1
|
Chen AI, Ebisu K, Benmarhnia T, Basu R. Emergency department visits associated with wildfire smoke events in California, 2016-2019. ENVIRONMENTAL RESEARCH 2023; 238:117154. [PMID: 37716386 DOI: 10.1016/j.envres.2023.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Wildfire smoke has been associated with adverse respiratory outcomes, but the impacts of wildfire on other health outcomes and sensitive subpopulations are not fully understood. We examined associations between smoke events and emergency department visits (EDVs) for respiratory, cardiovascular, diabetes, and mental health outcomes in California during the wildfire season June-December 2016-2019. Daily, zip code tabulation area-level wildfire-specific fine particulate matter (PM2.5) concentrations were aggregated to air basins. A "smoke event" was defined as an air basin-day with a wildfire-specific PM2.5 concentration at or above the 98th percentile across all air basin-days (threshold = 13.5 μg/m3). We conducted a two-stage time-series analysis using quasi-Poisson regression considering lag effects and random effects meta-analysis. We also conducted analyses stratified by race/ethnicity, age, and sex to assess potential effect modification. Smoke events were associated with an increased risk of EDVs for all respiratory diseases at lag 1 [14.4%, 95% confidence interval (CI): (6.8, 22.5)], asthma at lag 0 [57.1% (44.5, 70.8)], and chronic lower respiratory disease at lag 0 [12.7% (6.2, 19.6)]. We also found positive associations with EDVs for all cardiovascular diseases at lag 10. Mixed results were observed for mental health outcomes. Stratified results revealed potential disparities by race/ethnicity. Short-term exposure to smoke events was associated with increased respiratory and schizophrenia EDVs. Cardiovascular impacts may be delayed compared to respiratory outcomes.
Collapse
Affiliation(s)
- Annie I Chen
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| |
Collapse
|
2
|
Duncan S, Reed C, Spurlock T, Sugg MM, Runkle JD. Acute Health Effects of Wildfire Smoke Exposure During a Compound Event: A Case-Crossover Study of the 2016 Great Smoky Mountain Wildfires. GEOHEALTH 2023; 7:e2023GH000860. [PMID: 37869265 PMCID: PMC10588979 DOI: 10.1029/2023gh000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
In 2016, unprecedented intense wildfires burned over 150,000 acres in the southern Appalachian Mountains in the United States. Smoke from these fires greatly impacted the region and exposure to this smoke was significant. A bidirectional case-crossover design was applied to assess the relationship between PM2.5 (a surrogate for wildfire smoke) exposure and respiratory- and cardiovascular-related emergency department (ED) visits in Western North Carolina during these events. For 0-, 3-, and 7-day lags, findings indicated a significant increase in the odds of being admitted to the ED for a respiratory (ORs: 1.055, 95% CI: 1.048-1.063; 1.083, 1.074-1.092; 1.066, 1.058-1.074; respectively) or cardiovascular event (ORs: 1.052, 95% CI: 1.045-1.060; 1.074, 1.066-1.081; 1.067, 1.060-1.075; respectively) for every 5 μg/m3 increase in PM2.5 over a chosen cutpoint of 20.4 μg/m3. For all endpoints assessed except for emphysema, there were statistically significant increases in odds from 5.1% to 8.3%. In general, this increase was most pronounced 3 days after exposure. Additionally, individuals aged 55+ generally experience higher odds of heart disease at the 3- and 7-day lag points, and Black/African Americans generally experience higher odds of asthma at the 3-day lag point. In general, larger fires and increased numbers of fires within counties resulted in higher health burden at same day exposure. In a secondary analysis, the odds of an ED visit increased by over 40% in several cases among people exposed to days above the Environmental Protection Agency 24-hr PM2.5 standard of 35 μg/m3. Our findings provide new understanding on the health impacts of wildfires on rural populations in the southeastern US.
Collapse
Affiliation(s)
- Sara Duncan
- School of Health SciencesWestern Carolina UniversityNCCullowheeUSA
| | - Charlie Reed
- North Carolina Institute for Climate StudiesNorth Carolina State UniversityNCAshevilleUSA
| | - Taylin Spurlock
- Department of Geography and PlanningAppalachian State UniversityBooneNCUSA
| | - Margaret M. Sugg
- Department of Geography and PlanningAppalachian State UniversityBooneNCUSA
| | - Jennifer D. Runkle
- North Carolina Institute for Climate StudiesNorth Carolina State UniversityNCAshevilleUSA
| |
Collapse
|
3
|
Yu S, Hsueh L. Do wildfires exacerbate COVID-19 infections and deaths in vulnerable communities? Evidence from California. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116918. [PMID: 36529003 PMCID: PMC9705198 DOI: 10.1016/j.jenvman.2022.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Understanding whether and how wildfires exacerbate COVID-19 outcomes is important for assessing the efficacy and design of public sector responses in an age of more frequent and simultaneous natural disasters and extreme events. Drawing on environmental and emergency management literatures, we investigate how wildfire smoke (PM2.5) impacted COVID-19 infections and deaths during California's 2020 wildfire season and how public housing resources and hospital capacity moderated wildfires' effects on COVID-19 outcomes. We also hypothesize and empirically assess the differential impact of wildfire smoke on COVID-19 infections and deaths in counties exhibiting high and low social vulnerability. To test our hypotheses concerning wildfire severity and its disproportionate impact on COVID-19 outcomes in socially vulnerable communities, we construct a county-by-day panel dataset for the period April 1 to November 30, 2020, in California, drawing on publicly available state and federal data sources. This study's empirical results, based on panel fixed effects models, show that wildfire smoke is significantly associated with increases in COVID-19 infections and deaths. Moreover, wildfires exacerbated COVID-19 outcomes by depleting the already scarce hospital and public housing resources in local communities. Conversely, when wildfire smoke doubled, a one percent increase in the availability of hospital and public housing resources was associated with a 2 to 7 percent decline in COVID-19 infections and deaths. For California communities exhibiting high social vulnerability, the occurrence of wildfires worsened COVID-19 outcomes. Sensitivity analyses based on an alternative sample size and different measures of social vulnerability validate this study's main findings. An implication of this study for policymakers is that communities exhibiting high social vulnerability will greatly benefit from local government policies that promote social equity in housing and healthcare before, during, and after disasters.
Collapse
Affiliation(s)
- Suyang Yu
- School of Public Affairs, Arizona State University, 411 N Central Ave Suite 400, Phoenix, AZ, 85004, USA.
| | - Lily Hsueh
- School of Public Affairs, Arizona State University, 411 N Central Ave Suite 400, Phoenix, AZ, 85004, USA; Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Berlin Rubin N, Wong-Parodi G. As California burns: the psychology of wildfire- and wildfire smoke-related migration intentions. POPULATION AND ENVIRONMENT 2022; 44:15-45. [PMID: 36032962 PMCID: PMC9399564 DOI: 10.1007/s11111-022-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Climate change impacts and rapid development in the wildland-urban interface are increasing population exposure and vulnerability to the harmful effects of wildfire and wildfire smoke. The direct and indirect effects of these hazards may impact future mobility decisions among populations at risk. To better understand how perceptions and personal experience inform wildfire- and smoke-associated migration intentions, we surveyed a representative sample of 1108 California residents following the 2020 wildfire season. We assessed the associations between threat appraisal, coping appraisal, personal experience, migration intentions, the impact of wildfire and smoke on migration intentions and place satisfaction, and the potential likelihood of future migration. Results indicate that roughly a third of our sample intended to move in the next 5 years, nearly a quarter of whom reported that wildfire and smoke impacted their migration decision at least a moderate amount. Prior negative outcomes (e.g., evacuating, losing property) were associated with intentions to migrate. Perceived susceptibility and prior negative outcomes were associated with a greater impact of wildfire and smoke on migration intentions. For those intending to remain in place, prior negative outcomes were associated with a greater impact of wildfire and smoke on place satisfaction, which was in turn associated with a greater reported likelihood of future migration. Our findings suggest that perceptions of and experiences with wildfire and smoke may impact individual mobility decisions. These insights may be leveraged to inform risk communications and outreach campaigns to encourage wildfire and smoke risk mitigation behaviors and to improve climate migration modeling. Supplementary Information The online version contains supplementary material available at 10.1007/s11111-022-00409-w.
Collapse
Affiliation(s)
- Nina Berlin Rubin
- Department of Earth System Science, Stanford University, Stanford, USA
| | - Gabrielle Wong-Parodi
- Department of Earth System Science, Stanford University, Stanford, USA
- Woods Institute for the Environment, Stanford University, Stanford, USA
| |
Collapse
|
5
|
A Literature Review on the Impact of Wildfires on Emergency Departments: Enhancing Disaster Preparedness. Prehosp Disaster Med 2022; 37:657-664. [PMID: 35875982 PMCID: PMC9470518 DOI: 10.1017/s1049023x22001054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Introduction:
Global climate change (global warming) has been identified as the primary factor responsible for the observed increase in frequency and severity of wildfires (also known as bushfires in some countries) throughout the majority of the world’s vegetated environments. This trend is predicted to continue, causing significant adverse health effects to nearby residential populations and placing a potential strain on local emergency departments (EDs).
Study Objective:
The aim of this literature review was to identify papers relating to wildfires and their impact on EDs, specifically patient presentation characteristics, resource utilization, and patient outcomes.
Method:
This integrative literature review was guided by the Preferred Reporting Items of Systematic Reviews and Meta-Analysis (PRISMA) guidelines for data collection, and Whittemore and Knafl’s framework for data analysis. Data were collected from OvidSP, MEDLINE, DARE, CINAHL, PubMed, and Scopus databases. Various Medical Subject Headings (MeSH) and keywords identified papers relevant to wildfires/bushfires and EDs.
Results:
Literature regarding the relationship between ED presentations and wildfire events, however, is primarily limited to studies from the United States and Australia and indicates particulate matter (PM) is principally linked to adverse respiratory and cardiovascular outcomes. Observable trends in the literature principally included a significant increase in respiratory presentations, primarily with a lag of one to two days from the initial event. Respiratory and cardiovascular studies that stratified results by age indicated individuals under five, over 65, or those with pre-existing conditions formed the majority of ED presentations.
Conclusion:
Key learnings from this review included the need for effective and targeted community advisory programs/procedures, prior to and during wildfire events, as well as pre-event planning, development, and robust resilience strategies for EDs.
Collapse
|
6
|
Malig BJ, Fairley D, Pearson D, Wu X, Ebisu K, Basu R. Examining fine particulate matter and cause-specific morbidity during the 2017 North San Francisco Bay wildfires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147507. [PMID: 35142610 DOI: 10.1016/j.scitotenv.2021.147507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent increases in wildfire frequency and severity necessitate better understanding of health effects of wildfire smoke to protect affected populations. OBJECTIVES We examined relationships between fine particulate matter (PM2.5) and morbidity during wildfires in California, and whether those relationships differed during the fire compared to a similar non-fire period. METHODS For nine San Francisco Bay Area counties, daily county-level diagnosis-specific counts of emergency department visits (EDVs) and hospitalizations were linked with county-level estimates of daily mean PM2.5 during the October 2017 Northern California wildfires and similar October days in 2015, 2016, and 2017. Associations were estimated using Poisson regression. RESULTS The median difference between county PM2.5 during the fire versus the non-fire period was 23.4 μg/m3, with days exceeding 80 μg/m3 in some counties. Over the entire study period, PM2.5 was most consistently linked to EDVs for respiratory disease (RREDV(lag0) per 23.4 μg/m3 increase: 1.25, 95% CI: 1.21, 1.30), asthma, chronic lower respiratory disease (CLRD; RREDV(lag0): 1.18, 95% CI: 1.10, 1.27), and acute myocardial infarction (RREDV(lag0): 1.14, 95% CI: 1.03, 1.25). Increases in acute upper respiratory infections and decreases in mental/behavioral EDVs were observed but were sensitive to model specification, specifically the inclusion of time-related covariates. Comparing fire and non-fire period EDV associations, we observed indications that PM2.5 during the fire was more strongly associated with asthma (RRlag0: 1.46, 95% CI: 1.38, 1.55) compared to non-fire period PM2.5 (RRlag0: 0.77, 95% CI: 0.55, 1.08), and the opposite observed for dysrhythmia, with the asthma difference being particularly robust to model choice. For hospitalizations, the most robust PM2.5 relationships were positive associations with respiratory, CLRD, and diabetes, and inverse associations with pneumonia. Respiratory and CLRD effect estimates were generally similar or smaller than for EDVs. CONCLUSIONS Elevated short-term PM2.5 levels from wildfire smoke appears to impact respiratory and other health domains.
Collapse
Affiliation(s)
- Brian J Malig
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| | - David Fairley
- Bay Area Air Quality Management District, San Francisco, CA, USA
| | - Dharshani Pearson
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Xiangmei Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
7
|
Karanasiou A, Alastuey A, Amato F, Renzi M, Stafoggia M, Tobias A, Reche C, Forastiere F, Gumy S, Mudu P, Querol X. Short-term health effects from outdoor exposure to biomass burning emissions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146739. [PMID: 33798874 DOI: 10.1016/j.scitotenv.2021.146739] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 05/28/2023]
Abstract
Biomass burning (BB) including forest, bush, prescribed fires, agricultural fires, residential wood combustion, and power generation has long been known to affect climate, air quality and human health. With this work we supply a systematic review on the health effects of BB emissions in the framework of the WHO activities on air pollution. We performed a literature search of online databases (PubMed, ISI, and Scopus) from year 1980 up to 2020. A total of 81 papers were considered as relevant for mortality and morbidity effects. High risk of bias was related with poor estimation of BB exposure and lack of adjustment for important confounders. PM10 and PM2.5 concentrations originating from BB were associated with all-cause mortality: the meta-analytical estimate was equal to 1.31% (95% CI 0.71, 1.71) and 1.92% (95% CI -1.19, 5.03) increased mortality per each 10 μg m-3 increase of PM10 and PM2.5, respectively. Regarding cardiovascular mortality 8 studies reported quantitative estimates. For smoky days and for each 10 μg m-3 increase in PM2.5 concentrations, the risk of cardiovascular mortality increased by 4.45% (95% CI 0.96, 7.95) and by 3.30% (95% CI -1.97, 8.57), respectively. Fourteen studies evaluated whether respiratory morbidity was adversely related to PM2.5 (9 studies) or PM10 (5 studies) originating from BB. All found positive associations. The pooled effect estimates were 4.10% (95% CI 2.86, 5.34) and 4.83% (95% CI 0.06, 9.60) increased risk of total respiratory admissions/emergency visits, per 10 μg m-3 increases in PM2.5 and PM10, respectively. Regarding cardiovascular morbidity, sixteen studies evaluated whether this was adversely related to PM2.5 (10 studies) or PM10 (6 studies) originating from BB. They found both positive and negative results, with summary estimates equal to 3.68% (95% CI -1.73, 9.09) and 0.93% (95% CI -0.18, 2.05) increased risk of total cardiovascular admissions/emergency visits, per 10 μg m-3 increases in PM2.5 and PM10, respectively. To conclude, a significant number of studies indicate that BB exposure is associated with all-cause and cardiovascular mortality and respiratory morbidity.
Collapse
Affiliation(s)
- Angeliki Karanasiou
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Matteo Renzi
- Department of Epidemiology of the Lazio Region/ASL, Roma 1, Italy
| | | | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Francesco Forastiere
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Sophie Gumy
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Pierpaolo Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| |
Collapse
|
8
|
Chen H, Samet JM, Bromberg PA, Tong H. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 2021; 18:2. [PMID: 33413506 PMCID: PMC7791832 DOI: 10.1186/s12989-020-00394-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
9
|
French M, Duray R, Fan Y. Impact of disasters on routine emergency service response performance. JOURNAL OF CONTINGENCIES AND CRISIS MANAGEMENT 2020. [DOI: 10.1111/1468-5973.12343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Monique French
- Department of Business Analysis College of Business University of Colorado Colorado Springs Colorado Springs CO USA
| | - Rebecca Duray
- Department of Business Analysis College of Business University of Colorado Colorado Springs Colorado Springs CO USA
| | - Ying Fan
- Department of Business Analysis College of Business University of Colorado Colorado Springs Colorado Springs CO USA
| |
Collapse
|
10
|
Woo SHL, Liu JC, Yue X, Mickley LJ, Bell ML. Air pollution from wildfires and human health vulnerability in Alaskan communities under climate change. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2020; 15:094019. [PMID: 34413900 PMCID: PMC8372693 DOI: 10.1088/1748-9326/ab9270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alaskan wildfires are becoming more frequent and severe, but very little is known regarding exposure to wildfire smoke, a risk factor for respiratory and cardiovascular illnesses. We estimated long-term, present-day and future exposure to wildfire-related fine particulate matter (PM2.5) across Alaska for the general population and subpopulations to assess vulnerability using observed data for the present day (1997-2010), modelled estimates for the present day (1997-2001), and modelled estimates for the future (2047-2051). First, we assessed wildfire-PM2.5 exposure by estimating monthly-average wildfire-specific PM2.5 levels across 1997-2010 for 158 Alaskan census tracts, using atmospheric transport modelling based on observed area-burned data. Second, we estimated changes in future (2047-2051) wildfire-PM2.5 exposure compared to the present-day (1997-2001) by estimating the monthly-average wildfire-specific PM2.5 levels for 29 boroughs/census areas (county-equivalent areas), under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario from an ensemble of 13 climate models. Subpopulation risks for present and future exposure levels were estimated by summing area-weighted exposure levels utilizing the 2000 Census and State of Alaska's population projections. We assessed vulnerability by several subpopulation characteristics (e.g. race/ethnicity, urbanicity). Wildfire-PM2.5 exposure levels during 1997-2010 were highest in interior Alaska during July. Among subpopulations, average summer (June-August) exposure levels for urban dwellers and African-American/Blacks were highest at 9.1 μg m-3 and 10 μg m-3, respectively. Estimated wildfire-PM2.5 varied by Native American tribe, ranging from average summer levels of 2.4 μg m-3 to 13 μg m-3 for Tlingit-Haida and Alaskan Athabascan tribes, respectively. Estimates indicate that by the mid-21st century, under climate change, almost all of Alaska could be exposed to increases of 100% or more in levels of wildfire-specific PM2.5 levels. Exposure to wildfire-PM2.5 likely presents a substantial public health burden in the present day for Alaska communities, with different impacts by subpopulation. Under climate change, wildfire smoke could pose an even greater public health risks for most Alaskans.
Collapse
Affiliation(s)
- Seung Hyun Lucia Woo
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, United States of America
| | - Jia Coco Liu
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Xu Yue
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Loretta J Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Michelle L Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, United States of America
| |
Collapse
|
11
|
Emergency department operations in a large health system during COVID-19. Am J Emerg Med 2020; 41:241-243. [PMID: 32505468 PMCID: PMC7264938 DOI: 10.1016/j.ajem.2020.05.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022] Open
|
12
|
Marko T, Suarez M, Todorova E, Mark C, Julie P. A Scoping Review of Nurses' Contributions to Health-Related, Wildfire Research. ANNUAL REVIEW OF NURSING RESEARCH 2019; 38:73-96. [PMID: 32102956 DOI: 10.1891/0739-6686.38.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exposure to unprecedented levels of wildfire smoke is increasing cardiopulmonary mortality and is especially catastrophic to people with preexisting respiratory conditions such as asthma. Wildfire smoke is a mixture of hazardous air pollutants and airborne particulate matter and wildfires are burning larger areas of land and lasting longer, extending the smoke season. The wildfire season is also expected to lengthen as a result of the changing climate. This scoping review examines publications related to wildfires and health in order to explore the ways in which nursing science contributes to research on the health effects of wildfires and strategies to decrease exposure to wildfires and/or wildfire smoke. Nursing's contribution to wildfire research needs to increase to meet the demands of this rapidly growing, international problem. Nurses have an opportunity to protect the public's health through interventional research focused on preventing exposure and applying what is learned to practice.
Collapse
|
13
|
Hutchinson JA, Vargo J, Milet M, French NHF, Billmire M, Johnson J, Hoshiko S. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Med 2018; 15:e1002601. [PMID: 29990362 PMCID: PMC6038982 DOI: 10.1371/journal.pmed.1002601] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/01/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The frequency and intensity of wildfires is anticipated to increase as climate change creates longer, warmer, and drier seasons. Particulate matter (PM) from wildfire smoke has been linked to adverse respiratory and possibly cardiovascular outcomes. Children, older adults, and persons with underlying respiratory and cardiovascular conditions are thought to be particularly vulnerable. This study examines the healthcare utilization of Medi-Cal recipients during the fall 2007 San Diego wildfires, which exposed millions of persons to wildfire smoke. METHODS AND FINDINGS Respiratory and cardiovascular International Classification of Diseases (ICD)-9 codes were identified from Medi-Cal fee-for-service claims for emergency department presentations, inpatient hospitalizations, and outpatient visits. For a respiratory index and a cardiovascular index of key diagnoses and individual diagnoses, we calculated rate ratios (RRs) for the study population and different age groups for 3 consecutive 5-day exposure periods (P1 [October 22-26], P2 [October 27-31], and P3 [November 1-5]) versus pre-fire comparison periods matched on day of week (5-day periods starting 3, 4, 5, 6, 8, and 9 weeks before each exposed period). We used a bidirectional symmetric case-crossover design to examine emergency department presentations with any respiratory diagnosis and asthma specifically, with exposure based on modeled wildfire-derived fine inhalable particles that are 2.5 micrometers and smaller (PM2.5). We used conditional logistic regression to estimate odds ratios (ORs), adjusting for temperature and relative humidity, to assess same-day and moving averages. We also evaluated the United States Environmental Protection Agency (EPA)'s Air Quality Index (AQI) with this conditional logistic regression method. We identified 21,353 inpatient hospitalizations, 25,922 emergency department presentations, and 297,698 outpatient visits between August 16 and December 15, 2007. During P1, total emergency department presentations were no different than the reference periods (1,071 versus 1,062.2; RR 1.01; 95% confidence interval [CI] 0.95-1.08), those for respiratory diagnoses increased by 34% (288 versus 215.3; RR 1.34; 95% CI 1.18-1.52), and those for asthma increased by 112% (58 versus 27.3; RR 2.12; 95% CI 1.57-2.86). Some visit types continued to be elevated in later time frames, e.g., a 72% increase in outpatient visits for acute bronchitis in P2. Among children aged 0-4, emergency department presentations for respiratory diagnoses increased by 70% in P1, and very young children (0-1) experienced a 243% increase for asthma diagnoses. Associated with a 10 μg/m3 increase in PM2.5 (72-hour moving average), we found 1.08 (95% CI 1.04-1.13) times greater odds of an emergency department presentation for asthma. The AQI level "unhealthy for sensitive groups" was associated with significantly elevated odds of an emergency department presentation for respiratory conditions the day following exposure, compared to the AQI level "good" (OR 1.73; 95% CI 1.18-2.53). Study limitations include the use of patient home address to estimate exposures and demographic differences between Medi-Cal beneficiaries and the general population. CONCLUSIONS Respiratory diagnoses, especially asthma, were elevated during the wildfires in the vulnerable population of Medi-Cal beneficiaries. Wildfire-related healthcare utilization appeared to persist beyond the initial high-exposure period. Increased adverse health events were apparent even at mildly degraded AQI levels. Significant increases in health events, especially for respiratory conditions and among young children, are expected based on projected climate scenarios of wildfire frequency in California and globally.
Collapse
Affiliation(s)
- Justine A. Hutchinson
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, United States of America
| | - Jason Vargo
- Climate Change and Health Equity Program, California Department of Public Health, Richmond, California, United States of America
| | - Meredith Milet
- Climate Change and Health Equity Program, California Department of Public Health, Richmond, California, United States of America
| | - Nancy H. F. French
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, Michigan, United States of America
| | - Michael Billmire
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, Michigan, United States of America
| | - Jeffrey Johnson
- Epidemiology & Immunization Services Branch, Health & Human Services Agency, County of San Diego, San Diego, California, United States of America
| | - Sumi Hoshiko
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Alman BL, Pfister G, Hao H, Stowell J, Hu X, Liu Y, Strickland MJ. The association of wildfire smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: a case crossover study. Environ Health 2016; 15:64. [PMID: 27259511 PMCID: PMC4893210 DOI: 10.1186/s12940-016-0146-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND In 2012, Colorado experienced one of its worst wildfire seasons of the past decade. The goal of this study was to investigate the relationship of local PM2.5 levels, modeled using the Weather Research and Forecasting Model with Chemistry, with emergency department visits and acute hospitalizations for respiratory and cardiovascular outcomes during the 2012 Colorado wildfires. METHODS Conditional logistic regression was used to assess the relationship between both continuous and categorical PM2.5 and emergency department visits during the wildfire period, from June 5(th) to July 6(th) 2012. RESULTS For respiratory outcomes, we observed positive relationships between lag 0 PM2.5 and asthma/wheeze (1 h max OR 1.01, 95 % CI (1.00, 1.01) per 10 μg/m(3); 24 h mean OR 1.04 95 % CI (1.02, 1.06) per 5 μg/m(3)), and COPD (1 h max OR 1.01 95 % CI (1.00, 1.02) per 10 μg/m(3); 24 h mean OR 1.05 95 % CI (1.02, 1.08) per 5 μg/m(3)). These associations were also positive for 2-day and 3-day moving average lag periods. When PM2.5 was modeled as a categorical variable, bronchitis also showed elevated effect estimates over the referent groups for lag 0 24 h average concentration. Cardiovascular results were consistent with no association. CONCLUSIONS We observed positive associations between PM2.5 from wildfire and respiratory diseases, supporting evidence from previous research that wildfire PM2.5 is an important source for adverse respiratory health outcomes.
Collapse
Affiliation(s)
- Breanna L Alman
- The Office of Air Quality Planning and Standards, United States Environmental Protection Agency, 109 T.W Alexander Dr, Research Triangle Park, NC, 27711, USA.
| | - Gabriele Pfister
- National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO, 80301, USA
| | - Hua Hao
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Jennifer Stowell
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Xuefei Hu
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Matthew J Strickland
- School of Community Health Sciences, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
15
|
Dennekamp M, Straney LD, Erbas B, Abramson MJ, Keywood M, Smith K, Sim MR, Glass DC, Del Monaco A, Haikerwal A, Tonkin AM. Forest Fire Smoke Exposures and Out-of-Hospital Cardiac Arrests in Melbourne, Australia: A Case-Crossover Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:959-64. [PMID: 25794411 PMCID: PMC4590745 DOI: 10.1289/ehp.1408436] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Millions of people can potentially be exposed to smoke from forest fires, making this an important public health problem in many countries. OBJECTIVE In this study we aimed to measure the association between out-of-hospital cardiac arrest (OHCA) and forest fire smoke exposures in a large city during a severe forest fire season, and estimate the number of excess OHCAs due to the fire smoke. METHODS We investigated the association between particulate matter (PM) and other air pollutants and OHCA using a case-crossover study of adults (≥ 35 years of age) in Melbourne, Australia. Conditional logistic regression models were used to derive estimates of the percent change in the rate of OHCA associated with an interquartile range (IQR) increase in exposure. From July 2006 through June 2007, OHCA data were collected from the Victorian Ambulance Cardiac Arrest Registry. Hourly air pollution concentrations and meteorological data were obtained from a central monitoring site. RESULTS There were 2,046 OHCAs with presumed cardiac etiology during our study period. Among men during the fire season, greater increases in OHCA were observed with IQR increases in the 48-hr lagged PM with diameter ≤ 2.5 μm (PM2.5) (8.05%; 95% CI: 2.30, 14.13%; IQR = 6.1 μg/m(3)) or ≤ 10 μm (PM10) (11.1%; 95% CI: 1.55, 21.48%; IQR = 13.7 μg/m(3)) and carbon monoxide (35.7%; 95% CI: 8.98, 68.92%; IQR = 0.3 ppm). There was no significant association between the rate of OHCA and air pollutants among women. One hundred seventy-four "fire-hours" (i.e., hours in which Melbourne's air quality was affected by forest fire smoke) were identified during 12 days of the 2006/2007 fire season, and 23.9 (95% CI: 3.1, 40.2) excess OHCAs were estimated to occur due to elevations in PM2.5 during these fire-hours. CONCLUSIONS This study found an association between exposure to forest fire smoke and an increase in the rate of OHCA. These findings have implications for public health messages to raise community awareness and for planning of emergency services during forest fire seasons.
Collapse
Affiliation(s)
- Martine Dennekamp
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. ENVIRONMENTAL RESEARCH 2015; 136:120-32. [PMID: 25460628 PMCID: PMC4262561 DOI: 10.1016/j.envres.2014.10.015] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Climate change is likely to increase the threat of wildfires, and little is known about how wildfires affect health in exposed communities. A better understanding of the impacts of the resulting air pollution has important public health implications for the present day and the future. METHOD We performed a systematic search to identify peer-reviewed scientific studies published since 1986 regarding impacts of wildfire smoke on health in exposed communities. We reviewed and synthesized the state of science of this issue including methods to estimate exposure, and identified limitations in current research. RESULTS We identified 61 epidemiological studies linking wildfire and human health in communities. The U.S. and Australia were the most frequently studied countries (18 studies on the U.S., 15 on Australia). Geographic scales ranged from a single small city (population about 55,000) to the entire globe. Most studies focused on areas close to fire events. Exposure was most commonly assessed with stationary air pollutant monitors (35 of 61 studies). Other methods included using satellite remote sensing and measurements from air samples collected during fires. Most studies compared risk of health outcomes between 1) periods with no fire events and periods during or after fire events, or 2) regions affected by wildfire smoke and unaffected regions. Daily pollution levels during or after wildfire in most studies exceeded U.S. EPA regulations. Levels of PM10, the most frequently studied pollutant, were 1.2 to 10 times higher due to wildfire smoke compared to non-fire periods and/or locations. Respiratory disease was the most frequently studied health condition, and had the most consistent results. Over 90% of these 45 studies reported that wildfire smoke was significantly associated with risk of respiratory morbidity. CONCLUSION Exposure measurement is a key challenge in current literature on wildfire and human health. A limitation is the difficulty of estimating pollution specific to wildfires. New methods are needed to separate air pollution levels of wildfires from those from ambient sources, such as transportation. The majority of studies found that wildfire smoke was associated with increased risk of respiratory and cardiovascular diseases. Children, the elderly and those with underlying chronic diseases appear to be susceptible. More studies on mortality and cardiovascular morbidity are needed. Further exploration with new methods could help ascertain the public health impacts of wildfires under climate change and guide mitigation policies.
Collapse
Affiliation(s)
- Jia C Liu
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| | - Gavin Pereira
- Center for Perinatal Pediatric and Environmental Epidemiology, School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Sarah A Uhl
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| | - Mercedes A Bravo
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| | - Michelle L Bell
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|