1
|
Wang Y, Wang Q, Ji Q, An P, Wang X, Ju Y, Li R, Ruan Y, Zhao J, Cao M, Chen X. Supplementation with N-Acetyl-L-cysteine during in vitro maturation improves goat oocyte developmental competence by regulating oxidative stress. Theriogenology 2025; 235:221-230. [PMID: 39855039 DOI: 10.1016/j.theriogenology.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress. This study investigated the effects of NAC supplementation during in vitro maturation of goat oocytes and explored the molecular mechanisms of maturation by transcriptome sequencing of MⅡ oocytes. The results showed that 1.5 mM NAC significantly increased the rates of oocyte maturation and cumulus cell expansion and improved the subsequent development of embryos. During the subsequent culture of parthenogenetically activated embryos, 1.5 mM NAC significantly increased the division rate of oocytes and blastocyst rate. It also reduced the accumulation of ROS, increased the level of GSH, alleviated oxidative stress, and enhanced the antioxidant capacity and cell metabolic activity. Transcriptome sequencing results revealed that NAC treatment significantly increased the expression of SIRT1, GGCT, and MITF genes related to the cellular antioxidant system, as well as the IDH3G gene related to energy metabolism, and decreased the expression of CASP8, FOS, and MMP1 genes related to apoptosis and cell invasion, as well as the CCL2. and CXCL8 genes related to the inflammatory response. In conclusion, the findings suggest that NAC supplementation significantly reduces oxidative stress, improves antioxidant capacity and metabolic activity, promotes oocyte maturation, and improves oocyte quality.
Collapse
Affiliation(s)
- Yanfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Qingwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Quan Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Pengcheng An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yonghong Ju
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruiyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Maosheng Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Ferrer-Roda M, Paramio MT, Vila-Beltrán J, Izquierdo D. Effect of BMP15 and GDF9 in the IVM medium on subsequent oocyte competence and embryo development of prepubertal goats. Theriogenology 2025; 234:164-173. [PMID: 39709802 DOI: 10.1016/j.theriogenology.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both. To determine cumulus-oocyte communication, transzonal projections (TZP) density at 0h, 6h, 12h and 24h of IVM were evaluated. After IVM, mitochondrial activity, intracellular ROS and glutathione (GSH) levels, the epidermal growth factor receptor (EGFR) expression in oocytes and cumulus cells, and cumulus expansion were assessed. Blastocyst production and quality were evaluated after parthenogenetic activation (PA) and IVF. IVM supplementation with BMP15 increased the TZP density during the first 6 h of culture. After IVM, BMP15 increased mitochondrial activity, EGFR expression in oocytes and cumulus cells, and cumulus expansion compared to control, but ROS and GSH levels were similar to control. BMP15 improved blastocyst production following PA (15.5 % vs 6.3 %) and the number of cells in the blastocyst inner cell mass. No differences were observed on blastocyst production or quality following IVF. IVM supplementation with GDF9 did not improve results from control group in any parameters studied. Additionally, GDF9 in combination with BMP15 only improved mitochondrial activity and cumulus expansion over control. In conclusion, IVM medium supplementation with BMP15 (100 ng/ml) improves COCs quality parameters and PA-blastocyst production and quality of prepubertal goat oocytes. However, GDF9 (100 ng/mL) did not have any beneficial effect in this study and was possibly antagonistic to BMP15.
Collapse
Affiliation(s)
- Mònica Ferrer-Roda
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Maria-Teresa Paramio
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Judith Vila-Beltrán
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Dolors Izquierdo
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
3
|
Jain T, Jain A, Goswami SL, Roy B, De S, Kumar R, Datta TK. Association of growth differentiation factor 9 expression with nuclear receptor and basic helix-loop-helix transcription factors in buffalo oocytes during in vitro maturation. ZYGOTE 2024; 32:429-436. [PMID: 39523891 DOI: 10.1017/s096719942400025x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Growth differentiation factor 9 (GDF9) is an oocyte-specific paracrine factor involved in bidirectional communication, which plays an important role in oocyte developmental competence. In spite of its vital role in reproduction, there is insufficient information about exact transcriptional control mechanism of GDF9. Hence, present study was undertaken with the aim to study the expression of basic helix-loop-helix (bHLH) transcription factors (TFs) such as the factor in the germline alpha (FIGLA), twist-related protein 1 (TWIST1) and upstream stimulating factor 1 and 2 (USF1 and USF2), and nuclear receptor (NR) superfamily TFs like germ cell nuclear factor (GCNF) and oestrogen receptor 2 (ESR2) under three different in vitro maturation (IVM) groups [follicle-stimulating hormone (FSH), insulin-like growth factor-1 (IGF1) and oestradiol)] along with all supplementation group as positive control, to understand their role in regulation of GDF9 expression. Buffalo cumulus-oocyte complexes were aspirated from abattoir-derived ovaries and matured in different IVM groups. Following maturation, TFs expression was studied at 8 h of maturation in all four different IVM groups and correlated with GDF9 expression. USF1 displayed positive whereas GCNF, TWIST1 and ESR2 revealed negative correlation with GDF9 expression. TWIST1 & ESR2 revealing negative correlation with GDF9 expression were found to be positively correlated amongst themselves also. GCNF & USF1 revealing highly significant correlation with GDF9 expression in an opposite manner were found to be negatively correlated. The present study concludes that the expression of GDF9 in buffalo oocytes remains under control through the involvement of NR and bHLH TFs.
Collapse
Affiliation(s)
- Tripti Jain
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HRIndia
- Currently at Nanaji Deshmukh Veterinary Science University (NDVSU), Jabalpur, MP, India
| | - Asit Jain
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HRIndia
- Currently at Nanaji Deshmukh Veterinary Science University (NDVSU), Jabalpur, MP, India
| | - Surender Lal Goswami
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HRIndia
| | - Bhaskar Roy
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HRIndia
| | - Sachinandan De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HRIndia
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HRIndia
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HRIndia
- Currently at ICAR-Central Institute for Research on Buffaloes, Hisar, HR, India
| |
Collapse
|
4
|
Ferrer-Roda M, Gil A, Paramio MT, Izquierdo D. Effect of biphasic in vitro maturation (CAPA-IVM) on EGF receptor and embryo development of prepubertal goat oocytes according to follicle size. Anim Biotechnol 2024; 35:2422316. [PMID: 39522054 DOI: 10.1080/10495398.2024.2422316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Oocytes spontaneously resume meiosis following their liberation from follicles, preventing full competence acquisition. Biphasic IVM (CAPA-IVM) maintains oocytes in meiotic arrest to improve developmental competence, and it specially affects poorly developed oocytes. We assessed the effect of CAPA-IVM on oocytes from small (<3mm) and large (>3mm) follicles of prepubertal goats. Oocytes were cultured for 6h in pre-IVM with C-type natriuretic peptide (CNP) and estradiol as meiotic inhibitors, and germinal vesicle (GV) rate and chromatin configuration were assessed. Then, oocytes were cultured in conventional IVM (c-IVM) or CAPA-IVM (pre-IVM + c-IVM) and EGF receptor (EGFR) protein expression, intra-oocyte ROS and blastocyst development were assessed. GV rate was higher in CNP groups than control (69% vs 28%, and 67% vs 31%, small and large follicles, respectively), but GV chromatin configuration was similar. In large follicles, EGFR expression was higher in oocytes and cumulus cells after CAPA-IVM, and ROS levels were lower. In small follicles these differences were not observed. c-IVM and CAPA-IVM produced similar blastocyst rates in small (3.7% vs 2.6%, respectively) and large follicles (8.3% vs 2.5%). Overall, CAPA-IVM enhanced EGFR expression for EGF peptide signalling and antioxidant capacity in oocytes from large follicles but oocytes from small follicles were too immature to benefit from it.
Collapse
Affiliation(s)
- Mònica Ferrer-Roda
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Ana Gil
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Maria-Teresa Paramio
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Dolors Izquierdo
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Sharma A, Dubey PK, Kumar P, Tiwari KN, Tripathi A. Identification and molecular characterization of genes modulating progression of an oocyte from M-I to M-II in rat ovary. Am J Reprod Immunol 2024; 91:e13825. [PMID: 38389407 DOI: 10.1111/aji.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND To achieve oocyte competence for successful fertilization, bidirectional communication between oocyte and granulosa cells is crucial. The acquisition of meiotic competency in oocyte is facilitated by various regulatory genes however, expression pattern of these genes is not well documented during meiotic transition from Metaphase-I to Metaphase-II stage. Therefore, the present research analyzed the expression pattern of regulatory genes that are involved in the transition from M-I to M-II stages in rat oocyte. METHODS The analysis of the data was conducted by applying an array of bioinformatic tools. The investigation of gene group interactions was carried out by employing the STRING database, which relies on co-expression information. The gene ontology (GO) analysis was performed utilizing the comparative GO database. Functional annotation for GO and pathway enrichment analysis were performed for genes involved in networking. The GO obtained through computational simulations was subsequently validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS The findings of our study suggest that there is a distinct gene expression pattern in both the oocyte and granulosa cells. This pattern indicates that oocyte-secreted factors, such as BMP15 and GDF9, play a crucial role in regulating the progression of the meiotic cell cycle from the M-I to M-II stages. We have also examined the level of mRNA expression of genes including CYP11A1, CYP19A1, and STAR, which are crucial for the steroidogenesis. CONCLUSIONS It is fascinating to observe that the oscillatory pattern of specific key genes may hold significance in the process of in vitro oocyte maturation, specifically during the transition from the M-I to M-II stage. It might be useful for determining biomarker genes and potential pathways that play a role in attaining oocyte competency, thereby aiding in the assessment of oocyte quality for the purpose of achieving successful fertilization.
Collapse
Affiliation(s)
- Alka Sharma
- Zoology Section, MMV, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anima Tripathi
- Zoology Section, MMV, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Jiang Y, He Y, Pan X, Wang P, Yuan X, Ma B. Advances in Oocyte Maturation In Vivo and In Vitro in Mammals. Int J Mol Sci 2023; 24:9059. [PMID: 37240406 PMCID: PMC10219173 DOI: 10.3390/ijms24109059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The quality and maturation of an oocyte not only play decisive roles in fertilization and embryo success, but also have long-term impacts on the later growth and development of the fetus. Female fertility declines with age, reflecting a decline in oocyte quantity. However, the meiosis of oocytes involves a complex and orderly regulatory process whose mechanisms have not yet been fully elucidated. This review therefore mainly focuses on the regulation mechanism of oocyte maturation, including folliculogenesis, oogenesis, and the interactions between granulosa cells and oocytes, plus in vitro technology and nuclear/cytoplasm maturation in oocytes. Additionally, we have reviewed advances made in the single-cell mRNA sequencing technology related to oocyte maturation in order to improve our understanding of the mechanism of oocyte maturation and to provide a theoretical basis for subsequent research into oocyte maturation.
Collapse
Affiliation(s)
- Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
7
|
Xie J, Xu X, Liu S. Intercellular communication in the cumulus-oocyte complex during folliculogenesis: A review. Front Cell Dev Biol 2023; 11:1087612. [PMID: 36743407 PMCID: PMC9893509 DOI: 10.3389/fcell.2023.1087612] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
During folliculogenesis, the oocyte and surrounding cumulus cells form an ensemble called the cumulus-oocyte complex (COC). Due to their interdependence, research on the COC has been a hot issue in the past few decades. A growing body of literature has revealed that intercellular communication is critical in determining oocyte quality and ovulation. This review provides an update on the current knowledge of COC intercellular communication, morphology, and functions. Transzonal projections (TZPs) and gap junctions are the most described structures of the COC. They provide basic metabolic and nutrient support, and abundant molecules for signaling pathways and regulations. Oocyte-secreted factors (OSFs) such as growth differentiation factor 9 and bone morphogenetic protein 15 have been linked with follicular homeostasis, suggesting that the communications are bidirectional. Using advanced techniques, new evidence has highlighted the existence of other structures that participate in intercellular communication. Extracellular vesicles can carry transcripts and signaling molecules. Microvilli on the oocyte can induce the formation of TZPs and secrete OSFs. Cell membrane fusion between the oocyte and cumulus cells can lead to sharing of cytoplasm, in a way making the COC a true whole. These findings give us new insights into related reproductive diseases like polycystic ovary syndrome and primary ovarian insufficiency and how to improve the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Jun Xie
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Suying Liu,
| |
Collapse
|
8
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptome Analysis of the Ovaries of Taihe Black-Bone Silky Fowls at Different Egg-Laying Stages. Genes (Basel) 2022; 13:2066. [PMID: 36360303 PMCID: PMC9691135 DOI: 10.3390/genes13112066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 01/01/2025] Open
Abstract
The poor egg-laying performance and short peak egg-laying period restrict the economic benefits of enterprises relating to the Taihe black-bone silky fowl. Ovaries are the main organ for egg production in poultry. Unlike that of mammals, the spawning mechanism of poultry has rarely been reported. As a prominent local breed in China, the reproductive performance of Taihe black-bone silky fowls is in urgent need of development and exploitation. To further explore the egg-laying regulation mechanism in the different periods of Taihe black-bone silky fowls, the ovarian tissues from 12 chickens were randomly selected for transcriptome analysis, and 4 chickens in each of the three periods (i.e., the pre-laying period (102 days old, Pre), peak laying period (203 days old, Peak), and late laying period (394 days old, Late)). A total of 12 gene libraries were constructed, and a total of 9897 differential expression genes (DEGs) were identified from three comparisons; the late vs. peak stage had 509 DEGs, the pre vs. late stage had 5467 DEGs, and the pre vs. peak stage had 3921 DEGs (pre-stage: pre-egg-laying period (102 days old), peak-stage: peak egg-laying period (203 days old), and late-stage: late egg-laying period (394 days old)). In each of the two comparisons, 174, 84, and 2752 differentially co-expressed genes were obtained, respectively, and 43 differentially co-expressed genes were obtained in the three comparisons. Through the analysis of the differential genes, we identified some important genes and pathways that would affect reproductive performance and ovarian development. The differential genes were LPAR3, AvBD1, SMOC1, IGFBP1, ADCY8, GDF9, PTK2B, PGR, and CD44, and the important signaling pathways included proteolysis, extracellular matrices, vascular smooth muscle contraction, the NOD-like receptor signaling pathway and the phagosome. Through the analysis of the FPKM (Fragments Per Kilobase of exon model per Million mapped fragments) values of the genes, we screened three peak egg-laying period-specific expressed genes: IHH, INHA, and CYP19A1. The twelve genes and five signaling pathways mentioned above have rarely been reported in poultry ovary studies, and our study provides a scientific basis for the improvement of the reproductive performance in Taihe black-bone silky fowls.
Collapse
Affiliation(s)
- Xin Xiang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Xuan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | | | - Haiyang Zhang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhou
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Xu
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yunyan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yuting Tan
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Zhaozheng Yin
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
H LD, D. SN, Pandey S, T Y, Chandra V, G TS. Impact of uterine epithelial cells and its conditioned medium on the in vitro embryo production in buffalo (Bubalus bubalis). Theriogenology 2022; 183:61-68. [DOI: 10.1016/j.theriogenology.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
|
10
|
Delgado JDC, Hamilton TRDS, Mendes CM, Siqueira AFP, Goissis MD, Buratini J, Assumpção MEOD. Bone morphogenetic protein 15 supplementation enhances cumulus expansion, nuclear maturation and progesterone production of in vitro-matured bovine cumulus-oocyte complexes. Reprod Domest Anim 2021; 56:754-763. [PMID: 33565658 DOI: 10.1111/rda.13914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
In vitro embryo production (IVP) efficiency is reduced when compared to in vivo. The basic knowledge of bovine in vitro oocyte maturation (IVM) mechanisms provides support to improve in vitro embryo production yields. The present study assessed the effects of bone morphogenetic protein 15 (BMP15), fibroblast growth factor 16 (FGF16) and their combined action on cumulus cells (CC) expansion, oocyte and CC DNA fragmentation, oocyte nuclear maturation, energetic metabolism and progesterone production in bovine IVM. Cumulus-oocyte complexes (COC) were matured in control or supplemented media containing BMP15 (100 ng/ml), FGF16 (10 ng/ml) or BMP15 combined with FGF16; and assessed at 0 and 22 hr of IVM. BMP15 alone or its association with FGF16 enhanced cumulus expansion. BMP15 decreased DNA fragmentation in both CC and oocytes, and improved oocyte nuclear maturation rate. In addition, BMP15 increased CC progesterone production, an effect not previously reported. The present study reinforces previous data pointing to a beneficial influence of BMP15 during IVM, while providing novel evidence that the underlying mechanisms involve increased progesterone production.
Collapse
Affiliation(s)
- Juliana de Carvalho Delgado
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Rose Dos Santos Hamilton
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Camilla Mota Mendes
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriano Felipe Perez Siqueira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - José Buratini
- Department of Structural and Functional Biology, Institute of Biociences, State University of Sao Paulo, Botucatu, Brazil.,Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Monza, Italy
| | | |
Collapse
|
11
|
Yang CX, Wang PC, Liu S, Miao JK, Liu XM, Miao YL, Du ZQ. Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes. J Cell Physiol 2020; 235:8304-8318. [PMID: 32239703 DOI: 10.1002/jcp.29675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) regulate a variety of physiological and pathological processes. However, the biological function of lncRNAs in mammalian germ cells remains largely unexplored. Here we identified one novel lncRNA (lncRNA2193) from single-cell RNA sequencing performed on porcine oocytes and investigated its function in oocyte meiosis. During in vitro maturation (IVM), from germinal vesicle (GV, 0 hr), GV breakdown (GVBD, 24 hr), to metaphase II stage (MII, 44 hr), the transcriptional abundance of lncRNA2193 remained stable and high. LncRNA2193 interference by small interfering RNA microinjection into porcine GV oocytes could significantly inhibit rates of GVBD and the first polar body extrusion, but enhance the rates of oocytes with a nuclear abnormality. Moreover, lncRNA2193 knockdown disturbed cytoskeletal organization (F-actin and spindle), and decreased DNA 5-methylcytosine (5mC) and histone trimethylation (H3K4me3, H3K9me3, H3K27me3, and H3K36me3) levels. The lncRNA2193 downregulation induced a decrease of 5mC level could be partially due to the reduction of DNA methyltransferase 3A and 3B, and the elevation of 5mC-hydroxylase ten-11 translocation 2 (TET2). After parthenogenetic activation of MII oocytes, parthenotes exhibited higher fragmentation but lower cleavage rates in the lncRNA2193 downregulated group. However, lncRNA2193 interference performed on mature MII oocytes and parthenotes at 1-cell stage did not affect the cleavage and blasctocyst rates of pathenotes. Taken together, lncRNA2193 plays an important role in porcine oocyte maturation, providing more insights for relevant investigations on mammalian germ cells.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Pandey S, Somal A, Parmar MS, Gupta S, Bharti MK, Bhat IA, Indu B, Chandra V, Kumar GS, Sharma GT. Effect of roscovitine on developmental competence of small follicle-derived buffalo oocytes. Indian J Med Res 2019; 148:S140-S150. [PMID: 30964092 PMCID: PMC6469368 DOI: 10.4103/ijmr.ijmr_2068_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background & objectives: The lower recovery of competent oocytes in buffalo species limits the commercialization of in vitro embryo production technology in field condition. In this context, pre-maturation of small follicle (SF)-derived oocytes with meiotic inhibition may be a promising alternative to obtain more number of competent oocytes. Thus, the present study was conducted with an objective to enhance the developmental potential of less competent SF-derived buffalo oocytes. Methods: All the visible follicles (used for aspiration) from buffalo ovaries were divided into two categories: large follicle (LF) (follicles having diameter ≥6 mm) and SF (follicles of diameter <6 mm). The competence of LF and SF oocytes was observed in terms of brilliant cresyl blue (BCB) staining, cleavage rate, blastocyst rate and relative gene expression of oocyte and blastocyst competence markers. Thereafter, less competent SF oocytes were treated with 0, 12.5, 25, 50 and 100 mM doses of roscovitine (cyclin-dependent kinase inhibitor) to enhance their developmental potential. Results: Based on parameters studied, LF oocytes were found to be more competent than SF oocytes. Pre-maturation incubation of SF oocytes with roscovitine reversibly arrested oocyte maturation for 24 h to ensure the proper maturation of less competent oocytes. A significantly higher number of BCB-positive oocytes were noted in roscovitine-treated group than SF group. Cleavage and blastocyst rates were also higher in roscovitine-treated group. The relative messenger RNA expression of oocyte (GDF9, BMP15, GREM1, EGFR, PTGS2 and HAS2) as well as blastocyst (INF-τ, GLUT1 and POU5F1) competence markers was significantly greater in roscovitine-treated group relative to SF group. Again, on comparison with LF group, these parameters depicted a lower value in the treatment group. Interpretation & conclusions: The findings of this study has revealed that pre-maturation incubation of SF-derived oocytes with 25 μM roscovitine can improve its developmental competence and thus can be utilized to get maximum number of competent oocytes for better commercialization of in vitro embryo production technology in buffalo.
Collapse
Affiliation(s)
- Sriti Pandey
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Anjali Somal
- Department of Veterinary Physiology & Biochemistry, CSK Himachal Pradesh Agricultural University Palampur, India
| | - Mehtab S Parmar
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Bilaspur, India
| | - Swati Gupta
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mukesh K Bharti
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Irfan A Bhat
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - B Indu
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Vikash Chandra
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - G Sai Kumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - G Taru Sharma
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
13
|
Tang J, Hu W, Di R, Liu Q, Wang X, Zhang X, Zhang J, Chu M. Expression Analysis of the Prolific Candidate Genes, BMPR1B, BMP15, and GDF9 in Small Tail Han Ewes with Three Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2018; 8:ani8100166. [PMID: 30274220 PMCID: PMC6210785 DOI: 10.3390/ani8100166] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/02/2023] Open
Abstract
Simple Summary As important prolific candidate genes, BMPR1B, BMP15, and GDF9 may affect the lambing performance of sheep. Therefore, regarding the three FecB genotypes of Small Tail Han (STH) sheep (FecB BB, FecB B+, and FecB ++), this study explored the gene expression characteristics of different tissues using reverse transcription PCR (RT-PCR) and real-time quantitative PCR (qPCR). The results showed that BMPR1B, BMP15, and GDF9 expression differed between the selected tissues, with all being highly expressed in the ovaries. Further analysis indicated that there was no significant difference in BMPR1B expression among the three FecB genotypes, but both GDF9 and BMP15 had the highest expression in FecB B+. As for other non-ovarian tissues, expression also varied. This study is relevant to understanding the high prolificacy of the STH breed. Abstract The expression characteristics of the prolific candidate genes, BMPR1B, BMP15, and GDF9, in the major visceral organs and hypothalamic–pituitary–gonadal (HPG) axis tissues of three FecB genotypes (FecB BB, FecB B+, and FecB ++) were explored in STH ewes using RT-PCR and qPCR. The results were as follows, BMPR1B was expressed in all FecB BB genotype (Han BB) tissues, and GDF9 was expressed in all selected tissues, but BMP15 was specifically expressed in the ovaries. Further study of ovarian expression indicated that there was no difference in BMPR1B expression between genotypes, but the FecB B+ genotype (Han B+) had greater expression of GDF9 and BMP15 than Han BB and FecB ++ genotype (Han ++) (p < 0.05, p < 0.01). BMP15 expression was lower in the ovaries of Han BB than in Han ++ sheep, but the reverse was shown for GDF9. The gene expression in non-ovarian tissues was also different between genotypes. Therefore, we consider that the three genes have an important function in ovine follicular development and maturation. This is the first systematic analysis of the tissue expression pattern of BMPR1B, BMP15, and GDF9 genes in STH sheep of the three FecB genotypes. These results contribute to the understanding of the molecular regulatory mechanism for ovine reproduction.
Collapse
Affiliation(s)
- Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|