse
Affiliation(s)
- Chi Sun
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Carlos Galicia
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| |
Collapse
|
19
|
Nakamura Y, Yasuike M, Mekuchi M, Iwasaki Y, Ojima N, Fujiwara A, Chow S, Saitoh K. Rhodopsin gene copies in Japanese eel originated in a teleost-specific genome duplication. ZOOLOGICAL LETTERS 2017; 3:18. [PMID: 29075512 PMCID: PMC5645911 DOI: 10.1186/s40851-017-0079-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/11/2017] [Indexed: 06/16/2023]
Abstract
BACKGROUND Gene duplication is considered important to increasing the genetic diversity in animals. In fish, visual pigment genes are often independently duplicated, and the evolutionary significance of such duplications has long been of interest. Eels have two rhodopsin genes (rho), one of which (freshwater type, fw-rho) functions in freshwater and the other (deep-sea type, ds-rho) in marine environments. Hence, switching of rho expression in retinal cells is tightly linked with eels' unique life cycle, in which they migrate from rivers or lakes to the sea. These rho genes are apparently paralogous, but the timing of their duplication is unclear due to the deep-branching phylogeny. The aim of the present study is to elucidate the evolutionary origin of the two rho copies in eels using comparative genomics methods. RESULTS In the present study, we sequenced the genome of Japanese eel Anguilla japonica and reconstructed two regions containing rho by de novo assembly. We found a single corresponding region in a non-teleostean primitive ray-finned fish (spotted gar) and two regions in a primitive teleost (Asian arowana). The order of ds-rho and the neighboring genes was highly conserved among the three species. With respect to fw-rho, which was lost in Asian arowana, the neighboring genes were also syntenic between Japanese eel and Asian arowana. In particular, the pattern of gene losses in ds-rho and fw-rho regions was the same as that in Asian arowana, and no discrepancy was found in any of the teleost genomes examined. Phylogenetic analysis supports mutual monophyly of these two teleostean synteny groups, which correspond to the ds-rho and fw-rho regions. CONCLUSIONS Syntenic and phylogenetic analyses suggest that the duplication of rhodopsin gene in Japanese eel predated the divergence of eel (Elopomorpha) and arowana (Osteoglossomorpha). Thus, based on the principle of parsimony, it is most likely that the rhodopsin paralogs were generated through a whole genome duplication in the ancestor of teleosts, and have remained till the present in eels with distinct functional roles. Our result indicates, for the first time, that teleost-specific genome duplication may have contributed to a gene innovation involved in eel-specific migratory life cycle.
Collapse
Affiliation(s)
- Yoji Nakamura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Motoshige Yasuike
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Miyuki Mekuchi
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Yuki Iwasaki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
- Present address: National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Nobuhiko Ojima
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
- Present address: Japan Fisheries Research and Education Agency, 2-3-3 Minatomirai, Nishi, Yokohama, Kanagawa 220-6115 Japan
| | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Seinen Chow
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Kenji Saitoh
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
- Present address: Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 3-27-5 Shinhama, Shiogama, Miyagi 985-0001 Japan
| |
Collapse
|
20
|
Chen Q, Gundlach M, Yang S, Jiang J, Velki M, Yin D, Hollert H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:1022-1031. [PMID: 28185727 DOI: 10.1016/j.scitotenv.2017.01.156] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 05/08/2023]
Abstract
This study investigated the direct and indirect toxic effects of microplastics and nanoplastics toward zebrafish (Danio rerio) larvae locomotor activity. Results showed that microplastics alone exhibited no significant effects except for the upregulated zfrho visual gene expression; whereas nanoplastics inhibited the larval locomotion by 22% during the last darkness period, and significantly reduced larvae body length by 6%, inhibited the acetylcholinesterase activity by 40%, and upregulated gfap, α1-tubulin, zfrho and zfblue gene expression significantly. When co-exposed with 2μg/L 17 α-ethynylestradiol (EE2), microplastics led to alleviation on EE2's inhibition effect on locomotion, which was probably due to the decreased freely dissolved EE2 concentration. However, though nanoplastics showed stronger adsorption ability for EE2, the hypoactivity phenomenon still existed in the nanoplastics co-exposure group. Moreover, when co-exposed with a higher concentration of EE2 (20μg/L), both plastics showed an enhanced effect on the hypoactivity. Principal component analysis was performed to reduce data dimensions and four principal components were reconstituted in terms of oxidative stress, body length, nervous and visual system related genes explaining 84% of total variance. Furthermore, oxidative damage and body length reduction were evaluated to be main reasons for the hypoactivity. Therefore, nanoplastics alone suppressed zebrafish larvae locomotor activity and both plastic particles can change the larvae swimming behavior when co-exposed with EE2. This study provides new insights into plastic particles' effects on zebrafish larvae, improving the understanding of their environmental risks to the aquatic environment.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 1 Worringerweg, 52074 Aachen, Germany; State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Michael Gundlach
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 1 Worringerweg, 52074 Aachen, Germany
| | - Shouye Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jing Jiang
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Mirna Velki
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 1 Worringerweg, 52074 Aachen, Germany
| | - Daqiang Yin
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Henner Hollert
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 1 Worringerweg, 52074 Aachen, Germany
| |
Collapse
|
21
|
Bhattacharyya N, Darren B, Schott RK, Tropepe V, Chang BSW. Cone-like rhodopsin expressed in the all cone retina of the colubrid pine snake as a potential adaptation to diurnality. J Exp Biol 2017; 220:2418-2425. [DOI: 10.1242/jeb.156430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
Colubridae is the largest and most diverse family of snakes, with visual systems that reflect this diversity, encompassing a variety of retinal photoreceptor organizations. The transmutation theory proposed by Walls postulates that photoreceptors could evolutionarily transition between cell types in squamates, but few studies have tested this theory. Recently, evidence for transmutation and rod-like machinery in an all cone retina has been identified in a diurnal garter snake (Thamnophis), and it appears that the rhodopsin gene at least may be widespread among colubrid snakes. However, functional evidence supporting transmutation beyond the existence of the rhodopsin gene remains rare. We examined the all cone retina of another colubrid, Pituophis melanoleucus, thought to be more secretive/burrowing than Thamnophis. We found that P. melanoleucus expresses two cone opsins (SWS1, LWS) and rhodopsin (RH1) within the eye. Immunohistochemistry localized rhodopsin to the outer segment of photoreceptors in the all-cone retina of the snake and all opsin genes produced functional visual pigments when expressed in vitro. Consistent with other studies, we found that P. melanoleucus rhodopsin is extremely blue-shifted. Surprisingly, P. melanoleucus rhodopsin reacted with hydroxylamine, a typical cone opsin characteristic. These results support the idea that the rhodopsin-containing photoreceptors of P. melanoleucus are the products of evolutionary transmutation from rod ancestors, and suggests that this phenomenon may be widespread in colubrid snakes. We hypothesize that transmutation may be an adaptation for diurnal, brighter-light vision, which could result in increased spectral sensitivity and chromatic discrimination with the potential for colour vision.
Collapse
Affiliation(s)
- Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Benedict Darren
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K. Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto ON, M5T 3A9, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins. Sci Rep 2016; 6:38425. [PMID: 27934935 PMCID: PMC5146971 DOI: 10.1038/srep38425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
Lake Baikal is the deepest and one of the most ancient lakes in the world. Its unique ecology has resulted in the colonization of a diversity of depth habitats by a unique fauna that includes a group of teleost fish of the sub-order Cottoidei. This relatively recent radiation of cottoid fishes shows a gradual blue-shift in the wavelength of the absorption maximum of their visual pigments with increasing habitat depth. Here we combine homology modeling and quantum chemical calculations with experimental in vitro measurements of rhodopsins to investigate dim-light adaptation. The calculations, which were able to reproduce the trend of observed absorption maxima in both A1 and A2 rhodopsins, reveal a Barlow-type relationship between the absorption maxima and the thermal isomerization rate suggesting a link between the observed blue-shift and a thermal noise decrease. A Nakanishi point-charge analysis of the electrostatic effects of non-conserved and conserved amino acid residues surrounding the rhodopsin chromophore identified both close and distant sites affecting simultaneously spectral tuning and visual sensitivity. We propose that natural variation at these sites modulate both the thermal noise and spectral shifting in Baikal cottoid visual pigments resulting in adaptations that enable vision in deep water light environments.
Collapse
|
23
|
Morrow JM, Lazic S, Dixon Fox M, Kuo C, Schott RK, de A Gutierrez E, Santini F, Tropepe V, Chang BSW. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes. ACTA ACUST UNITED AC 2016; 220:294-303. [PMID: 27811293 DOI: 10.1242/jeb.145953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Abstract
Rhodopsin (rh1) is the visual pigment expressed in rod photoreceptors of vertebrates that is responsible for initiating the critical first step of dim-light vision. Rhodopsin is usually a single copy gene; however, we previously discovered a novel rhodopsin-like gene expressed in the zebrafish retina, rh1-2, which we identified as a functional photosensitive pigment that binds 11-cis retinal and activates in response to light. Here, we localized expression of rh1-2 in the zebrafish retina to a subset of peripheral photoreceptor cells, which indicates a partially overlapping expression pattern with rh1 We also expressed, purified and characterized Rh1-2, including investigation of the stability of the biologically active intermediate. Using fluorescence spectroscopy, we found the half-life of the rate of retinal release of Rh1-2 following photoactivation to be more similar to that of the visual pigment rhodopsin than to the non-visual pigment exo-rhodopsin (exorh), which releases retinal around 5 times faster. Phylogenetic and molecular evolutionary analyses show that rh1-2 has ancient origins within teleost fishes, is under similar selective pressure to rh1, and likely experienced a burst of positive selection following its duplication and divergence from rh1 These findings indicate that rh1-2 is another functional visual rhodopsin gene, which contradicts the prevailing notion that visual rhodopsin is primarily found as a single copy gene within ray-finned fishes. The reasons for retention of this duplicate gene, as well as possible functional consequences for the visual system, are discussed.
Collapse
Affiliation(s)
- James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2
| | - Savo Lazic
- Department of Molecular Genetics, University of Toronto, Toronto, Canada, M5S 1A8
| | - Monica Dixon Fox
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5
| | - Claire Kuo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2
| | - Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2
| | - Francesco Santini
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada, M5T 3A9.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada, M5S 3B2
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada, M5S 3G5 .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada, M5S 3B2.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada, M5S 3B2
| |
Collapse
|
24
|
Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proc Natl Acad Sci U S A 2015; 113:356-61. [PMID: 26715746 DOI: 10.1073/pnas.1513284113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the "transmutation" theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single "cones." Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality.
Collapse
|
25
|
Tsujimura T, Masuda R, Ashino R, Kawamura S. Spatially differentiated expression of quadruplicated green-sensitive RH2 opsin genes in zebrafish is determined by proximal regulatory regions and gene order to the locus control region. BMC Genet 2015; 16:130. [PMID: 26537431 PMCID: PMC4634787 DOI: 10.1186/s12863-015-0288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Background Fish are remarkably diverse in repertoires of visual opsins by gene duplications. Differentiation of their spatiotemporal expression patterns and absorption spectra enables fine-tuning of feature detection in spectrally distinct regions of the visual field during ontogeny. Zebrafish have quadruplicated green-sensitive (RH2) opsin genes in tandem (RH2-1, −2, −3, −4), which are expressed in the short member of the double cones (SDC). The shortest wavelength RH2 subtype (RH2-1) is expressed in the central to dorsal area of the adult retina. The second shortest wave subtype (RH2-2) is expressed overlapping with RH2-1 but extending outside of it. The second longest wave subtype (RH2-3) is expressed surrounding the RH2–2 area, and the longest wave subtype (RH2-4) is expressed outside of the RH2-3 area broadly occupying the ventral area. Expression of the four RH2 genes in SDC requires a single enhancer (RH2-LCR), but the mechanism of their spatial differentiation remains elusive. Results Functional comparison of the RH2-LCR with its counterpart in medaka revealed that the regulatory role of the RH2-LCR in SDC-specific expression is evolutionarily conserved. By combining the RH2-LCR and the proximal upstream region of each RH2 gene with fluorescent protein reporters, we show that the RH2-LCR and the RH2-3 proximal regulatory region confer no spatial selectivity of expression in the retina. But those of RH2-1, −2 and −4 are capable of inducing spatial differentiation of expression. Furthermore, by analyzing transgenic fish with a series of arrays consisting of the RH2-LCR and multiple upstream regions of the RH2 genes in different orders, we show that a gene expression pattern related to an upstream region is greatly influenced by another flanking upstream region in a relative position-dependent manner. Conclusions The zebrafish RH2 genes except RH2-3 acquired differential cis-elements in the proximal upstream regions to specify the differential expression patterns. The input from these proximal elements collectively dictates the actual gene expression pattern of the locus, context-dependently. Importantly, competition for the RH2-LCR activity among the replicates is critical in this collective regulation, facilitating differentiation of expression among them. This combination of specificity and generality enables seemingly complicated spatial differentiation of duplicated opsin genes characteristic in fish. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0288-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taro Tsujimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, 277-8562, Chiba, Japan. .,Department of Advanced Nephrology and Regenerative Medicine, Division of Tissue Engineering, the University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, 113-8655, Tokyo, Japan.
| | - Ryoko Masuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, 277-8562, Chiba, Japan.
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, 277-8562, Chiba, Japan.
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, 277-8562, Chiba, Japan.
| |
Collapse
|
26
|
Davies WIL, Tamai TK, Zheng L, Fu JK, Rihel J, Foster RG, Whitmore D, Hankins MW. An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 2015; 25:1666-79. [PMID: 26450929 PMCID: PMC4617963 DOI: 10.1101/gr.189886.115] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/15/2015] [Indexed: 11/24/2022]
Abstract
Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates.
Collapse
Affiliation(s)
- Wayne I L Davies
- School of Animal Biology and University of Western Australia Oceans Institute, University of Western Australia, Perth, Western Australia 6009, Australia; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - T Katherine Tamai
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, WC1E 6DE, United Kingdom
| | - Lei Zheng
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Josephine K Fu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Russell G Foster
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, WC1E 6DE, United Kingdom
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
27
|
Morrow JM, Chang BSW. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy. Biochemistry 2015; 54:4507-18. [PMID: 26098991 DOI: 10.1021/bi501377b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates.
Collapse
|
28
|
de Busserolles F, Hart NS, Hunt DM, Davies WI, Marshall NJ, Clarke MW, Hahne D, Collin SP. Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:77-93. [DOI: 10.1159/000371652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022]
Abstract
Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field.
Collapse
|
29
|
Kasagi S, Mizusawa K, Murakami N, Andoh T, Furufuji S, Kawamura S, Takahashi A. Molecular and functional characterization of opsins in barfin flounder (Verasper moseri). Gene 2015; 556:182-91. [DOI: 10.1016/j.gene.2014.11.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022]
|
30
|
Bloch NI, Morrow JM, Chang BSW, Price TD. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers. Evolution 2015; 69:341-56. [PMID: 25496318 DOI: 10.1111/evo.12572] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/19/2014] [Indexed: 12/22/2022]
Abstract
Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected.
Collapse
Affiliation(s)
- Natasha I Bloch
- Department of Ecology & Evolution, University of Chicago, Chicago, 60637.
| | | | | | | |
Collapse
|
31
|
Lagman D, Ocampo Daza D, Widmark J, Abalo XM, Sundström G, Larhammar D. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. BMC Evol Biol 2013; 13:238. [PMID: 24180662 PMCID: PMC3826523 DOI: 10.1186/1471-2148-13-238] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). RESULTS Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. CONCLUSIONS We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Daniel Ocampo Daza
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Jenny Widmark
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Xesús M Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Görel Sundström
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
- Present address: Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-75123 Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| |
Collapse
|
32
|
Serb JM, Porath-Krause AJ, Pairett AN. Uncovering a Gene Duplication of the Photoreceptive Protein, Opsin, in Scallops (Bivalvia: Pectinidae). Integr Comp Biol 2013; 53:68-77. [DOI: 10.1093/icb/ict063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Broughton RE, Betancur-R R, Li C, Arratia G, Ortí G. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS CURRENTS 2013; 5:ecurrents.tol.2ca8041495ffafd0c92756e75247483e. [PMID: 23788273 PMCID: PMC3682800 DOI: 10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Over half of all vertebrates are "fishes", which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group.
Collapse
|
34
|
Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L, Near TJ. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 2012; 67:732-48. [PMID: 23461324 DOI: 10.1111/j.1558-5646.2012.01822.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genetic mechanisms underlying regressive evolution-the degeneration or loss of a derived trait--are largely unknown, particularly for complex structures such as eyes in cave organisms. In several eyeless animals, the visual photoreceptor rhodopsin appears to have retained functional amino acid sequences. Hypotheses to explain apparent maintenance of function include weak selection for retention of light-sensing abilities and its pleiotropic roles in circadian rhythms and thermotaxis. In contrast, we show that there has been repeated loss of functional constraint of rhodopsin in amblyopsid cavefishes, as at least three cave lineages have independently accumulated unique loss-of-function mutations over the last 10.3 Mya. Although several cave lineages still possess functional rhodopsin, they exhibit increased rates of nonsynonymous mutations that have greater effect on the structure and function of rhodopsin compared to those in surface lineages. These results indicate that functionality of rhodopsin has been repeatedly lost in amblyopsid cavefishes. The presence of a functional copy of rhodopsin in some cave lineages is likely explained by stochastic accumulation of mutations following recent subterranean colonization.
Collapse
Affiliation(s)
- Matthew L Niemiller
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | | | | | |
Collapse
|
35
|
Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal. Vis Neurosci 2012; 29:211-7. [PMID: 22874131 DOI: 10.1017/s0952523812000223] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Monotremes are the most basal egg-laying mammals comprised of two extant genera, which are largely nocturnal. Visual pigments, the first step in the sensory transduction cascade in photoreceptors of the eye, have been examined in a variety of vertebrates, but little work has been done to study the rhodopsin of monotremes. We isolated the rhodopsin gene of the nocturnal short-beaked echidna (Tachyglossus aculeatus) and expressed and functionally characterized the protein in vitro. Three mutants were also expressed and characterized: N83D, an important site for spectral tuning and metarhodopsin kinetics, and two sites with amino acids unique to the echidna (T158A and F169A). The λ(max) of echidna rhodopsin (497.9 ± 1.1 nm) did not vary significantly in either T158A (498.0 ± 1.3 nm) or F169A (499.4 ± 0.1 nm) but was redshifted in N83D (503.8 ± 1.5 nm). Unlike other mammalian rhodopsins, echidna rhodopsin did react when exposed to hydroxylamine, although not as fast as cone opsins. The retinal release rate of light-activated echidna rhodopsin, as measured by fluorescence spectroscopy, had a half-life of 9.5 ± 2.6 min-1, which is significantly shorter than that of bovine rhodopsin. The half-life of the N83D mutant was 5.1 ± 0.1 min-1, even shorter than wild type. Our results show that with respect to hydroxylamine sensitivity and retinal release, the wild-type echidna rhodopsin displays major differences to all previously characterized mammalian rhodopsins and appears more similar to other nonmammalian vertebrate rhodopsins such as chicken and anole. However, our N83D mutagenesis results suggest that this site may mediate adaptation in the echidna to dim light environments, possibly via increased stability of light-activated intermediates. This study is the first characterization of a rhodopsin from a most basal mammal and indicates that there might be more functional variation in mammalian rhodopsins than previously assumed.
Collapse
|
36
|
DAVIES WAYNEIL, COLLIN SHAUNP, HUNT DAVIDM. Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 2012; 21:3121-58. [DOI: 10.1111/j.1365-294x.2012.05617.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Rennison DJ, Owens GL, Taylor JS. Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol 2011; 62:986-1008. [PMID: 22178363 DOI: 10.1016/j.ympev.2011.11.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/17/2022]
Abstract
Opsin gene sequences were first reported in the 1980s. The goal of that research was to test the hypothesis that human opsins were members of a single gene family and that variation in human color vision was mediated by mutations in these genes. While the new data supported both hypotheses, the greatest contribution of this work was, arguably, that it provided the data necessary for PCR-based surveys in a diversity of other species. Such studies, and recent whole genome sequencing projects, have uncovered exceptionally large opsin gene repertoires in ray-finned fishes (taxon, Actinopterygii). Guppies and zebrafish, for example, have 10 visual opsin genes each. Here we review the duplication and divergence events that have generated these gene collections. Phylogenetic analyses revealed that large opsin gene repertories in fish have been generated by gene duplication and divergence events that span the age of the ray-finned fishes. Data from whole genome sequencing projects and from large-insert clones show that tandem duplication is the primary mode of opsin gene family expansion in fishes. In some instances gene conversion between tandem duplicates has obscured evolutionary relationships among genes and generated unique key-site haplotypes. We mapped amino acid substitutions at so-called key-sites onto phylogenies and this exposed many examples of convergence. We found that dN/dS values were higher on the branches of our trees that followed gene duplication than on branches that followed speciation events, suggesting that duplication relaxes constraints on opsin sequence evolution. Though the focus of the review is opsin sequence evolution, we also note that there are few clear connections between opsin gene repertoires and variation in spectral environment, morphological traits, or life history traits.
Collapse
Affiliation(s)
- Diana J Rennison
- University of Victoria, Department of Biology, Station CSC, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|