1
|
d'Andrea G, Miuli A, Pettorruso M, Cavallotto C, Marrangone C, Cocco A, De Filippis S, Martiadis V, Andriola I, Barlati S, Vita A, Dell'Osso BM, Sensi SL, Di Lorenzo G, Martinotti G. Exploring vortioxetine combination with intranasal esketamine: A feasible alternative to SSRI/SNRI? - Insights from the REAL-ESK study. J Affect Disord 2024; 367:583-588. [PMID: 39233241 DOI: 10.1016/j.jad.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/27/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Treatment-Resistant Depression (TRD) affects almost 30 % of patients with Major Depressive Disorder (MDD). Esketamine Nasal Spray (ESK-NS) has recently been approved for TRD in combination with a Serotonin Specific Reuptake Inhibitor/SSRI or a Serotonin-Norepinephrine Reuptake Inhibitor/SNRI. There is a lack of studies investigating the effectiveness and safety of ESK-NS in combination with other oral antidepressants. AIM To assess the efficacy of Vortioxetine plus ESK-NS in mitigating depressive symptoms and emotional blunting, as well as its tolerability in TRD subjects, compared to the standard-of-care of SSRI/SNRI plus ESK-NS. METHODS We conducted a post-hoc analysis of the REAL-ESK study. The study included twenty TRD patients, ten subjects taking Vortioxetine as the main oral antidepressant with ESK-NS, and ten subjects taking SSRI or SNRI with ESK-NS. Psychometric assessments (Montgomery-Åsberg Depression Rating Scale/MADRS, Brief Psychiatric Rating Scale/BPRS) were conducted at baseline(T0), one month(T1), and three months after the treatment initiation(T2). RESULTS The combination of Vortioxetine and ESK-NS was as effective as the standard-of-care in reducing depressive symptoms, with a higher effect size in reducing emotional blunting at T2. The safety and tolerability profile of the Vortioxetine+ESK-NS combination appeared to be better, with a lower rate of treatment-emergent adverse events. CONCLUSION The combination of Vortioxetine and ESK-NS may be a valuable alternative to the standard-of-care SSRI/SNRI plus ESK-NS in TRD patients, particularly regarding the reduction of emotional blunting and potentially a better safety and tolerability profile. Further randomized controlled trials with larger sample sizes and prospective designs are needed to confirm these findings.
Collapse
Affiliation(s)
- Giacomo d'Andrea
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy.; Department of Mental Health, ASL 02 Lanciano-Vasto-Chieti, Chieti, Italy
| | - Andrea Miuli
- Department of Mental Health, ASL 02 Lanciano-Vasto-Chieti, Chieti, Italy..
| | - Mauro Pettorruso
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy.; Department of Mental Health, ASL 02 Lanciano-Vasto-Chieti, Chieti, Italy
| | - Clara Cavallotto
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Carlotta Marrangone
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Alessio Cocco
- Department of Mental Health, ASL 02 Lanciano-Vasto-Chieti, Chieti, Italy
| | - Sergio De Filippis
- Department of Neuropsychiatry, Villa Von Siebenthal Neuropsychiatric Clinic, Genzano di Roma, Italy
| | | | | | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Bernardo Maria Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, Milano, Italy
| | - Stefano L Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Giorgio Di Lorenzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy.; Department of Mental Health, ASL 02 Lanciano-Vasto-Chieti, Chieti, Italy
| |
Collapse
|
2
|
Ye X, Xu P, Jiao J, Zhao H, Jin K, Zhang S, Pan F, Chen J, Jiang H, Hu J, Huang M. A Randomized Controlled Study of Efficacy and Cognitive Function Improvement of Vortioxetine and Escitalopram in Patients with Depression in Chinese Han Nationality. Neuropsychiatr Dis Treat 2024; 20:2363-2374. [PMID: 39654656 PMCID: PMC11626980 DOI: 10.2147/ndt.s491768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Objective To assess the efficacy and safety of Vortioxetine and Escitalopram in improving cognition in patients with major depressive disorder (MDD). Methods At baseline, 131 MDD patients and 70 healthy controls completed the Hamilton Depression Scale (HAMD-17), Hamilton Anxiety Scale (HAMA), Snaith-Hamilton Pleasure Scale (SHAPS) and MATRICS Consensus Cognitive Battery (MCCB). Patients with MDD were randomly divided into Vortioxetine (n = 62) and Escitalopram (n = 69) groups with an 8-week follow-up research. ANOVA for repeated measurement was utilized to compare the efficacy of Vortioxetine and Escitalopram. Results The total scores of HAMD-17, HAMA and SHAPS scales had statistical difference between MDD cases and healthy controls (P < 0.001) at baseline. After 8 weeks of treatment, the scale scores of the HAMD-17, HAMA and SHAPS had lowered in both groups, with no statistical difference between two groups (P > 0.05). At baseline, MDD patients had defects in Speed of Processing, Attention Vigilance, Verbal Learning, Visual Learning, Reasoning and Problem Solving, and Social Cognition, compared with healthy controls. After 8 weeks of treatment with Vortioxetine or Escitalopram, the patients had improved in the aspects of cognitive functions above except Social Cognition. Numerical improvements of MCCB scale were found in the two groups, P > 0.05. Most adverse events were mild or moderate, with nausea being the most common adverse event. Conclusion Both Vortioxetine and Escitalopram can improve the mental status and cognitive functions in MDD patients, with mild or moderate adverse events. Trial Registration www.chictr.org.cn, identifier: ChiCTR1900024858.
Collapse
Affiliation(s)
- Xinyi Ye
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Fen Pan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Jingkai Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Hao Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou, 310003, People’s Republic of China
- Brain Research Institute of Zhejiang University, Hangzhou, 31003, People’s Republic of China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, People’s Republic of China
| |
Collapse
|
3
|
Tavakol F, Amini-Khoei H, Sureda A, Zarean E, Lorigooini Z. Exploring the anti-depressant effects and nitric oxide modulation of quercetin: A preclinical study in Socially Isolated mice. World J Biol Psychiatry 2024; 25:592-603. [PMID: 39550700 DOI: 10.1080/15622975.2024.2424162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVES This study investigates the effects of quercetin, an antioxidant and nitric oxide (NO) modulator, on depressive-like behaviours triggered by social isolation stress (SIS) in mice. SIS, known to harm psychosocial functioning and increase the risk of depression, involves oxidative stress and NO in its pathophysiology. METHODS 72 male mice were divided into nine groups, including the social (SC) group as the control group (stress-free with normal saline intake). The isolation (IC) groups received normal saline, quercetin at doses of 10, 20, and 40 mg/kg, the nitric oxide synthetase inhibitor L-NAME at a dose of 5 mg/kg, the NO precursor L-arginine at a dose of 100 mg/kg, an ineffective dose of quercetin combined with L-NAME and an effective dose of quercetin combined with L-arginine. Behavioural tests (open-field, forced swimming, and splash tests) were conducted, followed by measuring hippocampal nitrite levels. RESULTS Quercetin significantly reduced immobility in the forced swimming test, increased activity in the open-field test, and enhanced grooming behaviour, particularly at 40 mg/kg. Co-administration of an ineffective dose of quercetin (10 mg/kg) with L-NAME increased immobility and grooming activity time. Interestingly, co-administration of the effective dose of quercetin (40 mg/kg) with L-arginine increased immobility time in the FST. Additionally, administration of quercetin at doses of 20 and 40 mg/kg significantly reduced the nitrite level in the hippocampus of SIS mice. Furthermore, co-administration of L-NAME and L-arginine with ineffective and effective doses of quercetin decreased and increased nitrite levels in the hippocampus and increased immobility time in the FST compared to their respective counterparts administered alone. CONCLUSIONS These results suggest quercetin's potential in alleviating depression by modulating NO levels, pointing to its promise in treating depression associated with chronic stressors like social isolation.
Collapse
Affiliation(s)
- Fatemeh Tavakol
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma, Balearic Islands, Spain
| | - Elham Zarean
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Hu S, Chen K, Xu Q, Wang F, Na W. Assessing the efficacy and safety of combined buspirone and venlafaxine treatment in late-life depression accompanied by cognitive impairment: A randomized controlled trial. Gen Hosp Psychiatry 2024; 91:1-10. [PMID: 39243483 DOI: 10.1016/j.genhosppsych.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Late-life depression, often accompanied by cognitive impairment, poses significant clinical challenges owing to its complex etiology and diverse manifestations. While antidepressants like venlafaxine and anxiolytics such as buspirone are effective for treating depression, their effects on cognitive function remain less well-understood. With the aging population increasingly experiencing geriatric depression, there is an urgent need for innovative treatment approaches that address both depressive symptoms and cognitive impairments. OBJECTIVE This study aimed to evaluate the clinical efficacy and safety of combined buspirone and venlafaxine therapy in elderly patients diagnosed with geriatric depression accompanied by cognitive impairment. METHODS A 12-week, randomized controlled trial was conducted involving 170 elderly patients. Participants were randomized into two groups: one receiving venlafaxine alone (control group) and the other receiving a combination of venlafaxine and buspirone (experimental group). The primary analysis was performed using an Intent-to-Treat (ITT) approach with mixed-effects linear models to assess changes in depressive symptoms, cognitive function, and anxiety levels. A supplementary Per-Protocol (PP) analysis, utilizing repeated measures ANOVA, was also conducted. RESULTS The ITT analysis showed that the combination therapy significantly reduced depressive symptoms, as indicated by the HAMD-17 scores (p = 0.033 at week 12). Cognitive function, as measured by MoCA scores, also improved significantly in the experimental group by week 12 (p = 0.025). However, no statistically significant differences were observed in anxiety reduction between the groups (p = 0.127). The PP analysis confirmed these findings, demonstrating consistent improvements in depressive symptoms and cognitive function, particularly in those who completed the full course of treatment. The incidence of adverse events was comparable between groups, primarily mild and manageable symptoms like dry mouth, dizziness, and fatigue. CONCLUSION The combination of buspirone and venlafaxine was found to be effective in reducing depressive symptoms and enhancing cognitive function in elderly patients with geriatric depression. However, the long-term benefits, especially regarding anxiety reduction, require further investigation. Future studies should consider larger sample sizes, longer follow-up periods, and the inclusion of placebo controls to fully assess the efficacy and safety of this treatment approach.
Collapse
Affiliation(s)
- ShuJia Hu
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, China.
| | - Ke Chen
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - QiuXia Xu
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Fei Wang
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - WanQiu Na
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, China
| |
Collapse
|
5
|
Xue L, Bocharova M, Young AH, Aarsland D. Cognitive improvement in late-life depression treated with vortioxetine and duloxetine in an eight-week randomized controlled trial: The role of age at first onset and change in depressive symptoms. J Affect Disord 2024; 361:74-81. [PMID: 38838790 DOI: 10.1016/j.jad.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Age at first onset of depression as a clinical factor affecting cognitive improvement in late life depression was investigated. METHODS This is a secondary analysis of an eight-week randomized controlled trial involving 452 elderly patients treated by vortioxetine, duloxetine or placebo (1:1:1). Patients were subcategorized into early-onset (LLD-EO) and late-onset (LLD-LO) groups divided by onset age of 50. Cognitive performance was assessed by composite score of Digit Symbol Substitution Test (DSST) and the Rey Auditory Verbal Learning Test (RAVLT) tasks, while depressive symptoms were assessed by Montgomery-Åsberg Depression Rating Scale (MADRS). RESULTS Vortioxetine and duloxetine exhibited advantages versus placebo in improving cognitive performance in the LLD-LO group, yet not in the LLD-EO group after eight weeks. Patients in the LLD-EO group showed overall advantage to placebo in depressive symptoms before endpoint (week 8) of treatment, while patients in the LLO-LO group showed no advantage until endpoint. Path analysis suggested a direct effect of vortioxetine (B = 0.656, p = .036) and duloxetine (B = 0.726, p = .028) on improving cognition in the LLD-LO group, yet in all-patients treated set both medications improved cognition indirectly through changes of depressive symptoms. LIMITATION Reliability of clinical history could raise caution as it was collected by subjective recall of patients. CONCLUSION Age at first onset might affect cognitive improvement as well as change in depressive symptoms and its mediation towards cognitive improvement in late life depression treated with vortioxetine and duloxetine.
Collapse
Affiliation(s)
- Lingfeng Xue
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Mariia Bocharova
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Allan H Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Dag Aarsland
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
6
|
Zhang Y, Zhang H, Zheng X, Hou Y, Chang X, Zhang L, Wang Y, Chen S. Identification of differentially expressed genes in the medial prefrontal cortex of rats subjected to chronic unpredictable mild stress and treated with electroacupuncture. Genomics 2024; 116:110901. [PMID: 39047876 DOI: 10.1016/j.ygeno.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Major depressive disorder is a chronic mental health condition that seriously impacts afflicted individuals. Although electroacupuncture has proven to be an effective therapy for depression, its underlying biological mechanism remains largely unknown. In this study, we aimed to investigate the effects of electroacupuncture on depression-like behavior and to identify potential target genes related to those effects. To achieve this, we subjected rats to chronic unpredictable mild stress (CUMS) and used sucrose preference, forced swimming, and open-field tests to determine their depression-like behavior in the absence or after receipt of electroacupuncture treatment. RNA sequencing technology was then used to reveal the differentially expressed genes associated with depression and electroacupuncture treatment effects in the medial prefrontal cortex (mPFC). Repeated electroacupuncture treatments at the Baihui (GV20) and Taichong (LR3) acupoints significantly alleviated depression-like behavioral defects in the animals. Genomic RNA sequencing revealed several significant changes in the mPFC transcriptome of rats that received treatment. Through differential gene expression analysis, we found that electroacupuncture reversed the CUMS-induced downregulation of 46 genes and upregulation of 13 genes. Among the differentially expressed genes, Casr, Bdkrb2, Gnb3, and Ccl1 were found to be associated with depression and electroacupuncture treatment effects. In conclusion, we verified that electroacupuncture treatment has an effective antidepressant effect, and the underlying mechanism involves multiple systems and targets.
Collapse
Affiliation(s)
- Yujiao Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Haiyan Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Xinjie Zheng
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Yi Hou
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoli Chang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Ying Wang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| | - Shaozong Chen
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| |
Collapse
|
7
|
García-Alberca JM, De La Guia P, Gris E, Mendoza S, Lopez De La Rica M, Barbancho MÁ, Lara JP, Blanco-Reina E. Effectiveness of Vortioxetine Treatment on Depression and Cognitive Functions in Patients with Alzheimer's Disease: A 12-Month, Retrospective, Observational Study. J Pers Med 2024; 14:918. [PMID: 39338172 PMCID: PMC11433453 DOI: 10.3390/jpm14090918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to assess the effectiveness of vortioxetine for improving depressive symptoms, cognitive performance, daily and global functioning in patients with Alzheimer's disease (AD) and major depressive disorder (MDD) in real-world clinical practice. We retrospectively identified 46 AD patients who had received treatment for 12 months with vortioxetine. Drug effects were evaluated at baseline, 4, 8, and 12 months. The primary endpoint was change from baseline in the Hamilton Depression Rating Scale (HDRS) and in the Cornell Scale for Depression in Dementia (CSDD) to month 12. Cognitive and daily and global functioning changes were also evaluated. Significant baseline-to-endpoint improvement in depressive symptom severity was observed (p < 0.0001). At month 12, the least-square mean (standard error) change score from baseline was -10.48 (±0.42) on the HDRS and -9.04 (±0.62) on the CSDD. Significant improvements in cognitive performance were observed for the Rey Auditory Verbal Learning Test, the Symbol Digit Modalities Test, the Letter Fluency Test, the Category Fluency Test, and the Trail Making Test-A. Patients also experienced significant improvements in daily and global functioning. Vortioxetine was safe and well tolerated. Patients with AD and MDD receiving vortioxetine showed meaningful improvements in depressive symptoms, cognitive performance, and daily and global functioning over the 12-month treatment period.
Collapse
Affiliation(s)
- José María García-Alberca
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), 29012 Málaga, Spain
| | - Paz De La Guia
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), 29012 Málaga, Spain
| | - Esther Gris
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), 29012 Málaga, Spain
| | - Silvia Mendoza
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), 29012 Málaga, Spain
| | - María Lopez De La Rica
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), 29012 Málaga, Spain
| | - Miguel Ángel Barbancho
- Brain Health Unit (CIMES), School of Medicine, University of Málaga, IBIMA, 29010 Málaga, Spain
| | - José Pablo Lara
- Brain Health Unit (CIMES), School of Medicine, University of Málaga, IBIMA, 29010 Málaga, Spain
| | - Encarnación Blanco-Reina
- Brain Health Unit (CIMES), School of Medicine, University of Málaga, IBIMA, 29010 Málaga, Spain
- Pharmacology and Therapeutics Department, School of Medicine, University of Málaga, IBIMA, 29010 Málaga, Spain
| |
Collapse
|
8
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
9
|
Stratilov V, Potapova S, Safarova D, Tyulkova E, Vetrovoy O. Prenatal Hypoxia Triggers a Glucocorticoid-Associated Depressive-like Phenotype in Adult Rats, Accompanied by Reduced Anxiety in Response to Stress. Int J Mol Sci 2024; 25:5902. [PMID: 38892090 PMCID: PMC11172361 DOI: 10.3390/ijms25115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Fetal hypoxia and maternal stress frequently culminate in neuropsychiatric afflictions in life. To replicate this condition, we employed a model of prenatal severe hypoxia (PSH) during days 14-16 of rat gestation. Subsequently, both control and PSH rats at 3 months old were subjected to episodes of inescapable stress to induce learned helplessness (LH). The results of the open field test revealed an inclination towards depressive-like behavior in PSH rats. Following LH episodes, control (but not PSH) rats displayed significant anxiety. LH induced an increase in glucocorticoid receptor (GR) levels in extrahypothalamic brain structures, with enhanced nuclear translocation in the hippocampus (HPC) observed both in control and PSH rats. However, only control rats showed an increase in GR nuclear translocation in the amygdala (AMG). The decreased GR levels in the HPC of PSH rats correlated with elevated levels of hypothalamic corticotropin-releasing hormone (CRH) compared with the controls. However, LH resulted in a reduction of the CRH levels in PSH rats, aligning them with those of control rats, without affecting the latter. This study presents evidence that PSH leads to depressive-like behavior in rats, associated with alterations in the glucocorticoid system. Notably, these impairments also contribute to increased resistance to severe stressors.
Collapse
Affiliation(s)
- Viktor Stratilov
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034 Saint-Petersburg, Russia
| | - Sofiya Potapova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034 Saint-Petersburg, Russia
| | - Diana Safarova
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Emb. 7–9, 199034 Saint-Petersburg, Russia
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034 Saint-Petersburg, Russia
| | - Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Yan JZ, Li GX, Sun SR, Cui LY, Yin YY, Li YF. A rate-limiting step in antidepressants onset: Excitation of glutamatergic pyramidal neurons in medial prefrontal cortex of rodents. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110911. [PMID: 38065287 DOI: 10.1016/j.pnpbp.2023.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
Although clinical antidepressants have varied mechanisms of action, it remains unclear whether they may have a common mechanism underlying their antidepressant effects. We investigated the behavioral effects of five different antidepressants (differing in target, chemical structure, and rate of onset) and their effects on the firing activities of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC) using the forced swimming test (FST) and electrophysiological techniques (in vivo). We employed fiber photometry recordings to validate the effects of antidepressants on the firing activity of pyramidal neurons. Additionally, multichannel electrophysiological recordings were conducted in mice exhibiting depressive-like behaviors induced by chronic restraint stress (CRS) to investigate whether antidepressants exert similar effects on pyramidal neurons in depressed mice. Behavioral tests were utilized for evaluating the depression model. We found that fluoxetine, duloxetine, vilazodone, YL-0919, and ketamine all increase the firing activities of glutamatergic pyramidal neurons (at least 57%) while exerting their initial onset of antidepressant effects. Fiber photometry revealed an increase in the calcium activity of pyramidal neurons in the mPFC at the onset of antidepressant effects. Furthermore, a significant reduction was observed in the firing activity of pyramidal neurons in the mPFC of CRS-exposed mice, which was reversed by antidepressants. Taken together, our findings suggested that five pharmacologically distinct classes of antidepressants share the common ability to increase the firing activity of pyramidal neurons, just different time, which might be a rate-limiting step in antidepressants onset. The study contributes to the body of knowledge of the mechanisms underlying antidepressant effects and paves the way for developing rapid-acting antidepressants.
Collapse
Affiliation(s)
- Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Si-Rui Sun
- Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Lin-Yu Cui
- College of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
11
|
Wei Y, Xu X, Guo Q, Zhao S, Qiu Y, Wang D, Yu W, Liu Y, Wang K. A novel dual serotonin transporter and M-channel inhibitor D01 for antidepression and cognitive improvement. Acta Pharm Sin B 2024; 14:1457-1466. [PMID: 38487010 PMCID: PMC10935023 DOI: 10.1016/j.apsb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 11/17/2023] [Indexed: 03/17/2024] Open
Abstract
Cognitive dysfunction is a core symptom common in psychiatric disorders including depression that is primarily managed by antidepressants lacking efficacy in improving cognition. In this study, we report a novel dual serotonin transporter and voltage-gated potassium Kv7/KCNQ/M-channel inhibitor D01 (a 2-methyl-3-aryloxy-3-heteroarylpropylamines derivative) that exhibits both anti-depression effects and improvements in cognition. D01 inhibits serotonin transporters (Ki = 30.1 ± 6.9 nmol/L) and M channels (IC50 = 10.1 ± 2.4 μmol/L). D01 also reduces the immobility duration in the mouse FST and TST assays in a dose-dependent manner without a stimulatory effect on locomotion. Intragastric administrations of D01 (20 and 40 mg/kg) can significantly shorten the immobility time in a mouse model of chronic restraint stress (CRS)-induced depression-like behavior. Additionally, D01 dose-dependently improves the cognitive deficit induced by CRS in Morris water maze test and increases the exploration time with novel objects in normal or scopolamine-induced cognitive deficits in mice, but not fluoxetine. Furthermore, D01 reverses the long-term potentiation (LTP) inhibition induced by scopolamine. Taken together, our findings demonstrate that D01, a dual-target serotonin reuptake and M channel inhibitor, is highly effective in the treatment-resistant depression and cognitive deficits, thus holding potential for development as therapy of depression with cognitive deficits.
Collapse
Affiliation(s)
- Yaqin Wei
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiangqing Xu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Qiang Guo
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Song Zhao
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Yinli Qiu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Dongli Wang
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong–Hong Kong–Macao Greater Bay Area, Guangzhou 510515, China
| |
Collapse
|
12
|
Gil-Sanchez A, Canudes M, Valcheva P, Nogueras L, González-Mingot C, Hervás JV, Peralta S, Solana M, Brieva L. Effects of Vortioxetine on Cognition and Fatigue in Patients with Multiple Sclerosis and Depression: A Case Series Study. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:395-401. [PMID: 36944623 DOI: 10.2174/1871527322666230321093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Vortioxetine is a multimodal antidepressant drug that has been reported to have a positive impact on cognition, social function, and fatigue. Nevertheless, it has not been widely studied. Our objective was to explore the effects of vortioxetine on these and other parameters in patients with multiple sclerosis (MS) and depression. PATIENTS AND METHODOLOGY This observational case series study included patients with MS and depression who received treatment with vortioxetine for at least 6 months. The patient history of depression and depressive symptoms was assessed. A neuropsychiatric evaluation was carried out using different scales, both before and after treatment. RESULTS Of the 25 patients who enrolled in the study, 17 completed the treatment. Significant improvements were observed in health status (EQ-5D; p = 0.002), mood (Beck's Depression Inventory, BDI-II; p = 0.006), anxiety (State-Trait Anxiety Inventory, STAI-State; p = 0.021, and STAI-Trait; p = 0.011), and in the general health test (Short Form Health Survey, SF-36) for the vitality (p = 0.028) and mental health (p = 0.025) domains of the patients who completed the treatment. However, no statistically significant differences were observed in the cognitive tests related to attention, information processing speed, or fatigue. CONCLUSION In this population, vortioxetine treatment was effective in reducing the symptoms of depression and improving anxiety, vitality, and mental health. In contrast, it did not produce any improvement in cognition or fatigue but an increase in sample size would be necessary to confirm these results.
Collapse
Affiliation(s)
- Anna Gil-Sanchez
- Institute of Biomedical Research (IRB) of Lleida, Neuroimmunology Group, Lleida, Spain
| | - Marc Canudes
- Institute of Biomedical Research (IRB) of Lleida, Neuroimmunology Group, Lleida, Spain
| | - Petya Valcheva
- Institute of Biomedical Research (IRB) of Lleida, Neuroimmunology Group, Lleida, Spain
| | - Lara Nogueras
- Institute of Biomedical Research (IRB) of Lleida, Neuroimmunology Group, Lleida, Spain
| | - Cristina González-Mingot
- Institute of Biomedical Research (IRB) of Lleida, Neuroimmunology Group, Lleida, Spain
- Neurology Department, Arnau de Vilanova University Hospital of Lleida, Lleida, Spain
| | - José Vicente Hervás
- Neurology Department, Arnau de Vilanova University Hospital of Lleida, Lleida, Spain
| | - Silvia Peralta
- Multiple Sclerosis Foundation (FEM) of Lleida, Lleida, España
| | - Maria Solana
- Neurology Department, Arnau de Vilanova University Hospital of Lleida, Lleida, Spain
| | - Luis Brieva
- Institute of Biomedical Research (IRB) of Lleida, Neuroimmunology Group, Lleida, Spain
- Neurology Department, Arnau de Vilanova University Hospital of Lleida, Lleida, Spain
| |
Collapse
|
13
|
Tripathi AS, Fatima N, Tripathi P, Tripathi R, Alka, Zaki MEA, Mohapatra L, Yasir M, Maurya RK. Beneficial effect of 5-HT1b/1d agonist on Parkinson's disease by modulating glutamate and reducing deposition of α-synuclein. J Biochem Mol Toxicol 2024; 38:e23627. [PMID: 38229316 DOI: 10.1002/jbt.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The given investigation examined the neuroprotection role of 5-HT1b/1d agonist in reserpine induced Parkinson's disease (PD) in male Wistar rats. PD was induced in rats by reserpine at 5 mg/kg ip for 3 days and thereafter the rats were provided with the following treatments for 4 days, zolmitriptan (ZLM) group (30 mg/kg ip); STD group (levodopa + carbidopa, 200 + 5 mg/kg ip); ZLM + GA group (zolmitriptan, 30 mg/kg ip and glutamic acid, 1.5 mg/kg); ZLM + DX group (zolmitriptan, 30 mg/kg ip and dextromethorphan, 20 mg/kg ip). All the groups were then assessed for cognitive and motor functions at the end of the protocol. Moreover, oxidative stress parameters and histopathological changes were observed in rats of all treatment groups. Deposition of α-synuclein in the brain tissue was observed by silver staining. Data of this investigation revealed that motor and cognitive functions were improved in the ZLM-treated group compared with the negative control group, which was observed to be reversed in ZLM + GA group. Treatment with ZLM ameliorated oxidative stress and histopathological changes in the brain tissue of PD rats. Further, ZLM reduced the deposition of α-synuclein in PD rats, which reversed in ZLM + GA-treated group. This study concludes by stating that 5-HT1b/1d agonist can prevent neurodegeneration and reduce oxidative stress in PD rats. The probable underlying mechanism of such an effect of 5-HT1b/1d agonist could be by regulating the deposition of α-synuclein and reducing the expression of NMDA receptor.
Collapse
Affiliation(s)
- Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India
| | - Needa Fatima
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Pankaj Tripathi
- Department of Pharmacology, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Rina Tripathi
- Department of Pharmacology, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Alka
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Lucy Mohapatra
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Mohammad Yasir
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Rahul K Maurya
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Rech TDST, Strelow DN, Krüger LD, Neto JSS, Blödorn GB, Alves D, Brüning CA, Bortolatto CF. Pharmacological evidence for glutamatergic pathway involvement in the antidepressant-like effects of 2-phenyl-3-(phenylselanyl)benzofuran in male Swiss mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3033-3044. [PMID: 37160481 DOI: 10.1007/s00210-023-02508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Depression is a multifactorial and heterogeneous disease with several neurobiological mechanisms underlying its pathophysiology, including dysfunctional glutamatergic neurotransmission, which makes the exploration of the glutamate pathway an interesting strategy for developing novel rapid-acting antidepressant treatments. In the present study, we aimed to evaluate the possible glutamatergic pathway relation in the antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) in Swiss mice employing the tail suspension test (TST). Male Swiss mice received drugs targeting glutamate receptors before acute SeBZF1 administration at effective (50 mg/kg) or subeffective (1 mg/kg) doses by intragastric route (ig). TST and the open-field test (OFT) were employed in all behavioral experiments. The pretreatment of mice with N-methyl-D-aspartate (NMDA) (0.1 pmol/site, intracerebroventricular, icv, a selective agonist of the NMDA receptors), D-serine (30 µg/site, icv, a co-agonist at the NMDA receptor), arcaine (1 mg/kg, intraperitoneal, ip, an antagonist of the polyamine-binding site at the NMDA receptor), and 6,7-dinitroquinoxaline-2,3-dione (DNQX) (2,5 µg/site, icv, an antagonist of the AMPA/kainate type of glutamate receptors) inhibited the antidepressant-like effects of SeBZF1 (50 mg/kg, ig) in the TST. Coadministration of a subeffective dose of SeBZF1 with low doses of MK-801 (0.001 mg/kg, ip, a non-competitive NMDA receptor antagonist) or ketamine (0.1 mg/kg, ip, a non-selective antagonist of the NMDA receptors) produced significant antidepressant-like effects (synergistic action). These findings suggest the involvement of the glutamatergic system, probably through modulation of ionotropic glutamate receptors, in the antidepressant-like action of SeBZF1 in mice and contribute to a better understanding of the mechanisms underlying its pharmacological effects.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Dianer Nornberg Strelow
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Letícia Devantier Krüger
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | | | - Gustavo Bierhals Blödorn
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - César Augusto Brüning
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil.
| |
Collapse
|
15
|
Christensen MC, Schmidt SN, Grande I. Effectiveness of vortioxetine in patients with major depressive disorder and early-stage dementia: The MEMORY study. J Affect Disord 2023; 338:423-431. [PMID: 37315590 DOI: 10.1016/j.jad.2023.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Depression and dementia are highly prevalent in older adults and often co-occur. This Phase IV study investigated the effectiveness and tolerability of vortioxetine in improving depressive symptoms, cognitive performance, daily and global functioning and health-related quality of life (HRQoL) in patients with major depressive disorder (MDD) and comorbid early-stage dementia. METHODS Patients (n = 82) aged 55-85 years with a primary diagnosis of MDD (onset before age 55 years) and comorbid early-stage dementia (diagnosed ≥6 months before screening and after onset of MDD; Mini-Mental State Examination-2 total score, 20-24) received vortioxetine for 12 weeks (initiated at 5 mg/day and up-titrated to 10 mg/day at day 8, with flexible dosing thereafter [5-20 mg/day]). The primary endpoint was change from baseline in Montgomery-Åsberg Depression Rating Scale (MADRS) total score at week 12. RESULTS Significant improvement in depressive symptom severity was seen from week 1 onwards (P < 0.0001). At week 12, the least-square mean (standard error) change in MADRS total score from baseline was -12.4 (0.78). Significant improvements in cognitive performance were observed (from week 1 for the Digit Symbol Substitution Test and week 4 for the Rey Auditory Verbal Learning Test). Patients also experienced significant improvements in daily and global functioning, and HRQoL. Vortioxetine was well tolerated. From week 4 onwards, more than 50 % of patients were receiving 20 mg/day. LIMITATIONS Open-label study. CONCLUSIONS Vortioxetine demonstrated effectiveness in clinically significantly improving depressive symptoms, cognitive performance, daily and global functioning, and HRQoL in patients with MDD and comorbid early-stage dementia treated for 12 weeks. TRIAL REGISTRATION ClinicalTrials.gov/ct2/show/NCT04294654.
Collapse
Affiliation(s)
| | | | - Iria Grande
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain; Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institute of Neurosciences of the University of Barcelona (UBNeuro), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Zhan Y, Wang A, Yu Y, Chen J, Xu X, Nie J, Lin J. Inhibitory mechanism of vortioxetine on CYP450 enzymes in human and rat liver microsomes. Front Pharmacol 2023; 14:1199548. [PMID: 37790811 PMCID: PMC10544575 DOI: 10.3389/fphar.2023.1199548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Vortioxetine is a novel anti-major depression disorder drug with a high safety profile compared with other similar drugs. However, little research has been done on drug-drug interactions (DDI) about vortioxetine. In this paper, the inhibitory effect of vortioxetine on cytochrome P450 (CYP450) and the type of inhibitory mechanism were investigated in human and rat liver microsomes. We set up an in vitro incubation system of 200 μL to measure the metabolism of probe substrates at the present of vortioxetine at 37°C. The concentrations of the metabolites of probe substrates were all measured by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. It was found no time-dependent inhibition (TDI) of vortioxetine through determination of half-maximal inhibitory concentration (IC50) shift values. The enzymes and metabolites involved in this experiment in human and rats were as follows: CYP3A4/CYP3A (midazolam); CYP2B6/CYP2B (bupropion); CYP2D6/CYP2D (dextromethorphan); CYP2C8/CYP2C-1 (amodiaquine); CYP2C9/CYP2C-2 (losartan); and CYP2C19/CYP2C-3 (mephenytoin). We found that vortioxetine competitively inhibited CYP2C19 and CYP2D6 in human liver microsomes (HLMs) with inhibition constant (Ki) values of 2.17 μM and 9.37 μM, respectively. It was noncompetitive inhibition for CYP3A4 and CYP2C8, and its Ki values were 7.26 μM and 6.96 μM, respectively. For CYP2B6 and CYP2C9, vortioxetine exhibited the mixed inhibition with Ki values were 8.55 μM and 4.17 μM, respectively. In RLMs, the type of vortioxetine inhibition was uncompetitive for CYP3A and CYP2D (Ki = 4.41 and 100.9 μM). The inhibition type was competitive inhibition, including CYP2B and CYP2C-2 (Ki = 2.87 and 0.12 μM). The inhibition types of CYP2C-1 and CYP2C-3 (Ki = 39.91 and 4.23 μM) were mixed inhibition and noncompetitive inhibition, respectively. The study of the above mechanism will provide guidance for the safe clinical use of vortioxetine so that the occurrence of DDI can be avoided.
Collapse
Affiliation(s)
- Yunyun Zhan
- Department of Pharmacy, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Anzhou Wang
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yige Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Nie
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Subhas N, Ang JK, Tan KA, Ahmad SNA. Relations between clinical characteristics and cognitive deficits among adult patients diagnosed with major depressive disorder. Int J Psychiatry Clin Pract 2023; 27:219-231. [PMID: 36448673 DOI: 10.1080/13651501.2022.2149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE The present study examined the relations between clinical characteristics and cognitive deficits in adult patients with major depressive disorder (MDD) from a local outpatient psychiatric clinic in Malaysia. METHODS The present sample included 110 participants aged 20-60 years old. Participants were invited to provide their information on sociodemographic variables (age, gender, and educational level) and clinical characteristics (age at onset of depression and duration of illness) and to complete a series of cognitive performance measures including the Trail Making Tests A (psychomotor speed) and B (executive function), the Digit Symbol Substitution Test (attention), and the Auditory Verbal Learning Test (immediate free recall, acquisition phase, and delayed recall). The Mini International Neuropsychiatric Interview Version 6.0 was used to confirm the diagnosis of MDD and the Montgomery-Åsberg Depression Rating Scale was used to assess illness severity. RESULTS At the bivariate level, relations of age and educational level to all cognitive deficit domains were significant. At the multivariate level, only educational level and illness severity consistently and significantly predicted all cognitive deficits domains. CONCLUSIONS Therapeutic modalities should be individualised whilst considering the impacts of cognitive deficits in an attempt to prevent further deterioration in psychosocial functioning of MDD patients.KEY POINTSCognitive deficits are an elemental component of Major Depressive Disorder (MDD) persisting during a current major depressive episode or during remission, altering individuals' ability to process information and changes the way they perceive and interact with the environment.Cognitive deficits in MDD are evident among the upper-middle income groups in South-Eastern Asian countries warranting more local research as such deficits could lead to functional decline and work performance such as absenteeism and presenteeism.Therapeutic modalities should be individualised by taking the impacts of cognitive deficits into consideration to promote psychosocial functioning of MDD patients.
Collapse
Affiliation(s)
- Natasha Subhas
- Department of Psychiatry and Mental Health, Hospital Kuala Lumpur, Ministry of Health, Kuala Lumpur, Malaysia
| | - Jin Kiat Ang
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kit-Aun Tan
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Nor Aizah Ahmad
- Department of Psychiatry and Mental Health, Hospital Umum Sarawak, Ministry of Health, Kuching, Malaysia
| |
Collapse
|
18
|
Cumbo E, Adair M, Åstrom DO, Christensen MC. Effectiveness of vortioxetine in patients with major depressive disorder and comorbid Alzheimer's disease in routine clinical practice: An analysis of a post-marketing surveillance study in South Korea. Front Aging Neurosci 2023; 14:1037816. [PMID: 36698860 PMCID: PMC9868833 DOI: 10.3389/fnagi.2022.1037816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vortioxetine has demonstrated procognitive effects in patients with major depressive disorder (MDD). We assessed the effectiveness and safety of vortioxetine in a cohort of patients with MDD and comorbid Alzheimer's disease participating in a large post-marketing surveillance study in South Korea. Methods Subgroup analysis of a 6-month, prospective, multicenter, non-interventional cohort study in outpatients with MDD with a pre-baseline diagnosis of Alzheimer's disease receiving vortioxetine in routine care settings (n = 207). Patients were assessed at baseline and after 8 weeks; a subset of patients was also assessed after 24 weeks. Depression severity was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) and Clinical Global Impression (CGI) scale, cognitive symptoms using the Perceived Deficits Questionnaire-Depression, Korean version (PDQ-K), and cognitive performance using the Digit Symbol Substitution Test (DSST). Results Most patients were receiving a mean daily vortioxetine dose of 5 mg/day (174/190 patients; 91.6%). After 24 weeks of vortioxetine treatment, 71.4% of patients (40/56) had experienced overall clinical improvement (i.e., CGI-Improvement score ≤3) and 51.9% (28/54) had achieved remission from depressive symptoms (i.e., MADRS total score ≤10 points). Respective mean changes in MADRS, PDQ-K, and DSST total scores from baseline to week 24 were -11.5 (p < 0.0001), -5.1 (p = 0.03), and +3.8 points (p = 0.0524). Adverse events were reported by 27 patients (13.0%) and were mostly mild (89.2%). Conclusion Patients with MDD and comorbid Alzheimer's disease receiving vortioxetine in routine care settings in South Korea demonstrated clinically meaningful improvements in depressive symptoms, cognitive symptoms, and objective cognitive performance over the 6-month treatment period. Treatment with vortioxetine was well tolerated in this patient cohort, with reported adverse events consistent with the established tolerability profile of vortioxetine.
Collapse
Affiliation(s)
- Eduardo Cumbo
- Neurodegenerative Disorders Unit, ASP 2 Caltanissetta, Caltanissetta, Italy
| | - Michael Adair
- H. Lundbeck A/S, Valby, Denmark,*Correspondence: Michael Adair,
| | | | | |
Collapse
|
19
|
Meccia J, Lopez J, Bagot RC. Probing the antidepressant potential of psilocybin: integrating insight from human research and animal models towards an understanding of neural circuit mechanisms. Psychopharmacology (Berl) 2023; 240:27-40. [PMID: 36564671 DOI: 10.1007/s00213-022-06297-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Interest in the therapeutic potential of serotonergic psychedelic compounds including psilocybin has surged in recent years. While human clinical research suggests psilocybin holds promise as a rapid and long-lasting antidepressant, little is known about how its acute mechanisms of action mediate enduring alterations in cognition and behavior. Human neuroimaging studies point to both acute and sustained modulation of functional connectivity in key cortically dependent brain networks. Emerging evidence in preclinical models highlights the importance of psilocybin-induced neuroplasticity and alterations in the prefrontal cortex (PFC). Overviewing research in both humans and preclinical models suggests avenues to increase crosstalk between fields. We review how acute modulation of PFC circuits may contribute to long-term structural and functional alterations to mediate antidepressant effects. We highlight the potential for preclinical circuit and behavioral neuroscience approaches to provide basic mechanistic insight into how psilocybin modulates cognitive and affective neural circuits to support further development of psilocybin as a promising new treatment for depression.
Collapse
Affiliation(s)
- Juliet Meccia
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada
| | - Joëlle Lopez
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada. .,Ludmer Centre for Neuroinformatics and Mental Health, Montréal, QC, Canada.
| |
Collapse
|
20
|
Hosseinzadeh Sahafi O, Rezayof A, Ghasemzadeh Z, Alijanpour S, Rahimian S. Ameliorating effect offluoxetine on tamoxifen-induced memory loss: The role of corticolimbic NMDA receptors and CREB/BDNF/cFos signaling pathways in rats. Brain Res 2022; 1794:148058. [PMID: 36007581 DOI: 10.1016/j.brainres.2022.148058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Tamoxifen-induced cognitive dysfunction may lead to fluoxetine consumption in patients with breast cancer. Since the brain mechanisms are unclear in tamoxifen/fluoxetine therapy, the blockade effect of hippocampal/amygdala/prefrontal cortical NMDA receptors was examined in fluoxetine/tamoxifen-induced memory retrieval. We also assessed the corticolimbic signaling pathways in memory retrieval under the drug treatment in adult male Wistar rats. Using the Western blot technique, the expression levels of the cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and cFos were evaluated in the corticolimbic regions. The results showed that pre-test administration of fluoxetine (3 and 5 mg/kg, i.p.) improved tamoxifen-induced memory impairment in the passive avoidance learning task. Pre-test bilateral microinjection of D-AP5, a selective NMDA receptor antagonist, into the dorsal hippocampal CA1 regions and the central amygdala (CeA), but not the medial prefrontal cortex (mPFC), inhibited the improving effect of fluoxetine on tamoxifen response. It is important to note that the microinjection of D-AP5 into the different sites by itself did not affect memory retrieval. Memory retrieval increased the signaling pathway of pCREB/CREB/BDNF/cFos in the corticolimbic regions. Tamoxifen-induced memory impairment decreased the hippocampal/PFC BDNF level and the amygdala level of pCREB/CREB/cFos. The improving effect of fluoxetine on tamoxifen significantly increased the hippocampal/PFC expression levels of BDNF, the PFC/amygdala expression levels of cFos, and the ratio of pCREB/CREB in all targeted areas. Thus, NMDA receptors' activity in the different corticolimbic regions mediates fluoxetine/tamoxifen memory retrieval. The corticolimbic synaptic plasticity changes likely accompany the improving effect of fluoxetine on tamoxifen response.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Sepehrdad Rahimian
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Machado-Santos AR, Loureiro-Campos E, Patrício P, Araújo B, Alves ND, Mateus-Pinheiro A, Correia JS, Morais M, Bessa JM, Sousa N, Rodrigues AJ, Oliveira JF, Pinto L. Beyond New Neurons in the Adult Hippocampus: Imipramine Acts as a Pro-Astrogliogenic Factor and Rescues Cognitive Impairments Induced by Stress Exposure. Cells 2022; 11:cells11030390. [PMID: 35159199 PMCID: PMC8834148 DOI: 10.3390/cells11030390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Depression is a prevalent, socially burdensome disease. Different studies have demonstrated the important role of astrocytes in the pathophysiology of depression as modulators of neurotransmission and neurovascular coupling. This is evidenced by astrocyte impairments observed in brains of depressed patients and the appearance of depressive-like behaviors upon astrocytic dysfunctions in animal models. However, little is known about the importance of de novo generated astrocytes in the mammalian brain and in particular its possible involvement in the precipitation of depression and in the therapeutic actions of current antidepressants (ADs). Therefore, we studied the modulation of astrocytes and adult astrogliogenesis in the hippocampal dentate gyrus (DG) of rats exposed to an unpredictable chronic mild stress (uCMS) protocol, untreated and treated for two weeks with antidepressants—fluoxetine and imipramine. Our results show that adult astrogliogenesis in the DG is modulated by stress and imipramine. This study reveals that distinct classes of ADs impact differently in the astrogliogenic process, showing different cellular mechanisms relevant to the recovery from behavioral deficits induced by chronic stress exposure. As such, in addition to those resident, the newborn astrocytes in the hippocampal DG might also be promising therapeutic targets for future therapies in the neuropsychiatric field.
Collapse
Affiliation(s)
- Ana R Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, 4750-810 Barcelos, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Zsido RG, Molloy EN, Cesnaite E, Zheleva G, Beinhölzl N, Scharrer U, Piecha FA, Regenthal R, Villringer A, Nikulin VV, Sacher J. One‐week escitalopram intake alters the excitation–inhibition balance in the healthy female brain. Hum Brain Mapp 2022; 43:1868-1881. [PMID: 35064716 PMCID: PMC8933318 DOI: 10.1002/hbm.25760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Rachel G. Zsido
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- International Max Planck Research School NeuroCom Leipzig Germany
- Max Planck School of Cognition Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Eóin N. Molloy
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- International Max Planck Research School NeuroCom Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- University Clinic for Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg Magdeburg Germany
| | - Elena Cesnaite
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Gergana Zheleva
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Nathalie Beinhölzl
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Ulrike Scharrer
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Clinic for Cognitive Neurology Leipzig University Leipzig Germany
| | - Fabian A. Piecha
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf Boehm Institute of Pharmacology and Toxicology Leipzig University Leipzig Germany
| | - Arno Villringer
- International Max Planck Research School NeuroCom Leipzig Germany
- Max Planck School of Cognition Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Clinic for Cognitive Neurology Leipzig University Leipzig Germany
- Berlin School of Mind and Brain Berlin Germany
| | - Vadim V. Nikulin
- International Max Planck Research School NeuroCom Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Julia Sacher
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- International Max Planck Research School NeuroCom Leipzig Germany
- Max Planck School of Cognition Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Clinic for Cognitive Neurology Leipzig University Leipzig Germany
| |
Collapse
|
23
|
Yu Y, Li JJ, He XQ, Lai ZY, Hao R, Qi Y, Cao DQ, Fu M, Ma H, Xie QC, Sun M, Huang ZL, Jin LJ, Sun HH, Lu N, Wang R, Yung WH, Huang Y. 5-HT3Rs Maintain Hippocampal LTP in a CB1R-GABA A -Dependent Manner for Spatial Memory. Br J Pharmacol 2022; 179:2969-2985. [PMID: 34997582 DOI: 10.1111/bph.15793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE As the only ionotropic receptor in 5-HT receptor family, 5-HT3 receptor (5-HT3R) involves in psychiatric disorders and its modulators have potential therapeutic effects for cognitive impairment in these disorders. However, it remains unclear how 5-HT3Rs shape synaptic plasticity for memory function. EXPERIMENTAL APPROACH Extracellular as well as whole-cell recordings were used to monitor hippocampal long-term potentiation (LTP) and synaptic transmission in hippocampal slices from 5-HT3AR knock-out or 5-HT3AR-GFP mice. Immunocytochemistry, qRT-PCR and Western blot were used to measure receptor expression. We also assessed hippocampal dependent cognition and memory using the Morris water maze (MWM) and novel object recognition. KEY RESULTS We found that 5-HT3R dysfunction impaired hippocampal LTP in Schaffer collateral (SC)-CA1 pathway in hippocampal slices by facilitating GABAergic inputs in pyramidal cells. This effect was dependent on 5-HT3Rs on axon-terminals. It resulted from reduced expression and function of cannabinoid receptor 1 (CB1R) co-localized with 5-HT3Rs on axon terminals, which led to diminishment of tonic inhibition of GABA release by CB1Rs. Inhibition of CB1Rs mimicked the facilitation of GABAergic transmission by 5-HT3R disruption. Consequently, mice with hippocampal 5-HT3R disruption exhibited impaired spatial memory in Morris water maze tasks. CONCLUSION AND IMPLICATIONS These results suggest that 5-HT3Rs are crucial in enabling hippocampal synaptic plasticity via a novel CB1R-GABAA -dependent pathway to regulate spatial memory.
Collapse
Affiliation(s)
- Yan Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jing-Jing Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Qian He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zi-Ying Lai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Hao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Qi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong-Qing Cao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Fu
- Department of Biology, York University, Toronto, ON, Canada
| | - Hong Ma
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiu-Chen Xie
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu Sun
- GeneScience Pharmaceuticals Co., Ltd, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Jing Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui-Hui Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ning Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Wang
- Department of Biology, York University, Toronto, ON, Canada
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
24
|
Kim H, Baik SY, Kim YW, Lee SH. Improved cognitive function in patients with major depressive disorder after treatment with vortioxetine: A EEG study. Neuropsychopharmacol Rep 2021; 42:21-31. [PMID: 34894110 PMCID: PMC8919117 DOI: 10.1002/npr2.12220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Vortioxetine has a positive effect on cognitive function in patients with major depressive disorder (MDD). This study aimed to examine the changes in cognitive function and EEG (spectral power and mismatch negativity (MMN)) in patients with MDD pre‐ and postvortioxetine treatment. Methods Thirty patients with MDD were included in the study. They were given vortioxetine (10‐20mg po per day) for eight weeks. Depression and anxiety severities, social function (Korean version of the social adjustment scale (K‐SAS)), and cognitive function (digit‐symbol substitution Test (DSST), Korean version of the attentional control questionnaire (K‐ACQ), and Korean version of the perceived deficits questionnaire for depression (K‐PDQD)) were evaluated. Spectral power of EEG and MMN was also measured pre‐ and postvortioxetine treatment. Results Depression and anxiety severity, social function, and cognitive functioning significantly improved after vortioxetine treatment. Also, there was a significant decrease in the right central delta band and an increase in the right central beta 2 band following vortioxetine treatment. The changes in EEG spectral power were not related to changes in cognitive functions. Baseline MMN significantly predicted changes in DSST score after controlling for the baseline clinical variables. Conclusion Vortioxetine treatment improved cognitive function and induced changes in EEG (decreased theta power and increased beta power) in patients with MDD. Our results suggest that greater negative MMN amplitude is associated with greater potential for cognitive improvement following vortioxetine treatment. BLURB FOR ETOC:Vortioxetine treatment improved cognitive function and induced changes in EEG (decreased theta power and increased beta power) in patients with MDD. Our results suggest that greater negative MMN amplitude is associated with greater potential for cognitive improvement following the vortioxetine treatment.![]()
Collapse
Affiliation(s)
- Hong Kim
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Seung Yeon Baik
- Department of Psychology, Penn State University, Pennsylvania, USA
| | - Yong Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Department of Psychiatry, Inje University, Goyang, Republic of Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea.,Clinical Emotion and Cognition Research Laboratory, Department of Psychiatry, Inje University, Goyang, Republic of Korea.,Bwave Inc, Goyang, Republic of Korea
| |
Collapse
|
25
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Biney RP, Benneh CK, Adongo DW, Ameyaw EO, Woode E. Evidence of an antidepressant-like effect of xylopic acid mediated by serotonergic mechanisms. Psychopharmacology (Berl) 2021; 238:2105-2120. [PMID: 33837810 DOI: 10.1007/s00213-021-05835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Depression causes significant debilitating symptoms and economic burden. Current management is challenged by slow onset of action and modest efficacies of antidepressants; thus, the search for newer antidepressants remains relevant. We evaluated the antidepressant effects of a kaurene diterpene, xylopic acid (XA), in zebrafish and mouse models. METHODS The chronic unpredictable stress (CUS) protocol in zebrafish and the tail suspension test (TST), forced swim test (FST), lipopolysaccharide-induced depression-like behaviour test (LID) and repeated open space swimming test (OSST) in mice were used. We further examined the impact of depleting monoamines on XA's antidepressant effects. The contribution of glutamatergic and nitrergic pathways on the antidepressant effect of XA in mice and XA's effects on 5-HT receptors and monoamine oxidase (MAO) enzymes were also evaluated. Finally, XA's influence on neuroprotection was evaluated by measuring BDNF and oxidative stress enzymes in whole brain. XA doses (1-10 μM) in zebrafish and (10, 30, 100 mg kg-1) in mice exerted potent antidepressant-like potential in FST, TST, LID and showed fast-onset antidepressant-like property in the OSST. RESULTS The antidepressant-like properties in mice were reversed by blocking synthesis/release of serotonin but not noradrenaline using p-chlorophenylalanine and α-methyl-p-tyrosine, respectively. This antidepressant-like effect was potentiated by D-cycloserine and Nω-Nitro-L-arginine methyl ester (L-NAME) but not by D-serine and L-arginine. XA also evoked partial agonist-like effects on 5-hydroxytrptamine receptors on the rat fundus but it did not have MAO inhibition effect. It also increased BDNF, glutathione and antioxidant enzymes. CONCLUSION Therefore, xylopic acid possesses antidepressant-like effects largely mediated by serotonergic and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Robert Peter Biney
- Department of Pharmacology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Charles Kwaku Benneh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Elvis Ofori Ameyaw
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
27
|
Hossain R, Al-Khafaji K, Khan RA, Sarkar C, Islam MS, Dey D, Jain D, Faria F, Akbor R, Atolani O, Oliveira SMR, Siyadatpanah A, Pereira MDL, Islam MT. Quercetin and/or Ascorbic Acid Modulatory Effect on Phenobarbital-Induced Sleeping Mice Possibly through GABA A and GABA B Receptor Interaction Pathway. Pharmaceuticals (Basel) 2021; 14:ph14080721. [PMID: 34451819 PMCID: PMC8398796 DOI: 10.3390/ph14080721] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Depressive disorder is a recurrent illness that affects large numbers of the general population worldwide. In recent years, the goal of depression treatment has moved from symptomatic response to that of full remission. However, treatment-resistant depression is a major challenge in the treatment of depression or depression-related disorders. Consensus opinion, therefore, suggests that effective combined aggressive initial treatment is the most appropriate strategy. This study aimed to evaluate the effects of quercetin (QUR) and/or ascorbic acid (AA) on Phenobarbital-induced sleeping mice. QUR (50 mg/kg) and/or AA (25 mg/kg) with or without intraperitoneally pre-treated with GABA receptor agonist (diazepam: 2 mg/kg, i.p.) or antagonist (Flumazenil: 2.5 mg/kg, i.p.) to underscore the effects, as well as the possible involvement of the GABA receptor in the modulatory action of QUR and AA in sleeping mice. Additionally, an in silico study was undertaken to predict the involvement of GABA receptors in the sleep mechanism. Findings suggest that the pretreatment of QUR and AA modulated the onset and duration of action of the standard drugs in experimental animals. The acute administration of QUR and/or AA significantly (p < 0.05) reversed the DZP-mediated onset of action and slightly reversed the duration of sleep time in comparison to the vehicle (control) group. A further combination of QUR or AA with the FLU resulted in an enhancement of the onset of action while reducing the duration of action, suggesting a FLU-like effect on the test animals. In in silico studies, AA and QUR showed good to moderate binding affinities with GABAA and GABAB receptors. Both QUR and AA produced a stimulatory-like effect on mice, possibly through the GABAA and GABAB receptor interaction pathways. Further studies are necessary to verify this activity and clarify the exact mechanism of action(s) involved.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Khattab Al-Khafaji
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey;
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9280, Bangladesh;
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Md. Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh;
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali 304022, Rajasthan, India;
| | - Farhana Faria
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Rukaya Akbor
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
| | - Olubunmi Atolani
- Department of Chemistry, University of Ilorin, Ilorin P.M.B. 1515, Nigeria;
| | - Sónia M. R. Oliveira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (M.d.L.P.); (M.T.I.)
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.H.); (C.S.); (M.S.I.); (F.F.); (R.A.)
- Correspondence: (M.d.L.P.); (M.T.I.)
| |
Collapse
|
28
|
Abstract
After participating in this activity, learners should be better able to:• Identify the effects of dysregulated opioid signalling in depression• Evaluate the use of opioid compounds and ketamine in patients with depression ABSTRACT: Major depressive disorder (MDD) remains one of the leading causes of disability and functional impairment worldwide. Current antidepressant therapeutics require weeks to months of treatment prior to the onset of clinical efficacy on depressed mood but remain ineffective in treating suicidal ideation and cognitive impairment. Moreover, 30%-40% of individuals fail to respond to currently available antidepressant medications. MDD is a heterogeneous disorder with an unknown etiology; novel strategies must be developed to treat MDD more effectively. Emerging evidence suggests that targeting one or more of the four opioid receptors-mu (MOR), kappa (KOR), delta (DOR), and the nociceptin/orphanin FQ receptor (NOP)-may yield effective therapeutics for stress-related psychiatric disorders. Furthermore, the effects of the rapidly acting antidepressant ketamine may involve opioid receptors. This review highlights dysregulated opioid signaling in depression, evaluates clinical trials with opioid compounds, and considers the role of opioid mechanisms in rapidly acting antidepressants.
Collapse
|
29
|
Filatova EV, Shadrina MI, Slominsky PA. Major Depression: One Brain, One Disease, One Set of Intertwined Processes. Cells 2021; 10:cells10061283. [PMID: 34064233 PMCID: PMC8224372 DOI: 10.3390/cells10061283] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five individuals and is the leading cause of disability worldwide. Presently, MDD is considered a multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological processes. Multiple studies allowed the formulation of several theories attempting to describe the development of MDD. However, none of these hypotheses are comprehensive because none of them can explain all cases, mechanisms, and symptoms of MDD. Nevertheless, all of these theories share some common pathways, which lead us to believe that these hypotheses depict several pieces of the same big puzzle. Therefore, in this review, we provide a brief description of these theories and their strengths and weaknesses in an attempt to highlight the common mechanisms and relationships of all major theories of depression and combine them together to present the current overall picture. The analysis of all hypotheses suggests that there is interdependence between all the brain structures and various substances involved in the pathogenesis of MDD, which could be not entirely universal, but can affect all of the brain regions, to one degree or another, depending on the triggering factor, which, in turn, could explain the different subtypes of MDD.
Collapse
|
30
|
Huan Y, Wei J, Zhou J, Liu M, Yang J, Gao Y. Label-Free Liquid Chromatography-Mass Spectrometry Proteomic Analysis of the Urinary Proteome for Measuring the Escitalopram Treatment Response From Major Depressive Disorder. Front Psychiatry 2021; 12:700149. [PMID: 34658947 PMCID: PMC8514635 DOI: 10.3389/fpsyt.2021.700149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental disorder that can cause substantial impairments in quality of life. Clinical treatment is usually built on a trial-and-error method, which lasts ~12 weeks to evaluate whether the treatment is efficient, thereby leading to some inefficient treatment measures. Therefore, we intended to identify early candidate urine biomarkers to predict efficient treatment response in MDD patients. In this study, urine samples were collected twice from 19 respondent and 10 non-respondent MDD patients receiving 0-, 2-, and 12-week treatments with escitalopram. Differential urinary proteins were subsequently analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Our two pilot tests suggested that the urine proteome reflects changes associated with major depressive disorder at the early stage of treatment measures. On week 2, 20 differential proteins were identified in the response group compared with week 0, with 14 of these proteins being associated with the mechanisms of MDD. In the non-response group, 60 differential proteins were identified at week 2, with 28 of these proteins being associated with the mechanisms of MDD. In addition, differential urinary proteins at week 2 between the response and non-response groups can be clearly distinguished by using orthogonal projection on latent structure-discriminant analysis (OPLS-DA). Our small pilot tests indicated that the urine proteome can reflect early effects of escitalopram therapy between the response and non-response groups since at week 2, which may provide potential early candidate urine biomarkers to predict efficient treatment measures in MDD patients.
Collapse
Affiliation(s)
- Yuhang Huan
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jing Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Kokras N, Poulogiannopoulou E, Sotiropoulos MG, Paravatou R, Goudani E, Dimitriadou M, Papakonstantinou E, Doxastakis G, Perrea DN, Hloupis G, Angelis A, Argyropoulou A, Tsarbopoulos A, Skaltsounis AL, Dalla C. Behavioral and Neurochemical Effects of Extra Virgin Olive Oil Total Phenolic Content and Sideritis Extract in Female Mice. Molecules 2020; 25:molecules25215000. [PMID: 33126727 PMCID: PMC7663189 DOI: 10.3390/molecules25215000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the cognitive and behavioral effects of extra virgin olive oil total phenolic content (TPC) and Sideritis (SID) extracts in female mice, and identify the associated neurochemical changes in the hippocampus and the prefrontal cortex. All animals received intraperitoneal low or high doses of TPC, SID or vehicle treatment for 7 days and were subjected to the Open Field (OF), Novel Object Recognition (NOR) and Tail Suspension Test (TST). The prefrontal cortex and hippocampus were dissected for analysis of neurotransmitters and aminoacids with high performance liquid chromatography with electrochemical detection (HPLC-ED). Both TPC doses enhanced vertical activity and center entries in the OF, which could indicate an anxiolytic-like effect. In addition, TPC enhanced non-spatial working memory and, in high doses, exerted antidepressant effects. On the other hand, high SID doses remarkably decreased the animals’ overall activity. Locomotor and exploratory activities were closely associated with cortical increases in serotonin turnover induced by both treatments. Cognitive performance was linked to glutamate level changes. Furthermore, TPC reduced cortical taurine levels, while SID reduced cortical aspartate levels. TPC seems to have promising cognitive, anxiolytic and antidepressant effects, whereas SID has sedative effects in high doses. Both extracts act in the brain, but their specific actions and properties merit further exploration.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias Avenue 72–74, 11528 Athens, Greece
| | - Eleni Poulogiannopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Marinos G. Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Rafaella Paravatou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Eleni Goudani
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Maria Dimitriadou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Electra Papakonstantinou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - George Doxastakis
- Electronic Devices and Materials Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, University of West Attica, Agiou Spiridonos 28, Egaleo, 12243 Athens, Greece; (G.D.); (G.H.)
| | - Despina N. Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11521 Athens, Greece;
| | - George Hloupis
- Electronic Devices and Materials Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, University of West Attica, Agiou Spiridonos 28, Egaleo, 12243 Athens, Greece; (G.D.); (G.H.)
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- Bioanalytical Department, GAIA Research Center, The Goulandris Natural History Museum, Othonos 100, Kifissia, 14562 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- Correspondence:
| |
Collapse
|
32
|
Treyer V, Gietl AF, Suliman H, Gruber E, Meyer R, Buchmann A, Johayem A, Unschuld PG, Nitsch RM, Buck A, Ametamey SM, Hock C. Reduced uptake of [11C]-ABP688, a PET tracer for metabolic glutamate receptor 5 in hippocampus and amygdala in Alzheimer's dementia. Brain Behav 2020; 10:e01632. [PMID: 32304284 PMCID: PMC7303388 DOI: 10.1002/brb3.1632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Metabotropic glutamate receptors play a critical role in the pathogenesis of Alzheimer's disease due to their involvement in processes of memory formation, neuroplasticity, and synaptotoxity. The objective of the current study was to study mGluR5 availability measured by [11 C]-ABP688 (ABP) in patients with clinically diagnosed Alzheimer's dementia (AD). METHODS A bolus-infusion protocol of [11 C]-ABP688 was applied in 9 subjects with AD and 10 cognitively healthy controls (Controls) to derive distribution volume estimates of mGluR5. Furthermore, we also estimated cerebral perfusion by averaging early frame signal of initial ABP bolus injection. RESULTS Subjects with Alzheimer's dementia (mean age: 77.3/SD 5.7) were older than controls (mean age: 68.5/SD: 9.6) and scored lower on the MMSE (22.1/SD2.7 vs. 29.0/SD0.8). There were no overall differences in ABP signal. However, distribution volume ratio (DVR) for ABP was reduced in the bilateral hippocampus (AD: 1.34/SD: 0.40 vs. Control: 1.84/SD:0.31, p = .007) and the bilateral amygdala (AD:1.86/SD:0.26 vs. Control:2.33/SD:0.37 p = .006) in AD patients compared to controls. Estimate of cerebral blood flow was reduced in the bilateral hippocampus in AD (AD:0.75/SD:0.10 vs. Control:0.86/SD:0.09 p = .02). CONCLUSION Our findings demonstrate reduced mGluR5 binding in the hippocampus and amygdala in Alzheimer's dementia. Whether this is due to synaptic loss and/or consecutive reduction of potential binding sites or reflects disease inherent mechanisms remains to be elucidated in future studies.
Collapse
Affiliation(s)
- Valerie Treyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland.,Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Husam Suliman
- Hospital for Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Anass Johayem
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Paul G Unschuld
- Hospital for Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland.,Neurimmune, Schlieren, Switzerland
| |
Collapse
|
33
|
Borhannejad F, Shariati B, Naderi S, Shalbafan M, Mortezaei A, Sahebolzamani E, Saeb A, Hosein Mortazavi S, Kamalzadeh L, Aqamolaei A, Ali Noorbala A, Namazi‐Shabestari A, Akhondzadeh S. Comparison of vortioxetine and sertraline for treatment of major depressive disorder in elderly patients: A double‐blind randomized trial. J Clin Pharm Ther 2020; 45:804-811. [DOI: 10.1111/jcpt.13177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Firouzeh Borhannejad
- Psychiatric Research Center Roozbeh Psychiatric Hospital Tehran University of Medical Sciences Tehran Iran
| | - Behnam Shariati
- Mental Health Research Center Iran University of Medical Sciences Tehran Iran
| | - Sina Naderi
- Psychiatric Research Center Roozbeh Psychiatric Hospital Tehran University of Medical Sciences Tehran Iran
| | | | - Amirhosein Mortezaei
- Psychiatric Research Center Roozbeh Psychiatric Hospital Tehran University of Medical Sciences Tehran Iran
| | - Erfan Sahebolzamani
- Psychiatric Research Center Roozbeh Psychiatric Hospital Tehran University of Medical Sciences Tehran Iran
| | - Atefe Saeb
- Mental Health Research Center Iran University of Medical Sciences Tehran Iran
| | - Seyyed Hosein Mortazavi
- Psychiatric Research Center Roozbeh Psychiatric Hospital Tehran University of Medical Sciences Tehran Iran
| | - Leila Kamalzadeh
- Mental Health Research Center Iran University of Medical Sciences Tehran Iran
| | - Ali Aqamolaei
- Psychiatric Research Center Roozbeh Psychiatric Hospital Tehran University of Medical Sciences Tehran Iran
| | - Ahmad Ali Noorbala
- Psychosomatic Research Center Tehran University of Medical Sciences Tehran Iran
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center Roozbeh Psychiatric Hospital Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
34
|
Jacobson W, Zhong W, Nomikos GG, Christensen MC, Kurre Olsen C, Harvey PD. Effects of vortioxetine on functional capacity across different levels of functional impairment in patients with major depressive disorder: a University of California, San Diego Performance-based Skills Assessment (UPSA) analysis. Curr Med Res Opin 2020; 36:117-124. [PMID: 31422713 DOI: 10.1080/03007995.2019.1657692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective: To evaluate the consistency of vortioxetine's effects on functional capacity in adults with major depressive disorder (MDD) and self-reported cognitive symptoms at different levels of functional impairment.Methods: An exploratory analysis of data from a randomized, placebo-controlled, duloxetine-referenced study (NCT01564862) involving 529 patients with moderate to severe MDD treated once-daily with vortioxetine 10/20 mg, duloxetine 60 mg, or placebo for 8 weeks. Analysis of the University of California, San Diego Performance-based Skills Assessment (UPSA) composite scores stratified patients into subgroups by baseline functional impairment and assessed clinically important differences using several cutoffs for change from baseline (CFB) (least-square means) in UPSA composite score. A path analysis was also conducted to determine the proportion of direct versus indirect effects of vortioxetine on functional capacity.Results: Vortioxetine significantly separated from placebo across different baseline levels of functional impairment, particularly at the ≤70 cutoff (mean difference = 5.9, 95% confidence interval, 1.5-10.4). A greater proportion of patients treated with vortioxetine than placebo exhibited UPSA composite score response at each threshold analyzed and were classified as responders based on UPSA CFB of ≥7 (p = 0.006) or ≥9 (p = 0.016). No significant effects were observed for duloxetine versus placebo for any baseline levels of functional impairment or response thresholds. Path analysis demonstrated that 96.9% of the effects on functional capacity can be directly attributed to the treatment effect of vortioxetine and are not mediated by improvements in depressive symptoms as measured by MADRS.Conclusion: The effects of vortioxetine on functional capacity is robust across different level of functional impairment in patients with MDD. The effect on functional capacity was largely independent of the effect on depressive symptoms. Trial Registration: ClinicalTrials.gov identifier: NCT01564862: https://clinicaltrials.gov/ct2/show/NCT01564862; European Clinical Trials Database [EudraCT] Number 2011-005298-22: https://www.clinicaltrialsregister.eu/ctr-search/trial/2011-005298-22/DE.
Collapse
Affiliation(s)
- William Jacobson
- Clinical Science, Takeda Development Center Americas, Inc, Deerfield, IL, USA
| | - Wei Zhong
- CNS Statistics, Takeda Development Center Americas, Inc, Deerfield, IL, USA
| | - George G Nomikos
- Clinical Science, Takeda Development Center Americas, Inc, Deerfield, IL, USA
| | | | - Christina Kurre Olsen
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, FL, USA
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
35
|
Zhan Y, Xia J, Wang X. Effects of glutamate-related drugs on anxiety and compulsive behavior in rats with obsessive-compulsive disorder. Int J Neurosci 2019; 130:551-560. [PMID: 31680595 DOI: 10.1080/00207454.2019.1684276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuhua Zhan
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Xia
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xumei Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Abstract
This article covers current research on the relationship between depression and cognitive impairment in older adults. First, it approaches the clinical assessment of late-life depression and comorbid cognitive impairment. Cognitive risk factors for suicide are discussed. Research is then provided on neuropsychological changes associated with depression, discussing subjective cognitive impairment, mild cognitive impairment, and dementia profiles. In addition, literature regarding neuroimaging and biomarker findings in depressed older adults is presented. Finally, therapeutic models for treatment of late-life depression are discussed, including psychotherapy models, holistic treatments, pharmacologic approaches, and brain stimulation therapies.
Collapse
Affiliation(s)
- Ryan D Greene
- Department of Psychology in Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA; University of Indianapolis, Indianapolis, IN, USA.
| | - Alex Cook
- University of Indianapolis, Indianapolis, IN, USA
| | - Dustin Nowaskie
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sophia Wang
- Roudebush VA Medical Center, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Center of Health Innovation and Implementation Science, Center for Translational Science and Innovation, Indianapolis, IN, USA; Sandra Eskenazi Center for Brain Care Innovation, Eskenazi Hospital, Indianapolis, IN, USA
| |
Collapse
|
37
|
Gómez-Canela C, Rovira García X, Martínez-Jerónimo F, Marcé RM, Barata C. Analysis of neurotransmitters in Daphnia magna affected by neuroactive pharmaceuticals using liquid chromatography-high resolution mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113029. [PMID: 31454584 DOI: 10.1016/j.envpol.2019.113029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Neurotransmission plays an essential role during the central nervous system (CNS) development. During the last years, several studies based on the changes produced in neurotransmitters of aquatic organisms caused by pharmaceuticals have been reported. Daphnia magna, the aquatic ecotoxicological model organism, shares several of the neurotransmitters targeted by antidepressant and other neuro-active drugs with vertebrates. Therefore, a method based on liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) has been applied for the first time to study the levels of 41 neurotransmitters in Daphnia magna under the effect of four different neuro-active pharmaceuticals (sertraline, venlafaxine, duloxetine and fluoxetine). In addition, the performance of LC-HRMS was studied in terms of linearity, sensitivity, intra- and inter-day precision, and overall robustness. The developed analytical method using LC-HRMS is a new tool for neurotoxicology research using the Daphnia magna model. As a result, general differences on the concentrations of those neurotransmitters exposed to the mentioned pharmaceuticals were observed.
Collapse
Affiliation(s)
- Cristian Gómez-Canela
- Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Faculty of Chemistry, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, Tarragona, Catalonia, Spain.
| | - Xavier Rovira García
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| | | | - Rosa María Marcé
- Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Faculty of Chemistry, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, Tarragona, Catalonia, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| |
Collapse
|
38
|
Subramaniapillai M, Mansur RB, Zuckerman H, Park C, Lee Y, Iacobucci M, Cao B, Ho R, Lin K, Phan L, McIntyre RS. Association between cognitive function and performance on effort based decision making in patients with major depressive disorder treated with Vortioxetine. Compr Psychiatry 2019; 94:152113. [PMID: 31404802 DOI: 10.1016/j.comppsych.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND It is well established that deficits in motivation, reward, and cognition are common during and in between syndromal episodes of depression as part of Major Depressive Disorder (MDD). Informed by evidence indicating functional and structural interconnectivity between cognitive and reward brain circuits, we preliminarily evaluate the association between measures of cognitive performance and reward/motivation. METHODS This is a post-hoc analysis of a primary study (i.e. the THINC-it sensitivity to change study). Adults (18-65 years of age) meeting DSM-5 criteria for MDD, single-episode or recurrent confirmed by M.I.N.I. with moderate severity or greater (i.e. Montgomery Asberg Depression Rating Scale ≥20). All eligible subjects received vortioxetine 10-20 mg open-label for 8 weeks. The Effort Expenditure Reward Task (EEfRT) was the principal measure of motivation and reward. We directly compare the effects of cognitive measures and depressive symptoms on effort-based decision-making using the THINC-it composite score and MADRS total score. RESULTS Twenty-one participants with MDD (Mean age = 38.47, SD = 12.85) and 20 healthy volunteers (Mean age = 41.50, SD = 14.21) completed the optional EEfRT task. Amongst individuals with MDD, performance in processing speed, executive function (i.e. Trails B) and overall composite cognitive score was positively associated with the proportion of hard-task choices in the high reward condition (i.e. greater reward valuation). Across both groups, a greater probability (χ2 = 1.137) and magnitude of reward (χ2 = 0.045) was associated with increased effort (i.e. choosing the hard task more frequently). Using fully factored GEE models, we observed a positive association between performance on the Trails test (β = 2.223, SE = 0.928, p = 0.017) as well as the composite score (β = 0.978, SE = 0.0.459, p = 0.033), and greater effort for high rewards. In addition, it was observed that a positive association (i.e. greater effort for reward in higher probability) was observed with depressive symptoms and overall cognitive measures. CONCLUSION Herein, we observed that an association exists between overall cognitive function, notably processing speed and executive function and reward function. Specifically, a greater effort for hard task rewards (using the EEfRT task) was manifested in individuals exhibiting higher levels of cognitive performance in a well-characterized sample of MDD treated with Vortioxetine.
Collapse
Affiliation(s)
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada; University of Toronto, Canada
| | - Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada
| | - Caroline Park
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada; University of Toronto, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada; University of Toronto, Canada
| | - Michelle Iacobucci
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada
| | - Bing Cao
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada
| | - Roger Ho
- National University of Singapore, Singapore
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, China; GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China; Laboratory of Neuropsychology and Laboratory of Social Cognitive Affective, Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong
| | - Lee Phan
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada; Brain and Cognition Discovery Foundation, Canada; University of Toronto, Canada.
| |
Collapse
|
39
|
Tang SW, Tang WH, Leonard BE. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature. World J Biol Psychiatry 2019. [PMID: 28649903 DOI: 10.1080/15622975.2017.1346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Herbs are frequently and concurrently used with prescribed drugs by patients worldwide. While clinical trials have found some herbs to be as useful as standard psychiatric drugs, most clinicians are unaware of their pharmacological mechanisms.Methods: We searched English language and other language literature with English abstracts listed in PubMed website, supplemented by additional through Google Scholar's free academic paper abstract website for publications on herbs, focussing on their clinical use in mental disorders, their neurobiology and their pharmacology.Results: A major reason for herbs remaining outside of mainstream psychiatry is that the terminology and concepts in herbal medicine are not familiar to psychiatrists in general. Many publications regarding the use of herbal medicine for psychiatric disorders are deficient in details regarding diagnosis, criteria for response and the neurobiology details compared with publications on standard psychotropic drugs. Nomenclature for herbal medicine is usually confusing and is not conducive to an easy understanding of their mode of action in psychiatric disorders.Conclusions: The recent neuroscience-based nomenclature (NbN) for psychotropics methodology would be a logical application to herbal medicine in facilitating a better understanding of the use of herbal medicine in psychiatry.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA, USA.,Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Wayne H Tang
- Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, Hong Kong.,Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
40
|
Sharma S, Akundi RS. Mitochondria: A Connecting Link in the Major Depressive Disorder Jigsaw. Curr Neuropharmacol 2019; 17:550-562. [PMID: 29512466 PMCID: PMC6712299 DOI: 10.2174/1570159x16666180302120322] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background Depression is a widespread phenomenon with varying degrees of pathology in different patients. Various hypotheses have been proposed for the cause and continuance of depression. Some of these include, but not limited to, the monoamine hypothesis, the neuroendocrine hypothesis, and the more recent epigenetic and inflammatory hypotheses. Objective In this article, we review all the above hypotheses with a focus on the role of mitochondria as the connecting link. Oxidative stress, respiratory activity, mitochondrial dynamics and metabolism are some of the mitochondria-dependent factors which are affected during depression. We also propose exogenous ATP as a contributing factor to depression. Result Literature review shows that pro-inflammatory markers are elevated in depressive individuals. The cause for elevated levels of cytokines in depression is not completely understood. We propose exogenous ATP activates purinergic receptors which in turn increase the levels of various pro-inflammatory factors in the pathophysiology of depression. Conclusion Mitochondria are integral to the function of neurons and undergo dysfunction in major depressive disorder patients. This dysfunction is reflected in all the various hypotheses that have been proposed for depression. Among the newer targets identified, which also involve mitochondria, includes the role of exogenous ATP. The diversity of purinergic receptors, and their differential expression among various individuals in the population, due to genetic and environmental (prenatal) influences, may influence the susceptibility and severity of depression. Identifying specific receptors involved and using patient-specific purinergic receptor antagonist may be an appropriate therapeutic course in the future.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi S Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
41
|
Uno K, Miyanishi H, Sodeyama K, Fujiwara T, Miyazaki T, Muramatsu SI, Nitta A. Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice. Behav Brain Res 2019; 376:112227. [PMID: 31520691 DOI: 10.1016/j.bbr.2019.112227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The number of patients with depressive disorders is increasing. However, the mechanism of depression onsets has not been completely revealed. We previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. In this study, we revealed the involvement of Shati/Nat8l in the vulnerability to major depression. Shati/Nat8l mRNA was increased only in the striatum of mice, which were exposed to chronic social defeat stress. Shati/Nat8l-overexpressed mice showed impairment in social interaction and sucrose preference after the subthreshold social defeat (microdefeat) stress. These depression-like behaviors were restored by fluvoxamine and LY341495 injection prior to these tests. Furthermore, the intracerebral administration of only fluvoxamine, but not of LY341495, to the dorsal striatum and direct infusion of LY341495 to the dorsal raphe also rescued. Taken together, Shati/Nat8l in the striatum has an important role in the vulnerability to depression onsets by regulating the origin of serotonergic neuronal system via GABAergic projection neuron in the dorsal raphe from the dorsal striatum.
Collapse
Affiliation(s)
- Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan; Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Hajime Miyanishi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kengo Sodeyama
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Toshiyuki Fujiwara
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Toh Miyazaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan; Center for Gene & Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
42
|
Abstract
Vortioxetine is a novel antidepressant with multimodal activity currently approved for the treatment of major depressive disorder. Vortioxetine is orally administered once daily at 5- to 20-mg doses. The pharmacokinetics of vortioxetine are linear and dose proportional, with a mean terminal half-life of approximately 66 h and steady-state plasma concentrations generally achieved within 2 weeks of dosing. The mean absolute oral bioavailability of vortioxetine is 75%. No food effect on pharmacokinetics was observed. Vortioxetine is metabolized by cytochrome P450 enzymes and subsequently by uridine diphosphate glucuronosyltransferase. The major metabolite is pharmacologically inactive, and the minor pharmacologically active metabolite is not expected to cross the blood–brain barrier, making the parent compound primarily responsible for in-vivo activity. No clinically relevant differences were observed in vortioxetine exposure by sex, age, race, body size, and renal or hepatic function. Dose adjustment is only recommended for cytochrome P450 2D6 poor metabolizers based on polymorphism of the cytochrome P450 enzymes involved. Similarly, except for bupropion, a strong cytochrome P450 2D6 inhibitor, and rifampin, a broad cytochrome P450 inducer, co-administration of other drugs evaluated did not affect the vortioxetine exposure or safety profile in any clinically meaningful way. Pharmacodynamic studies demonstrated that vortioxetine achieved high levels of serotonin transporter occupancy in relevant brain areas, affected neurotransmitter levels in the cerebrospinal fluid, and modified abnormal resting state networks in the brain over the therapeutic dose range. Overall, vortioxetine can be administered in most populations studied to date without major dose adjustments; however, dose adjustments should be considered on a patient-by-patient basis.
Collapse
|
43
|
Rahimian R, Fakhfouri G, Zirak MR. Pros and cons of 5-HT 3 receptor antagonists in neuropsychiatric diseases. Biomed Pharmacother 2019; 118:109301. [PMID: 31402188 DOI: 10.1016/j.biopha.2019.109301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, G1J 2G3, Canada.
| | - Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, G1J 2G3, Canada
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
45
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
46
|
The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:387-404. [PMID: 30738126 DOI: 10.1016/j.pnpbp.2019.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
Cognitive dysfunction is a principal determinant of functional impairment in major depressive disorder (MDD) and often persists during periods of euthymia. Abnormalities in the glutamate system, particularly in N-methyl-d-aspartate receptors (NMDARs) activity, have been shown to contribute to both mood and cognitive symptoms in MDD. The current narrative review aims to evaluate the potential pro-cognitive effects of targeting the glycine site of NMDARs in the treatment of psychiatric disorders, with a special focus on how these results may apply to MDD. Literature databases were searched from inception to May 2018 for relevant pre-clinical and clinical studies evaluating antidepressant and pro-cognitive effects of NMDAR glycine site modulators in both MDD and non-MDD samples. Six glycine site modulators with pro-cognitive and antidepressant properties were identified: d-serine (co-agonist), d-cycloserine (partial agonist), d-alanine (co-agonist), glycine (agonist), sarcosine (co-agonist) and rapastinel (partial agonist). Preclinical animal studies demonstrated improved neuroplasticity and pro-cognitive effects with these agents. Numerous proof-of-concept clinical trials demonstrated pro-cognitive and antidepressant effects trans-diagnostically (e.g., in healthy participants, MDD, schizophrenia, anxiety disorders, major neurocognitive disorders). The generalizability of these clinical studies was limited by the small sample sizes and the paucity of studies directly evaluating cognitive effects in MDD samples, as most clinical trials were in non-MDD samples. Taken together, preliminary results suggest that the glycine site of NMDARs is a promising target to ameliorate symptoms of depression and cognitive dysfunction. Additional rigorously designed clinical studies are required to determine the cognitive effects of these agents in MDD.
Collapse
|
47
|
Zhou YQ, Zhang LY, Yu ZP, Zhang XQ, Shi J, Shen HW. Tropisetron Facilitates Footshock Suppression of Compulsive Cocaine Seeking. Int J Neuropsychopharmacol 2019; 22:574-584. [PMID: 31125405 PMCID: PMC6754734 DOI: 10.1093/ijnp/pyz023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The hallmark characteristics of the murine model of drug addiction include the escalation of cocaine consumption and compulsive punishment-resistant drug seeking. In this study, we evaluated the motivation for drug seeking in cocaine self-administering rats exposed to an escalated dosing regimen that endeavored to mimic the characteristic of escalating drug intake in human addicts. Tropisetron is a 5-HT3 receptor antagonist and α7-nicotinic receptor partial agonist. Utilizing rats trained on the escalated-dosing regimen, we examined the effects of tropisetron on control over compulsive drug-seeking behavior that was defined as footshock-resistant lever pressing. METHODS Rats were trained to self-administer cocaine with incremental-infusion doses (from 0.6 to 2.4 mg/kg/infusion) across training sessions (3 h/session) or with a long-access paradigm (i.e., 0.6 mg/kg/infusion, 6 h/d training session). The drug-seeking motivations of 2 groups were estimated by the patterns of drug intake and progressive-ratio schedule. The compulsivity for drug seeking of the group with an escalated dose was further evaluated using the footshock-associated seeking-taking chain task. RESULTS The rats trained on the dose-escalated protocol achieved the same levels of motivated drug seeking as those subjected to a long-access paradigm, as indicated by cocaine intake per training session and breakpoints on a progressive ratio schedule. Tropisetron attenuated compulsive behavior of rats when pressing of the seeking lever potentially led to footshock. Intriguingly, tropisetron did not change the motivation to seek cocaine when footshock was absent. Tropisetron had no effect on locomotor activities or saccharin self-administration. CONCLUSIONS These results demonstrate that tropisetron restored control over compulsive cocaine seeking, and they indicate that 5-HT3/α7-nicotinic receptors may be potential therapeutic targets for relieving compulsive drug seeking.
Collapse
Affiliation(s)
- Yue-Qing Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lan-Yuan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China,Correspondence: H. W. Shen, PhD, Department of Pharmacology, 818 Fenghua Rd., WangChanglai A403, Ningbo, Zhejiang 315211, China (); and J. Shi, PhD, National Institute on Drug Dependence, Peking University, Beijing, China ()
| | - Hao-Wei Shen
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China,Correspondence: H. W. Shen, PhD, Department of Pharmacology, 818 Fenghua Rd., WangChanglai A403, Ningbo, Zhejiang 315211, China (); and J. Shi, PhD, National Institute on Drug Dependence, Peking University, Beijing, China ()
| |
Collapse
|
48
|
Regulation of Noise-Induced Loss of Serotonin Transporters with Resveratrol in a Rat Model Using 4-[ 18F]-ADAM/Small-Animal Positron Emission Tomography. Molecules 2019; 24:molecules24071344. [PMID: 30959762 PMCID: PMC6480549 DOI: 10.3390/molecules24071344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Serotonin (5-HT) plays a crucial role in modulating the afferent fiber discharge rate in the inferior colliculus, auditory cortex, and other nuclei of the ascending auditory system. Resveratrol, a natural polyphenol phytoalexin, can inhibit serotonin transporters (SERT) to increase synaptic 5-HT levels. In this study, we investigated the effects of resveratrol on noise-induced damage in the serotonergic system. Male Sprague-Dawley rats were anaesthetized and exposed to an 8-kHz tone at 116 dB for 3.5 h. Resveratrol (30 mg/kg, intraperitoneal injection [IP]) and citalopram (20 mg/kg, IP), a specific SERT inhibitor used as a positive control, were administered once a day for four consecutive days, with the first treatment occurring 2 days before noise exposure. Auditory brainstem response testing and positron emission tomography (PET) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM, a specific radioligand for SERT) were used to evaluate functionality of the auditory system and integrity of the serotonergic system, respectively, before and after noise exposure. Finally, immunohistochemistry was performed 1 day after the last PET scan. Our results indicate that noise-induced serotonergic fiber loss occurred in multiple brain regions including the midbrain, thalamus, hypothalamus, striatum, auditory cortex, and frontal cortex. This noise-induced damage to the serotonergic system was ameliorated in response to treatment with resveratrol and citalopram. However, noise exposure increased the hearing threshold in the rats regardless of drug treatment status. We conclude that resveratrol has protective effects against noise-induced loss of SERT.
Collapse
|
49
|
Brivio P, Corsini G, Riva MA, Calabrese F. Chronic vortioxetine treatment improves the responsiveness to an acute stress acting through the ventral hippocampus in a glucocorticoid-dependent way. Pharmacol Res 2019; 142:14-21. [DOI: 10.1016/j.phrs.2019.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
50
|
Woods AG, Wormwood KL, Iosifescu DV, Murrough J, Darie CC. Protein Biomarkers in Major Depressive Disorder: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:585-600. [DOI: 10.1007/978-3-030-15950-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|