1
|
Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A, Alviggi C, Ubaldi FM, Capalbo A. Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Hum Reprod Update 2023; 29:570-633. [PMID: 37192834 DOI: 10.1093/humupd/dmad010] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND A normal chromosomal constitution defined through PGT-A assessing all chromosomes on trophectoderm (TE) biopsies represents the strongest predictor of embryo implantation. Yet, its positive predictive value is not higher than 50-60%. This gap of knowledge on the causes of euploid blastocysts' reproductive failure is known as 'the black box of implantation'. OBJECTIVE AND RATIONALE Several embryonic, maternal, paternal, clinical, and IVF laboratory features were scrutinized for their putative association with reproductive success or implantation failure of euploid blastocysts. SEARCH METHODS A systematic bibliographical search was conducted without temporal limits up to August 2021. The keywords were '(blastocyst OR day5 embryo OR day6 embryo OR day7 embryo) AND (euploid OR chromosomally normal OR preimplantation genetic testing) AND (implantation OR implantation failure OR miscarriage OR abortion OR live birth OR biochemical pregnancy OR recurrent implantation failure)'. Overall, 1608 items were identified and screened. We included all prospective or retrospective clinical studies and randomized-controlled-trials (RCTs) that assessed any feature associated with live-birth rates (LBR) and/or miscarriage rates (MR) among non-mosaic euploid blastocyst transfer after TE biopsy and PGT-A. In total, 41 reviews and 372 papers were selected, clustered according to a common focus, and thoroughly reviewed. The PRISMA guideline was followed, the PICO model was adopted, and ROBINS-I and ROB 2.0 scoring were used to assess putative bias. Bias across studies regarding the LBR was also assessed using visual inspection of funnel plots and the trim and fill method. Categorical data were combined with a pooled-OR. The random-effect model was used to conduct the meta-analysis. Between-study heterogeneity was addressed using I2. Whenever not suitable for the meta-analysis, the included studies were simply described for their results. The study protocol was registered at http://www.crd.york.ac.uk/PROSPERO/ (registration number CRD42021275329). OUTCOMES We included 372 original papers (335 retrospective studies, 30 prospective studies and 7 RCTs) and 41 reviews. However, most of the studies were retrospective, or characterized by small sample sizes, thus prone to bias, which reduces the quality of the evidence to low or very low. Reduced inner cell mass (7 studies, OR: 0.37, 95% CI: 0.27-0.52, I2 = 53%), or TE quality (9 studies, OR: 0.53, 95% CI: 0.43-0.67, I2 = 70%), overall blastocyst quality worse than Gardner's BB-grade (8 studies, OR: 0.40, 95% CI: 0.24-0.67, I2 = 83%), developmental delay (18 studies, OR: 0.56, 95% CI: 0.49-0.63, I2 = 47%), and (by qualitative analysis) some morphodynamic abnormalities pinpointed through time-lapse microscopy (abnormal cleavage patterns, spontaneous blastocyst collapse, longer time of morula formation I, time of blastulation (tB), and duration of blastulation) were all associated with poorer reproductive outcomes. Slightly lower LBR, even in the context of PGT-A, was reported among women ≥38 years (7 studies, OR: 0.87, 95% CI: 0.75-1.00, I2 = 31%), while obesity was associated with both lower LBR (2 studies, OR: 0.66, 95% CI: 0.55-0.79, I2 = 0%) and higher MR (2 studies, OR: 1.8, 95% CI: 1.08-2.99, I2 = 52%). The experience of previous repeated implantation failures (RIF) was also associated with lower LBR (3 studies, OR: 0.72, 95% CI: 0.55-0.93, I2 = 0%). By qualitative analysis, among hormonal assessments, only abnormal progesterone levels prior to transfer were associated with LBR and MR after PGT-A. Among the clinical protocols used, vitrified-warmed embryo transfer was more effective than fresh transfer (2 studies, OR: 1.56, 95% CI: 1.05-2.33, I2 = 23%) after PGT-A. Lastly, multiple vitrification-warming cycles (2 studies, OR: 0.41, 95% CI: 0.22-0.77, I2 = 50%) or (by qualitative analysis) a high number of cells biopsied may slightly reduce the LBR, while simultaneous zona-pellucida opening and TE biopsy allowed better results than the Day 3 hatching-based protocol (3 studies, OR: 1.41, 95% CI: 1.18-1.69, I2 = 0%). WIDER IMPLICATIONS Embryo selection aims at shortening the time-to-pregnancy, while minimizing the reproductive risks. Knowing which features are associated with the reproductive competence of euploid blastocysts is therefore critical to define, implement, and validate safer and more efficient clinical workflows. Future research should be directed towards: (i) systematic investigations of the mechanisms involved in reproductive aging beyond de novo chromosomal abnormalities, and how lifestyle and nutrition may accelerate or exacerbate their consequences; (ii) improved evaluation of the uterine and blastocyst-endometrial dialogue, both of which represent black boxes themselves; (iii) standardization/automation of embryo assessment and IVF protocols; (iv) additional invasive or preferably non-invasive tools for embryo selection. Only by filling these gaps we may finally crack the riddle behind 'the black box of implantation'.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Eric Forman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | | | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Maurizio Poli
- Centrum voor Kinderwens, Dijklander Hospital, Purmerend, The Netherlands
- Juno Genetics, Rome, Italy
| | - Jenna Hynes
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Laura Gemmell
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Naples, Italy
| | | | | |
Collapse
|
2
|
Chen R, Tang N, Du H, Yao Y, Zou Y, Wang J, Zhao D, Zhou X, Luo Y, Li L, Mao Y. Clinical application of noninvasive chromosomal screening for elective single-blastocyst transfer in frozen-thawed cycles. J Transl Med 2022; 20:553. [PMID: 36463184 PMCID: PMC9719190 DOI: 10.1186/s12967-022-03640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The objective of this study was to explore the clinical application of noninvasive chromosomal screening (NICS) for elective single-blastocyst transfer (eSBT) in frozen-thawed cycles. METHODS This study retrospectively analysed the data of 212 frozen-thawed single-blastocyst transfers performed in our centre from January 2019 to July 2019. The frozen embryos were selected based on morphological grades and placed in preincubation for 6 h after warming. Then spent microdroplet culture media of frozen-thawed blastocysts were harvested and subjected to NICS. The clinical outcomes were evaluated and further stratified analysis were performed, especially different fertilization approaches. RESULTS The clinical pregnancy, ongoing pregnancy, and live birth rates in the euploidy group were significantly higher than those in the aneuploidy group (56.2% versus 29.4%) but were nonsignificantly different from those in the chaotic abnormal/NA embryos group (56.2% versus 60.4%). Compared with day6 (D6) blastocysts, D5 blastocysts had a nonsignificantly different euploidy rate (40.4% versus 48.1%, P = 0.320) but significantly increased clinical pregnancy (57.7% versus 22.2%, P < 0.001), ongoing pregnancy (48.1% versus 14.8%, P < 0.001), and live birth rates (48.1% versus 13.0%, P < 0.001). The percentage of chaotic abnormal/NA embryos group was significantly higher among D5 embryos than among D6 embryos (30.1% versus 11.1%, P = 0.006). The percentage of aneuploid embryos was higher among the embryos with lower morphological quality(21.5% among 'good' embryos versus 34.6% among 'fair' embryos versus 46.0% among 'poor' embryos, P = 0.013); correspondingly, the overall clinical pregnancy, ongoing pregnancy and live birth rate rates showed similar declines. CONCLUSIONS NICS combined with morphological assessment is an effective tool to guide frozen-thawed SBT. The optimal embryo for SBT is a 'euploid embryo with good morphology', followed sequentially by a 'chaotic abnormal/NA embryo with good morphology', 'euploid embryo with fair morphology', and 'chaotic abnormal/NA embryo with fair morphology'.
Collapse
Affiliation(s)
- Rui Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ni Tang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongzi Du
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaxin Yao
- Department of Clinical Research, Yikon Genomics Company, Ltd, Suzhou, 215000, China
| | - Yangyun Zou
- Department of Clinical Research, Yikon Genomics Company, Ltd, Suzhou, 215000, China
| | - Jing Wang
- Department of Clinical Research, Yikon Genomics Company, Ltd, Suzhou, 215000, China
| | - Dunmei Zhao
- Department of Clinical Research, Yikon Genomics Company, Ltd, Suzhou, 215000, China
| | - Xueliang Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Yu G, Ma S, Liu H, Liu Y, Zhang H, Zhang W, Wu K. Comparison of clinical outcomes of frozen-thawed D5 and D6 blastocysts undergoing preimplantation genetic testing. J Transl Med 2022; 20:545. [DOI: 10.1186/s12967-022-03762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/06/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
This study aimed to analyze the clinical outcomes of blastocyst which undergo the preimplantation genetic testing (PGT) transplantation from frozen-thawed D5 and D6. In addition, the effect of blastocyst grade on clinical and neonatal outcomes was also investigated in this study.
Methods
The pregnancy and miscarriage rates of 1130 cycles of frozen embryo transfer, including 784 D5 frozen embryos and 346 D6 frozen embryos in the Reproductive Hospital of Shandong University from January to December 2020 were analyzed. Gardner blastocyst scoring was used for blastocyst evaluation.
Results
The pregnancy rate of D5 blastocyst was significantly higher, whereas the miscarriage rate of D5 blastocyst was lower, than that of D6 blastocyst tissue biopsy. No significant difference was observed in birth weight and low birth weight of D5 blastocyst and D6 blastocyst, preterm birth, gestational age, and neonatal sex. Frozen-thawed D5 blastocysts have higher pregnancy success rates and lower miscarriage rates compared to D6 blastocysts.
Conclusion
Therefore, both blastocyst grade and embryo biopsy date must be considered when transferring frozen embryos.
Collapse
|
4
|
Abdala A, Elkhatib I, Bayram A, Arnanz A, El-Damen A, Melado L, Lawrenz B, Fatemi HM, De Munck N. Day 5 vs day 6 single euploid blastocyst frozen embryo transfers: which variables do have an impact on the clinical pregnancy rates? J Assist Reprod Genet 2022; 39:379-388. [PMID: 35064434 PMCID: PMC8956773 DOI: 10.1007/s10815-021-02380-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To determine which variables affect most the clinical pregnancy rate with positive fetal heartbeat (CPR FHB+) when frozen embryo transfer (FET) cycles are performed with day 5 (D5) or day 6 (D6) euploid blastocysts. Design and method A single center retrospective study was performed from March 2017 till February 2021 including all single FET cycles with euploid D5 or D6 blastocysts and transferred in natural cycles (NC) or hormone replacement therapy (HRT) cycles. Trophectoderm (TE) and inner cell mass (ICM) qualities were recorded before biopsy. RESULTS A total of 1102 FET cycles were included, 678 with D5 and 424 with D6 blastocysts. Pregnancy rate (PR), clinical PR (CPR), and CPR FHB+ were significantly higher with D5 blastocysts (PR: 70.7% vs 62.0%, OR = 0.68 [0.53-0.89], p = 0.004; CPR: 63.7% vs 54.2%, OR = 0.68 [0.52-0.96], p = 0.002 and CPR FHB+: 57.8% vs 49.8%, OR = 0.72 [0.53-0.96], p = 0.011). However, miscarriage rate (12.5% vs 11.4%, OR = 0.78 [0.48-1.26], p = 0.311) did not differ. From a multivariate logistic regression model, endometrial thickness (OR = 1.11 [1.01-1.22], p = 0.028), patient's age (OR = 1.03 [1.00-1.05], p = 0.021), BMI (OR = 0.97 [0.94-0.99], p = 0.023), and ICM grade C (OR = 0.23 [0.13-0.43], p < 0.001) were significant in predicting CPR FHB+. CONCLUSION Although clinical outcomes are higher with D5 blastocysts, CPR FHB+ is more affected by endometrial thickness, patient age, BMI, and ICM grade C rather than biopsy day or endometrial preparation protocol.
Collapse
Affiliation(s)
- Andrea Abdala
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Aşina Bayram
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ana Arnanz
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates ,Biomedicine and Biotechnology Department, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ahmed El-Damen
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates
| | - Laura Melado
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates
| | - Barbara Lawrenz
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates ,Obstetrical Department, Women’s University Hospital Tuebingen, Tuebingen, Germany
| | - Human M. Fatemi
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates
| | - Neelke De Munck
- ART Fertility Clinics, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Yang H, Yang D, Zhu Q, Wang K, Zhang C, Chen B, Zou W, Hao Y, Ding D, Yu Z, Ji D, Chen D, Cao Y, Zou H, Zhang Z. Application of Two Blastocyst Biopsy Strategies in Preimplantation Genetic Testing Treatment and Assessment of Their Effects. Front Endocrinol (Lausanne) 2022; 13:852620. [PMID: 35311229 PMCID: PMC8931332 DOI: 10.3389/fendo.2022.852620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Blastocyst biopsy has become the most mainstream biopsy method. Currently, there are two blastocyst biopsy strategies. Many studies have compared the advantages and disadvantages between blastomere and blastocyst biopsy, but fewer articles have compared the two blastocyst biopsy strategies. For the moment, no published studies have explored the entire set of information on embryo development, next-generation sequencing results, and clinical outcomes, including the baby's health status with the two blastocyst biopsy strategies. METHODS A total of 323 preimplantation genetic testing cycles from April 2018 to May 2020, including 178 cycles with Strategy A and 145 cycles with Strategy B. Strategy A was to create a laser-assisted zona pellucid opening for cleavage embryo on the third day after insemination, but Strategy B was not. Strategy A performed a biopsy for artificially assisted hatching blastocysts, while Strategy B performed a biopsy for expanded blastocysts on day 5 or 6. In this study, embryo development, next-generation sequencing results, pregnancy outcomes, and offspring health of the two strategies were compared and analyzed. RESULTS There were no statistical differences between the two groups in the rate of fertilization, blastocyst and abortion. The rate of cleavage from Strategy A was slightly higher than Strategy B, and the rate of high-quality cleavage embryo was lower than Strategy B, while the rate of high-quality blastocyst was higher than Strategy B. The rate of no-results blastocyst was significantly lower than Strategy B. In particular, the rate of biochemical pregnancy, clinical pregnancy, and live birth of Strategy A were significantly lower than those of Strategy B. The average Apgar scores of newborns were ≥8 in both groups, and there was no significant difference in average height and weight. In Strategy A, a baby was born with thumb syndactyly, and Strategy B had no congenital disabilities. CONCLUSIONS Blastocyst biopsy strategy without laser-assisted zona pellucid drilling on day 3 achieves better clinical treatment effects. Therefore, Strategy B is an optimal treatment regime for PGT.
Collapse
Affiliation(s)
- Han Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Dandan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Qi Zhu
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Kaijuan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Chao Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yan Hao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhaojuan Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Dawei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Zhiguo Zhang, ; Huijuan Zou, ; Yunxia Cao,
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Zhiguo Zhang, ; Huijuan Zou, ; Yunxia Cao,
| | - Zhiguo Zhang
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Zhiguo Zhang, ; Huijuan Zou, ; Yunxia Cao,
| |
Collapse
|