1
|
Kechidzhieva LA, Tchorbanov AI, Nikolova-Ganeva KA. Methyl supplemented diet reduces liver pathology in lupus-prone MRL/lpr mice. Int Immunopharmacol 2025; 158:114898. [PMID: 40383095 DOI: 10.1016/j.intimp.2025.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/26/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Genetic predisposition is a necessary but not sufficient requirement for the development of a pathological immune response in systemic lupus erythematosus (SLE). Various environmental factors and nutrition in particular also play a key role in the pathogenesis of SLE. In the present study, we evaluated the effect of a specific diet containing additional amounts of methyl donors on the development of pathological changes in the liver of lupus-prone MRL/lpr mice. The results showed that long-term administration of the diet reduced the level of inflammation and the number of inflammatory cells in the liver of the treated mice compared to the control group. These data point to methyl-containing micronutrients as a potential immunomodulatory tool and suggest the application of a methyl-supplemented diet as a novel approach to manipulate the course of liver disease in SLE.
Collapse
Affiliation(s)
- Lidiya Aleksandrova Kechidzhieva
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, 26 "Acad. Georgy Bontchev" Str., 1113 Sofia, Bulgaria
| | - Andrey Ivanov Tchorbanov
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, 26 "Acad. Georgy Bontchev" Str., 1113 Sofia, Bulgaria; National Institute of Immunology, 1517 Sofia, Bulgaria
| | - Kalina Aleksandrova Nikolova-Ganeva
- Laboratory of Experimental Immunology, Department of Immunology, "The Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, 26 "Acad. Georgy Bontchev" Str., 1113 Sofia, Bulgaria.
| |
Collapse
|
2
|
Saleh RO, Aboqader Al-Aouadi RF, Almuzaini NA, Uthirapathy S, Sanghvi G, Soothwal P, Arya R, Bareja L, Mohamed Abdelgawwad El-Sehrawy AA, Hulail HM. Glucose metabolism is controlled by non-coding RNAs in autoimmune diseases; a glimpse into immune system dysregulation. Hum Immunol 2025; 86:111269. [PMID: 39999745 DOI: 10.1016/j.humimm.2025.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The immune system accidentally targets the body's tissues, causing inflammation and tissue damage, the root causes of autoimmune illnesses. In recent studies, non-coding RNAs have been shown to significantly control gene expression and metabolic pathways linked to autoimmune diseases. This review investigates the effects of non-coding RNA on glucose metabolism, a route frequently dysregulated in autoimmune illnesses such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and diabetes. We review how non-coding RNA affects immune cell activity modulation, glucose absorption, glycolysis, and other metabolic processes critical to immune function. We also investigate the possibility of using non-coding RNA-mediated metabolic pathway targeting as a new therapeutic approach to treat autoimmune disorders. By clarifying the complex interplay of non-coding RNA, glucose metabolism, and immune dysregulation, this study endeavors to enhance comprehension of autoimmune etiology and facilitate the creation of focused therapies.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
3
|
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al‐Abbasi FA, Kumer A, Tabrez S. STAT3 Signaling Pathway in Health and Disease. MedComm (Beijing) 2025; 6:e70152. [PMID: 40166646 PMCID: PMC11955304 DOI: 10.1002/mco2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor involved in multiple physiological and pathological processes. While STAT3 plays an essential role in homeostasis, its persistent activation has been implicated in the pathogenesis of various diseases, particularly cancer, bone-related diseases, autoimmune disorders, inflammatory diseases, cardiovascular diseases, and neurodegenerative conditions. The interleukin-6/Janus kinase (JAK)/STAT3 signaling axis is central to STAT3 activation, influencing tumor microenvironment remodeling, angiogenesis, immune evasion, and therapy resistance. Despite extensive research, the precise mechanisms underlying dysregulated STAT3 signaling in disease progression remain incompletely understood, and no United States Food and Drug Administration (USFDA)-approved direct STAT3 inhibitors currently exist. This review provides a comprehensive evaluation of STAT3's role in health and disease, emphasizing its involvement in cancer stem cell maintenance, metastasis, inflammation, and drug resistance. We systematically discuss therapeutic strategies, including JAK inhibitors (tofacitinib, ruxolitinib), Src Homology 2 domain inhibitors (S3I-201, STATTIC), antisense oligonucleotides (AZD9150), and nanomedicine-based drug delivery systems, which enhance specificity and bioavailability while reducing toxicity. By integrating molecular mechanisms, disease pathology, and emerging therapeutic interventions, this review fills a critical knowledge gap in STAT3-targeted therapy. Our insights into STAT3 signaling crosstalk, epigenetic regulation, and resistance mechanisms offer a foundation for developing next-generation STAT3 inhibitors with greater clinical efficacy and translational potential.
Collapse
Affiliation(s)
- Md Abdus Samad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Iftikhar Ahmad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Aakifah Hasan
- Department of BiochemistryFaculty of Life ScienceAligarh Muslim UniversityAligarhIndia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Arusha Ayub
- Department of MedicineCollege of Health SciencesUniversity of GeorgiaGeorgiaUSA
| | - Fahad A. Al‐Abbasi
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and SciencesInternational University of Business Agriculture & Technology (IUBAT)DhakaBangladesh
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
4
|
Souza LL, da Mota JCNL, Carvalho LM, Ribeiro AA, Caponi CA, Pinhel MAS, Costa-Fraga N, Diaz-Lagares A, Izquierdo AG, Nonino CB, Crujeiras AB, Nicoletti CF. Genome-Wide Impact of Folic Acid on DNA Methylation and Gene Expression in Lupus Adipocytes: An In Vitro Study on Obesity. Nutrients 2025; 17:1086. [PMID: 40292473 PMCID: PMC11944643 DOI: 10.3390/nu17061086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE This in vitro study aimed to investigate the impact of folic acid on DNA methylation and gene expression in adipocytes from subcutaneous adipose tissue of patients with systemic lupus erythematosus (SLE), with a focus on the influence of obesity on these epigenetic changes. METHODS Tissue biopsies were collected from patients with normal weight (NW) and obesity (OBS). Adipocytes were isolated via enzymatic digestion and density separation. Each group was divided into control (standard medium) and folic acid treatment (2 mg/24 h for 48 h) conditions. After treatment, DNA methylation levels were analyzed using the Infinium Methylation EPIC v2.0 Kit, and gene expression analyses were performed by RT-qPCR. A pathway enrichment analysis was conducted using the KEGG database for functional insight. RESULTS Folic acid induced differential methylation at 755 CpG sites in NW adipocytes, which were associated with immune regulation, including MAPK signaling. Also, OBS adipocytes showed methylation changes at 92 CpG sites, affecting pathways related to metabolic regulation, such as cAMP signaling. LEP gene expression was upregulated (5.2-fold) in OBS adipocytes, while CREM2 expression was increased (2.8-fold) in NW adipocytes after treatment. These gene expression differences underscore weight-dependent responses to folic acid, with LEP upregulation in OBS cells suggesting links to metabolic dysregulation and CREM2 upregulation in NW cells potentially contributing to immune modulation. CONCLUSIONS Folic acid treatment exerts distinct epigenetic and gene expression effects in adipocytes of SLE patients, modulated by obesity status. This weight-dependent response, marked by changes in pathways relevant to immune and metabolic function, highlights the need for further investigation into how nutrient-based interventions might support SLE management. From a clinical perspective, this study underscores the potential of targeted nutrient-based interventions to address immunometabolic dysfunctions in SLE patients. Further research could explore folic acid supplementation as a complementary approach to personalized treatment strategies, particularly for patients with obesity.
Collapse
Affiliation(s)
- Leticia L. Souza
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Jhulia C. N. L. da Mota
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Lucas M. Carvalho
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Amanda A. Ribeiro
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Cesar A. Caponi
- Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Marcela A. S. Pinhel
- Department of Molecular Biology, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto 15090-000, Brazil
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Nicolas Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), ISCIII, 28029 Madrid, Spain
- Department of Clinical Analysis, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Andrea G. Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigacion Biomedica en Red de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carla B. Nonino
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Ana B. Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigacion Biomedica en Red de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carolina F. Nicoletti
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Rheumatology Division, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-220, Brazil
| |
Collapse
|
5
|
Zhou X, Shan NN. The intersection of epigenetics and immune thrombocytopenia: new insights into disease mechanisms and treatments. Mol Biol Rep 2025; 52:257. [PMID: 39982580 DOI: 10.1007/s11033-025-10363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune hematologic disorder that arises from an imbalance in immune responses, disrupting the delicate equilibrium of the immune system. An increasing body of research has indicated that immune-related genes hold promise as biomarkers for diagnosis and prognosis, with a particular focus on the roles of B and T cells in ITP pathogenesis. Despite these advancements, a deeper understanding of the underlying regulatory mechanisms governing these immune-related genes remains essential. This review aims to integrate the current body of evidence and provide further insights into the epigenetic regulation of immune pathways involved in ITP development. The problem statement section highlights the complexity of ITP and its intricate connections with immune pathways. It also compares the epigenetic differences between pediatric and adult ITP based on existing evidence. Decoding epigenetic processes could potentially open up new avenues for improving diagnostic methods and therapeutic strategies for ITP.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, Shandong, 250021, China
| | - Ning-Ning Shan
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, Shandong, 250021, China.
| |
Collapse
|
6
|
Ralchev N, Kechidzhieva L, Boneva B, Tumangelova-Yuzeir K, Kyurkchiev D, Kalinova D, Monov S, Tchorbanov A, Nikolova-Ganeva K. Targeting the Progression of Lupus-Like Disease in Humanized Mouse Model by Specific Dietary Components. Mol Nutr Food Res 2025; 69:e202400473. [PMID: 39748653 DOI: 10.1002/mnfr.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a number of immunological aberrations in the mechanisms of innate and adaptive immune responses. Spontaneous and induced mouse models of the disease have contributed significantly to the advancement in lupus treatments. The involvement of humanized models, engrafted with lupus patients' immune cells, represented the possibility to study the development of SLE. In the current research, we engrafted NSG/Rag2-γc- mice with PBMCs from lupus patients and put the mice on specific diet composed of extra amounts of methyl-containing micronutrients and cofactors which are key participants in the DNA methylation processes. The results showed a decrease in anti-dsDNA IgG antibody and in proteinuria levels, less glomerular proliferation and protected renal structures in all mice put on the supplemented diet compared to humanized mice fed with the control diet. The observed therapeutic effect may be related to possible alterations in the methylation level and to targeted suppression of gene expression in the immune cells, which correlate negatively with the development of the clinical SLE characteristics. These findings point to the significant immunomodulating role of methyl donors in human models of SLE and represent new therapeutic opportunities with clinical potential.
Collapse
Affiliation(s)
- Nikola Ralchev
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Аngeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Lidiya Kechidzhieva
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Аngeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Blagovesta Boneva
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Аngeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, University hospital "St. Ivan Rilski", Medical University of Sofia, Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, University hospital "St. Ivan Rilski", Medical University of Sofia, Sofia, Bulgaria
| | - Desislava Kalinova
- Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, University Hospital "St. Ivan Rilski", Medical University of Sofia, Sofia, Bulgaria
| | - Simeon Monov
- Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, University Hospital "St. Ivan Rilski", Medical University of Sofia, Sofia, Bulgaria
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Аngeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| | - Kalina Nikolova-Ganeva
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Аngeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| |
Collapse
|
7
|
Sciascia S, Ferrara G, Roccatello L, Rubini E, Foddai SG, Radin M, Cecchi I, Rossi D, Barinotti A, Ricceri F, Gilcrease W, Baldovino S, Ferreira Poshar A, Conti A, Fenoglio R. The Interconnection Between Systemic Lupus Erythematosus and Diet: Unmet Needs, Available Evidence, and Guidance-A Patient-Driven, Multistep-Approach Study. Nutrients 2024; 16:4132. [PMID: 39683527 DOI: 10.3390/nu16234132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Inflammation and immunological dysregulation are central to systemic lupus erythematosus (SLE), a complex autoimmune disease. Recently, there has been increasing interest in the potential role of dietary factors in SLE. This study aimed to explore the relationship between diet and SLE by addressing patient needs, conducting a systematic review, and providing guidance to the patient community. METHODS This four-step study started with a survey of patients with SLE that was conducted to gather frequently asked questions (FAQs) related to diet. Using the PICO framework, two comprehensive systematic literature searches were performed in PubMed to address these FAQs. Subsequently, the evidence retrieved was used to answer FAQs and provide guidance to people with SLE. A second survey was conducted to gather patient feedback on the topics and guidance provided. RESULTS A literature review of 28 systematic reviews was performed, evaluating the impact of diet on inflammation, immune response, and health outcomes in SLE patients. The review focused on key nutritional elements, including vitamin D, omega-3 fatty acids, curcumin supplements, and low-calorie or low-glycemic index diets. Seven guidance statements were developed based on these findings. All the answers provided were positively assessed by participants. CONCLUSIONS This patient-centered study improves our understanding of the diet-SLE relationship through systematic reviews and patient feedback. While specific dietary recommendations for SLE are not yet established, patient input underscores the need for ongoing research to optimize treatment strategies and quality of life for those with SLE.
Collapse
Affiliation(s)
- Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Gabriele Ferrara
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Lorenzo Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Elena Rubini
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Silvia Grazietta Foddai
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Massimo Radin
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Irene Cecchi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Daniela Rossi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Alice Barinotti
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
| | - Winston Gilcrease
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
| | - Simone Baldovino
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Andrea Ferreira Poshar
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Alessio Conti
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| | - Roberta Fenoglio
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital ASL Città di Torino and Department of Clinical and Biological Sciences, 10154 Turin, Italy
| |
Collapse
|
8
|
da Mota JCNL, Carvalho LM, Ribeiro AA, Souza LL, Borba EF, Roschel H, Gualano B, Nicoletti CF. Methyl-donor supplementation in women with systemic lupus erythematosus with different nutritional status: the protocol for a randomised, double-blind, placebo-controlled trial. Lupus Sci Med 2024; 11:e001279. [PMID: 39375179 PMCID: PMC11459299 DOI: 10.1136/lupus-2024-001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION DNA hypomethylation in patients with systemic lupus erythematosus (SLE) has been recently documented in the literature. Low levels of DNA methylation have been observed globally and in genes associated with immune and inflammatory pathways in SLE's CD4+T lymphocytes. Given that certain micronutrients can either donate methyl groups within one-carbon metabolism pathways or serve as cofactors for enzymes involved in the DNA methylation process, this randomised, double-blind, placebo-controlled trial aims to investigate whether a 3-month supplementation of folic acid and vitamin B12 will modulate the DNA methylation profile in subcutaneous adipose tissue (primary outcome) of women with SLE and normal weight or excess body weight. As secondary objectives, we will assess gene expression, telomere length and phenotypic characteristics (ie, clinical parameters, body weight and composition, abdominal circumference, food intake and disordered eating attitude, physical activity, lipid profile, serum concentrations of leptin, adiponectin, and cytokines). METHODS AND ANALYSIS Patients will be classified according to their nutritional status by body mass index in normal weight or excess body weight. Subsequently, patients in each group will be randomly assigned to either a placebo or an intervention group (folic acid (400 mcg) and vitamin B12 (2000 mcg) supplementation). Endpoint evaluations will be conducted using both intention-to-treat and per-protocol analyses. This study has the potential to design new personalised nutritional approaches as adjunctive therapy for patients with SLE. ETHICS AND DISSEMINATION This study has been reviewed and approved by the Ethical Committee from Clinical Hospital of the School of Medicine of the University of Sao Paulo, Brazil (CAAE.: 47317521.8.0000.0068). TRIAL REGISTRATION NUMBER NCT05097365 (first version).
Collapse
Affiliation(s)
| | | | | | | | - Eduardo F Borba
- Rheumatology, Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, Brazil
| | | | | | - Carolina F Nicoletti
- Rheumatology Division, Sao Paulo University Faculty of Medicine, Sao Paulo, Brazil
| |
Collapse
|
9
|
Muñoz-García R, Sánchez-Hidalgo M, Alcarranza M, Vazquéz-Román MV, de Sotomayor MA, González-Rodríguez ML, de Andrés MC, Alarcón-de-la-Lastra C. Effects of Dietary Oleacein Treatment on Endothelial Dysfunction and Lupus Nephritis in Balb/C Pristane-Induced Mice. Antioxidants (Basel) 2023; 12:1303. [PMID: 37372034 DOI: 10.3390/antiox12061303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic immune-inflammatory disease characterized by multiorgan affectation and lowered self-tolerance. Additionally, epigenetic changes have been described as playing a pivotal role in SLE. This work aims to assess the effects of oleacein (OLA), one of the main extra virgin olive oil secoiridoids, when used to supplement the diet of a murine pristane-induced SLE model. In the study, 12-week-old female BALB/c mice were injected with pristane and fed with an OLA-enriched diet (0.01 % (w/w)) for 24 weeks. The presence of immune complexes was evaluated by immunohistochemistry and immunofluorescence. Endothelial dysfunction was studied in thoracic aortas. Signaling pathways and oxidative-inflammatory-related mediators were evaluated by Western blotting. Moreover, we studied epigenetic changes such as DNA methyltransferase (DNMT-1) and micro(mi)RNAs expression in renal tissue. Nutritional treatment with OLA reduced the deposition of immune complexes, ameliorating kidney damage. These protective effects could be related to the modulation of mitogen-activated protein kinases, the Janus kinase/signal transducer and transcription activator of transcription, nuclear factor kappa, nuclear-factor-erythroid-2-related factor 2, inflammasome signaling pathways, and the regulation of miRNAs (miRNA-126, miRNA-146a, miRNA-24-3p, and miRNA-123) and DNMT-1 expression. Moreover, the OLA-enriched diet normalized endothelial nitric oxide synthase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-1 overexpression. These preliminary results suggest that an OLA-supplemented diet could constitute a new alternative nutraceutical therapy in the management of SLE, supporting this compound as a novel epigenetic modulator of the immunoinflammatory response.
Collapse
Affiliation(s)
- Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - María Victoria Vazquéz-Román
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, Universidad de Sevilla, 41012 Seville, Spain
| | | | | | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
10
|
Maldonado MD, Romero-Aibar J, Calvo JR. The melatonin contained in beer can provide health benefits, due to its antioxidant, anti-inflammatory and immunomodulatory properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3738-3747. [PMID: 36004527 DOI: 10.1002/jsfa.12179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 05/03/2023]
Abstract
Beer is a fermented beverage with a low alcohol content originating from cereal fermentation (barley or wheat). It forms part of the diet for many people. It contains melatonin (N-acetyl-5-methoxytryptamine). Melatonin is a molecule with a wide range of antioxidant, oncostatic, immunomodulatory, and cytoprotective properties. The aim of this work was to review the data supporting the idea that a moderate consumption of beer, because of its melatonin content, is particularly useful in healthy diets and in other physiological situations (such as pregnancy, menopause, and old age). Data source: a) The MEDLINE /PubMed search was conducted from 1975 to April 2022, and b) Our own experience and published studies on melatonin, the immune system, and beer. We provide a review of research on the mechanisms of melatonin generation in beer, its concentrations, and its possible effects on health. The melatonin contained in beer, as part of a healthy diet and in some special physiological situations, could act as a protective factor and improve the quality of life of those who drink it in moderation. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- MDolores Maldonado
- Department of Medical Biochemistry, Molecular Biology, and Immunology, University of Seville Medical School, Sevilla, Spain
| | - Jerusa Romero-Aibar
- Superior Laboratory Technician, National Institute of Toxicology and Forensic Sciences of Tenerife, Madrid, Spain
| | - JRamón Calvo
- Department of Medical Biochemistry, Molecular Biology, and Immunology, University of Seville Medical School, Sevilla, Spain
| |
Collapse
|
11
|
Methyl Donor Micronutrients: A Potential Dietary Epigenetic Target in Systemic Lupus Erythematosus Patients. Int J Mol Sci 2023; 24:ijms24043171. [PMID: 36834583 PMCID: PMC9961281 DOI: 10.3390/ijms24043171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by an aberrant immune response and persistent inflammation. Its pathogenesis remains unknown; however, a complex interaction between environmental, genetic, and epigenetic factors has been suggested to cause disease onset. Several studies have demonstrated that epigenetic alterations, such as DNA hypomethylation, miRNA overexpression, and altered histone acetylation, may contribute to SLE onset and the disease's clinical manifestations. Epigenetic changes, especially methylation patterns, are modifiable and susceptible to environmental factors such as diet. It is well known that methyl donor nutrients, such as folate, methionine, choline, and some B vitamins, play a relevant role in DNA methylation by participating as methyl donors or coenzymes in one-carbon metabolism. Based on this knowledge, this critical literature review aimed to integrate the evidence in animal models and humans regarding the role of nutrients in epigenetic homeostasis and their impact on immune system regulation to suggest a potential epigenetic diet that could serve as adjuvant therapy in SLE.
Collapse
|
12
|
Muñoz-García R, Sánchez-Hidalgo M, Montoya T, Alcarranza M, Ortega-Vidal J, Altarejos J, Alarcón-de-la-Lastra C. Effects of Oleacein, a New Epinutraceutical Bioproduct from Extra Virgin Olive Oil, in LPS-Activated Murine Immune Cells. Pharmaceuticals (Basel) 2022; 15:ph15111338. [PMID: 36355509 PMCID: PMC9699377 DOI: 10.3390/ph15111338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was designed to evaluate the immunomodulatory effects of the secoiridoid from extra virgin olive oil, oleacein (OLA), deepening into the possible signaling pathways involved in LPS-activated murine peritoneal macrophages. Moreover, we have explored OLA-induced epigenetic changes in histone markers and related cytokine production in murine LPS-stimulated murine splenocytes. Murine cells were treated with OLA in the presence or absence of LPS (5 μg/mL) for 18 or 24 h. OLA modulated the oxidative stress and the inflammatory response produced by LPS stimulation in murine peritoneal macrophages, by the inhibition of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17 and IL-18) and ROS production and the expression of pro-inflammatory enzymes such as iNOS, COX-2 and m-PGES1. These protective effects could be due to the activation of the Nrf-2/HO-1 axis and the inhibition of JAK/STAT, ERK and P38 MAPKs and inflammasome canonical and non-canonical signaling pathways. Moreover, OLA modulated epigenetic modifications throughout histone methylation deacetylation (H3K18ac) and (H3K9me3 and H3K27me) in LPS-activated spleen cells. In conclusion, our data present OLA as an interesting anti-inflammatory and antioxidant natural compound that is able to regulate histone epigenetic markers. Nevertheless, additional in vivo studies are required to further investigate the beneficial effects of this EVOO secoiridoid, which might be a promising epinutraceutical bioproduct for the management of immune-related inflammatory diseases.
Collapse
Affiliation(s)
- Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Tatiana Montoya
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Juan Ortega-Vidal
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | - Joaquín Altarejos
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
- Correspondence: ; Tel.: +34954559877
| |
Collapse
|
13
|
Mazur A, Frączek P, Tabarkiewicz J. Vitamin D as a Nutri-Epigenetic Factor in Autoimmunity-A Review of Current Research and Reports on Vitamin D Deficiency in Autoimmune Diseases. Nutrients 2022; 14:nu14204286. [PMID: 36296970 PMCID: PMC9611618 DOI: 10.3390/nu14204286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Epigenetics is a series of alterations regulating gene expression without disrupting the DNA sequence of bases. These regulatory mechanisms can result in embryogenesis, cellular differentiation, X-chromosome inactivation, and DNA-protein interactions. The main epigenetic mechanisms considered to play a major role in both health and disease are DNA methylation, histone modifications, and profiling of non-coding RNA. When the fragile balance between these simultaneously occurring phenomena is disrupted, the risk of pathology increases. Thus, the factors that determine proper epigenetic modeling are defined and those with disruptive influence are sought. Several such factors with proven negative effects have already been described. Diet and nutritional substances have recently been one of the most interesting targets of exploration for epigenetic modeling in disease states, including autoimmunity. The preventive role of proper nutrition and maintaining sufficient vitamin D concentration in maternal blood during pregnancy, as well as in the early years of life, is emphasized. Opportunities are also being investigated for affecting the course of the disease by exploring nutriepigenetics. The authors aim to review the literature presenting vitamin D as one of the important nutrients potentially modeling the course of disease in selected autoimmune disorders.
Collapse
Affiliation(s)
- Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
| | - Paulina Frączek
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Correspondence:
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, 35-310 Rzeszow, Poland
| |
Collapse
|
14
|
Impact of epigenetics on human health and possible tool for remediation. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|