1
|
Moghaddam AS, Reissig LF, Geyer SH, Weninger WJ. Arterio-venous Anastomoses of the Sucquet-Hoyer Type: Complexity and Distribution in the Human Dermis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:334-341. [PMID: 38442214 DOI: 10.1093/mam/ozae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Our study aims at providing detailed information on numbers, form, and spatial distribution of arterio-venous anastomoses of the Sucquet-Hoyer type in the dermis of the nail bed, nail fold corner, thumb pad, arm, nose, glabella, lip, and ear. It further aims at providing a system, which relies on objective morphologic criteria for classifying Sucquet-Hoyer canals (SHCs). Using high-resolution episcopic microscopy (HREM), digital volume data of eight samples of each skin region were produced. Virtual three-dimensional (3D) models of the dermally located SHCs were created, and their 3D tortuosity (τ) values were determined. Dermal SHCs were identified in all 24 finger samples and in 1 lip sample. Beneath a field of 2 × 2 mm2, an average of four were located in the nail bed, three in the dermis of the thumb pad, and one in the dermis of the nail fold corner. Only a single dermal SHC was found in one lip sample. No SHCs were observed in the dermis of the other samples. The τ values of the SHCs ranged from 1.11 to 10. Building on these values, a classification system was designed, which distinguishes four SHC classes. The dermal distribution of the SHCs of different classes was similar in all specimens.
Collapse
Affiliation(s)
- Atieh S Moghaddam
- Division of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Strasse 13, 1090 Vienna, Austria
| | - Lukas F Reissig
- Division of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Strasse 13, 1090 Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Strasse 13, 1090 Vienna, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Strasse 13, 1090 Vienna, Austria
| |
Collapse
|
2
|
Holroyd NA, Walsh C, Gourmet L, Walker-Samuel S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines 2023; 11:909. [PMID: 36979887 PMCID: PMC10045950 DOI: 10.3390/biomedicines11030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Episcopic imaging using techniques such as High Resolution Episcopic Microscopy (HREM) and its variants, allows biological samples to be visualized in three dimensions over a large field of view. Quantitative analysis of episcopic image data is undertaken using a range of methods. In this systematic review, we look at trends in quantitative analysis of episcopic images and discuss avenues for further research. Papers published between 2011 and 2022 were analyzed for details about quantitative analysis approaches, methods of image annotation and choice of image processing software. It is shown that quantitative processing is becoming more common in episcopic microscopy and that manual annotation is the predominant method of image analysis. Our meta-analysis highlights where tools and methods require further development in this field, and we discuss what this means for the future of quantitative episcopic imaging, as well as how annotation and quantification may be automated and standardized across the field.
Collapse
Affiliation(s)
| | - Claire Walsh
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Lucie Gourmet
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| |
Collapse
|
3
|
Handschuh S, Okada CTC, Walter I, Aurich C, Glösmann M. An optimized workflow for
microCT
imaging of formalin‐fixed and paraffin‐embedded (
FFPE
) early equine embryos. Anat Histol Embryol 2022; 51:611-623. [PMID: 35851500 PMCID: PMC9542120 DOI: 10.1111/ahe.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023]
Abstract
Here, we describe a workflow for high‐detail microCT imaging of formalin‐fixed and paraffin‐embedded (FFPE) equine embryos recovered on Day 34 of pregnancy (E34), a period just before placenta formation. The presented imaging methods are suitable for large animals' embryos with intention to study morphological and developmental aspects, but more generally can be adopted for all kinds of FFPE tissue specimens. Microscopic 3D imaging techniques such as microCT are important tools for detecting and studying normal embryogenesis and developmental disorders. To date, microCT imaging of vertebrate embryos was mostly done on embryos that have been stained with an X‐ray dense contrast agent. Here, we describe an alternative imaging procedure that allows to visualize embryo morphology and organ development in unstained FFPE embryos. Two aspects are critical for high‐quality data acquisition: (i) a proper sample mounting leaving as little as possible paraffin around the sample and (ii) an image filtering pipeline that improves signal‐to‐noise ratio in these inherently low‐contrast data sets. The presented workflow allows overview imaging of the whole embryo proper and can be used for determination of organ volumes and development. Furthermore, we show that high‐resolution interior tomographies can provide virtual histology information from selected regions of interest. In addition, we demonstrate that microCT scanned embryos remain intact during the scanning procedure allowing for a subsequent investigation by routine histology and/or immunohistochemistry. This makes the presented workflow applicable also to archival paraffin‐embedded material.
Collapse
Affiliation(s)
- Stephan Handschuh
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| | - Carolina T. C. Okada
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Ingrid Walter
- VetCore Facility for Research/VetBiobank University of Veterinary Medicine Vienna Vienna Austria
- Institute of Morphology University of Veterinary Medicine Vienna Vienna Austria
| | - Christine Aurich
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Martin Glösmann
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
4
|
Artefacts in Volume Data Generated with High Resolution Episcopic Microscopy (HREM). Biomedicines 2021; 9:biomedicines9111711. [PMID: 34829939 PMCID: PMC8615656 DOI: 10.3390/biomedicines9111711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
High resolution episcopic microscopy (HREM) produces digital volume data by physically sectioning histologically processed specimens, while capturing images of the subsequently exposed block faces. Our study aims to systematically define the spectrum of typical artefacts inherent to HREM data and to research their effect on the interpretation of the phenotype of wildtype and mutant mouse embryos. A total of 607 (198 wildtypes, 409 mutants) HREM data sets of mouse embryos harvested at embryonic day (E) 14.5 were systematically and comprehensively examined. The specimens had been processed according to essentially identical protocols. Each data set comprised 2000 to 4000 single digital images. Voxel dimensions were 3 × 3 × 3 µm3. Using 3D volume models and virtual resections, we identified a number of characteristic artefacts and grouped them according to their most likely causality. Furthermore, we highlight those that affect the interpretation of embryo data and provide examples for artefacts mimicking tissue defects and structural pathologies. Our results aid in optimizing specimen preparation and data generation, are vital for the correct interpretation of HREM data and allow distinguishing tissue defects and pathologies from harmless artificial alterations. In particular, they enable correct diagnosis of pathologies in mouse embryos serving as models for deciphering the mechanisms of developmental disorders.
Collapse
|
5
|
Wendling O, Hentsch D, Jacobs H, Lemercier N, Taubert S, Pertuy F, Vonesch JL, Sorg T, Di Michele M, Le Cam L, Rosahl T, Carballo-Jane E, Liu M, Mu J, Mark M, Herault Y. High Resolution Episcopic Microscopy for Qualitative and Quantitative Data in Phenotyping Altered Embryos and Adult Mice Using the New "Histo3D" System. Biomedicines 2021; 9:767. [PMID: 34356832 PMCID: PMC8301480 DOI: 10.3390/biomedicines9070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
3D imaging in animal models, during development or in adults, facilitates the identification of structural morphological changes that cannot be achieved with traditional 2D histological staining. Through the reconstruction of whole embryos or a region-of-interest, specific changes are better delimited and can be easily quantified. We focused here on high-resolution episcopic microscopy (HREM), and its potential for visualizing and quantifying the organ systems of normal and genetically altered embryos and adult organisms. Although the technique is based on episcopic images, these are of high resolution and are close to histological quality. The images reflect the tissue structure and densities revealed by histology, albeit in a grayscale color map. HREM technology permits researchers to take advantage of serial 2D aligned stacks of images to perform 3D reconstructions. Three-dimensional visualization allows for an appreciation of topology and morphology that is difficult to achieve with classical histological studies. The nature of the data lends itself to novel forms of computational analysis that permit the accurate quantitation and comparison of individual embryos in a manner that is impossible with histology. Here, we have developed a new HREM prototype consisting of the assembly of a Leica Biosystems Nanocut rotary microtome with optics and a camera. We describe some examples of applications in the prenatal and adult lifestage of the mouse to show the added value of HREM for phenotyping experimental cohorts to compare and quantify structure volumes. At prenatal stages, segmentations and 3D reconstructions allowed the quantification of neural tissue and ventricular system volumes of normal brains at E14.5 and E16.5 stages. 3D representations of normal cranial and peripheric nerves at E15.5 and of the normal urogenital system from stages E11.5 to E14.5 were also performed. We also present a methodology to quantify the volume of the atherosclerotic plaques of ApoEtm1Unc/tm1Unc mutant mice and illustrate a 3D reconstruction of knee ligaments in adult mice.
Collapse
Affiliation(s)
- Olivia Wendling
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Didier Hentsch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Hugues Jacobs
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | | | - Serge Taubert
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Fabien Pertuy
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Jean-Luc Vonesch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Tania Sorg
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Michela Di Michele
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Thomas Rosahl
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Ester Carballo-Jane
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Mindy Liu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - James Mu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Manuel Mark
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), CEDEX, 67091 Strasbourg, France
| | - Yann Herault
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| |
Collapse
|
6
|
Dabiri B, Kampusch S, Geyer SH, Le VH, Weninger WJ, Széles JC, Kaniusas E. High-Resolution Episcopic Imaging for Visualization of Dermal Arteries and Nerves of the Auricular Cymba Conchae in Humans. Front Neuroanat 2020; 14:22. [PMID: 32477074 PMCID: PMC7236887 DOI: 10.3389/fnana.2020.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Therapeutic applications of auricular vagus nerve stimulation (VNS) have drawn recent attention. Since the targeted stimulation process and parameters depend on the electrode–tissue interaction, the lack of structural anatomical information on innervation and vascularization of the auricle restrain the current optimization of stimulation paradigms. For the first time, we employed high-resolution episcopic imaging (HREM) to generate histologic volume data from donated human cadaver ears. Optimal parameters for specimen preparation were evaluated. Anatomical 3D vascular and nerve structures were reconstructed in one sample of an auricular cymba conchae (CC). The feasibility of HREM to visualize anatomical structures was assessed in that diameters, occupied areas, volumes, and mutual distances between auricular arteries, nerves, and veins were registered. The selected region of CC (3 × 5.5 mm) showed in its cross-sections 21.7 ± 2.7 (mean ± standard deviation) arteries and 14.66 ± 2.74 nerve fibers. Identified nerve diameters were 33.66 ± 21.71 μm, and arteries had diameters in the range of 71.58 ± 80.70 μm. The respective occupied area showed a share of, on average, 2.71% and 0.3% for arteries and nerves, respectively, and similar volume occupancy for arteries and nerves. Inter-centroid minimum distance between arteries and nerves was 274 ± 222 μm. The density of vessels and nerves around a point within CC on a given grid was assessed, showing that 50% of all vessels and nerves were found in a radial distance of 1.6–1.8 mm from any of these points, which is strategically relevant when using stimulation needles in the auricle for excitation of nerves. HREM seems suitable for anatomical studies of the human ear. A 3D model of CC was established in the micrometer scale, which forms the basis for future optimization of the auricular VNS. Obviously, the presented single cadaver study needs to be validated by additional anatomical data on the innervation and vascularization of the auricle.
Collapse
Affiliation(s)
- Babak Dabiri
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,SzeleSTIM GmbH, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Vienna, Austria
| | - Van Hoang Le
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | | | - Jozsef Constantin Széles
- Department for Vascular Surgery, University Clinic for Surgery, Medical University of Vienna, Vienna, Austria
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,SzeleSTIM GmbH, Vienna, Austria
| |
Collapse
|
7
|
Cinnamon Y, Genin O, Yitzhak Y, Riov J, David I, Shaya F, Izhaki A. High-resolution episcopic microscopy enables three-dimensional visualization of plant morphology and development. PLANT DIRECT 2019; 3:e00161. [PMID: 31709382 PMCID: PMC6834379 DOI: 10.1002/pld3.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 05/02/2023]
Abstract
The study of plant anatomy, which can be traced back to the seventeenth century, advanced hand in hand with light microscopy technology and relies on traditional histologic techniques, which are based on serial two-dimensional (2D) sections. However, these valuable techniques lack spatial arrangement of the tissue and hence provide only partial information. A new technique of whole-mount three-dimensional (3D) imaging termed high-resolution episcopic microscopy (HREM) can overcome this obstacle and generate a 3D model of the specimen at a near-histological resolution. Here, we describe the application of HREM technique in plants by analyzing two plant developmental processes in woody plants: oil secretory cavity development in citrus fruit and adventitious root formation in persimmon rootstock cuttings. HREM 3D models of citrus fruit peel showed that oil cavities were initiated schizogenously during the early stages of fruitlet development. Citrus secretory cavity formation, shape, volume, and distribution were analyzed, and new insights are presented. HREM 3D model comparison of persimmon rootstock clones, which differ in their rooting ability, revealed that difficult-to-root clones failed to develop adventitious roots due to their inability to initiate root primordia.
Collapse
Affiliation(s)
- Yuval Cinnamon
- Institute of Animal ScienceVolcani Center, Agricultural Research OrganizationRishon LeZionIsrael
| | - Olga Genin
- Institute of Animal ScienceVolcani Center, Agricultural Research OrganizationRishon LeZionIsrael
| | - Yiftah Yitzhak
- Institute of Plant SciencesVolcani center, Agricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Israel David
- Institute of Plant SciencesVolcani center, Agricultural Research OrganizationRishon LeZionIsrael
| | - Felix Shaya
- Institute of Plant SciencesVolcani center, Agricultural Research OrganizationRishon LeZionIsrael
| | - Anat Izhaki
- Institute of Plant SciencesVolcani center, Agricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
8
|
High-Resolution Episcopic Microscopy (HREM): Looking Back on 13 Years of Successful Generation of Digital Volume Data of Organic Material for 3D Visualisation and 3D Display. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-resolution episcopic microscopy (HREM) is an imaging technique that permits the simple and rapid generation of three-dimensional (3D) digital volume data of histologically embedded and physically sectioned specimens. The data can be immediately used for high-detail 3D analysis of a broad variety of organic materials with all modern methods of 3D visualisation and display. Since its first description in 2006, HREM has been adopted as a method for exploring organic specimens in many fields of science, and it has recruited a slowly but steadily growing user community. This review aims to briefly introduce the basic principles of HREM data generation and to provide an overview of scientific publications that have been published in the last 13 years involving HREM imaging. The studies to which we refer describe technical details and specimen-specific protocols, and provide examples of the successful use of HREM in biological, biomedical and medical research. Finally, the limitations, potentials and anticipated further improvements are briefly outlined.
Collapse
|
9
|
Liu M, Drexler W. Optical coherence tomography angiography and photoacoustic imaging in dermatology. Photochem Photobiol Sci 2019; 18:945-962. [PMID: 30735220 DOI: 10.1039/c8pp00471d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical coherence tomography angiography (OCTA) is a relatively novel functional extension of the widely accepted ophthalmic imaging tool named optical coherence tomography (OCT). Since OCTA's debut in ophthalmology, researchers have also been trying to expand its translational application in dermatology. The ability of OCTA to resolve microvasculature has shown promising results in imaging skin diseases. Meanwhile, photoacoustic imaging (PAI), which uses laser pulse induced ultrasound waves as the signal, has been studied to differentiate human skin layers and to help in skin disease diagnosis. This perspective article gives a short review of OCTA and PAI in the field of photodermatology. After an introduction to the principles of OCTA and PAI, we describe the most updated results of skin disease imaging using these two optical imaging modalities. We also place emphasis on dual modality imaging combining OCTA and photoacoustic tomography (PAT) for dermatological applications. In the end, the challenges and prospects of these two imaging modalities in dermatology are discussed.
Collapse
Affiliation(s)
- Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| | | |
Collapse
|
10
|
Fernandez E, Marull‐Tufeu S. 3D imaging of human epidermis micromorphology by combining fluorescent dye, optical clearing and confocal microscopy. Skin Res Technol 2019; 25:735-742. [DOI: 10.1111/srt.12710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/14/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Eric Fernandez
- Yves Rocher – Direction Innovation & Développement – Laboratoire Application Cutanée Issy les Moulineaux France
| | - Sylvie Marull‐Tufeu
- Yves Rocher – Direction Innovation & Développement – Laboratoire Application Cutanée Issy les Moulineaux France
| |
Collapse
|
11
|
Visualising the Cardiovascular System of Embryos of Biomedical Model Organisms with High Resolution Episcopic Microscopy (HREM). J Cardiovasc Dev Dis 2018; 5:jcdd5040058. [PMID: 30558275 PMCID: PMC6306920 DOI: 10.3390/jcdd5040058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
The article will briefly introduce the high-resolution episcopic microscopy (HREM) technique and will focus on its potential for researching cardiovascular development and remodelling in embryos of biomedical model organisms. It will demonstrate the capacity of HREM for analysing the cardiovascular system of normally developed and genetically or experimentally malformed zebrafish, frog, chick and mouse embryos in the context of the whole specimen and will exemplarily show the possibilities HREM offers for comprehensive visualisation of the vasculature of adult human skin. Finally, it will provide examples of the successful application of HREM for identifying cardiovascular malformations in genetically altered mouse embryos produced in the deciphering the mechanisms of developmental disorders (DMDD) program.
Collapse
|
12
|
Tinhofer IE, Zaussinger M, Geyer SH, Meng S, Kamolz LP, Tzou CH, Weninger WJ. The dermal arteries in the cutaneous angiosome of the descending genicular artery. J Anat 2018; 232:979-986. [PMID: 29441575 DOI: 10.1111/joa.12792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Studies examining thick skin of the thumb pad have challenged the existence of an arterial plexus in the papillary dermis. Instead of a plexus, discrete arterial units, interconnected by arterio-arterial anastomoses, were identified. We hypothesise that the dermal arteries of thin skin are arranged likewise and that there are fewer arterio-arterial anastomoses in the centre of an angiosome than in zones where neighbouring angiosomes overlap. To test these hypotheses, we examined the dermal arteries in the centre of the cutaneous angiosome of the descending genicular artery (DGA) and its zone of overlap with neighbouring angiosomes. Using traditional perfusion techniques, the cutaneous angiosomes of the DGA and the popliteal artery were identified in 11 fresh frozen human lower limbs. Biopsies were harvested from the centre of the cutaneous DGA angiosome and from the zone where neighbouring vascular territories overlapped. Employing high-resolution episcopic microscopy (HREM), digital volume data were generated and the dermal arteries were three-dimensionally reconstructed and examined. In all examined skin areas, the dermal arteries showed tree-like ramifications. The branches of the dermal arteries were connected on average by 1.73 ± 1.01 arterio-arterial anastomoses in the centre of the DGA angiosome and by 3.27 ± 1.27 in the zone where angiosomes overlapped. We demonstrate that discrete but overlapping dermal arterial units with a mean dimension of 1.62 ± 1.34 and 1.80 ± 1.56 mm2 , respectively, supply oxygen and nutrients to the superficial dermis and epidermis of the thin skin of the medial femur. This forms the basis for diagnosing and researching skin pathologies.
Collapse
Affiliation(s)
- Ines E Tinhofer
- Division of Anatomy, Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Zaussinger
- Division of Anatomy, Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefan Meng
- Division of Anatomy, Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.,Department of Radiology, Kaiser-Franz-Josef Hospital, Vienna, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medizinische Universitat Graz, Graz, Austria.,COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research GmbH, Graz, Austria
| | - Chieh-Han Tzou
- Plastic and Reconstructive Surgery, Department of Surgery, Hospital of the Divine Saviour, Vienna, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Chen Z, Rank E, Meiburger KM, Sinz C, Hodul A, Zhang E, Hoover E, Minneman M, Ensher J, Beard PC, Kittler H, Leitgeb RA, Drexler W, Liu M. Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging. Sci Rep 2017; 7:17975. [PMID: 29269886 PMCID: PMC5740114 DOI: 10.1038/s41598-017-18331-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022] Open
Abstract
The cutaneous vasculature is involved in many diseases. Current clinical examination techniques, however, cannot resolve the human vasculature with all plexus in a non-invasive manner. By combining an optical coherence tomography system with angiography extension and an all optical photoacoustic tomography system, we can resolve in 3D the blood vessels in human skin for all plexus non-invasively. With a customized imaging unit that permits access to various parts of patients' bodies, we applied our multimodality imaging system to investigate several different types of skin conditions. Quantitative vascular analysis is given for each of the dermatological conditions to show the potential diagnostic value of our system in non-invasive examination of diseases and physiological processes. Improved performance of our system over its previous generation is also demonstrated with an updated characterization.
Collapse
Affiliation(s)
- Zhe Chen
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna, Austria
| | - Elisabet Rank
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna, Austria
| | - Kristen M Meiburger
- Dipartimento di Elettronica e Telecomunicazioni, Biolab, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Christoph Sinz
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, AKH 7J, 1090, Vienna, Austria
| | - Andreas Hodul
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna, Austria
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, London, UK
| | - Erich Hoover
- Insight Photonic Solutions, Inc., 2650 Crescent Drive, Number 201, Lafayette, CO, 80026, USA
| | - Micheal Minneman
- Insight Photonic Solutions, Inc., 2650 Crescent Drive, Number 201, Lafayette, CO, 80026, USA
| | - Jason Ensher
- Insight Photonic Solutions, Inc., 2650 Crescent Drive, Number 201, Lafayette, CO, 80026, USA
| | - Paul C Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, London, UK
| | - Harald Kittler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, AKH 7J, 1090, Vienna, Austria
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna, Austria
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna, Austria.
| |
Collapse
|
14
|
A simple setup for episcopic microtomy and a digital image processing workflow to acquire high-quality volume data and 3D surface models of small vertebrates. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0386-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Geyer SH, Maurer-Gesek B, Reissig LF, Weninger WJ. High-resolution Episcopic Microscopy (HREM) - Simple and Robust Protocols for Processing and Visualizing Organic Materials. J Vis Exp 2017. [PMID: 28715372 PMCID: PMC5609318 DOI: 10.3791/56071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide simple protocols for generating digital volume data with the high-resolution episcopic microscopy (HREM) method. HREM is capable of imaging organic materials with volumes up to 5 x 5 x 7 mm3 in typical numeric resolutions between 1 x 1 x 1 and 5 x 5 x 5 µm3. Specimens are embedded in methacrylate resin and sectioned on a microtome. After each section an image of the block surface is captured with a digital video camera that sits on the phototube connected to the compound microscope head. The optical axis passes through a green fluorescent protein (GFP) filter cube and is aligned with a position, at which the bock holder arm comes to rest after each section. In this way, a series of inherently aligned digital images, displaying subsequent block surfaces are produced. Loading such an image series in three-dimensional (3D) visualization software facilitates the immediate conversion to digital volume data, which permit virtual sectioning in various orthogonal and oblique planes and the creation of volume and surface rendered computer models. We present three simple, tissue specific protocols for processing various groups of organic specimens, including mouse, chick, quail, frog and zebra fish embryos, human biopsy material, uncoated paper and skin replacement material.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Barbara Maurer-Gesek
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Lukas F Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna;
| |
Collapse
|
16
|
Liu M, Chen Z, Zabihian B, Sinz C, Zhang E, Beard PC, Ginner L, Hoover E, Minneman MP, Leitgeb RA, Kittler H, Drexler W. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging. BIOMEDICAL OPTICS EXPRESS 2016; 7:3390-3402. [PMID: 27699106 PMCID: PMC5030018 DOI: 10.1364/boe.7.003390] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 05/05/2023]
Abstract
Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo.
Collapse
Affiliation(s)
- Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Zhe Chen
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Behrooz Zabihian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Christoph Sinz
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, AKH 7J, Vienna, 1090, Austria
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Laurin Ginner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Erich Hoover
- INSIGHT Photonic Solutions, Inc., 300 S. Public Road, Lafayette, CO, 80026, USA
| | - Micheal P. Minneman
- INSIGHT Photonic Solutions, Inc., 300 S. Public Road, Lafayette, CO, 80026, USA
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Harald Kittler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, AKH 7J, Vienna, 1090, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| |
Collapse
|
17
|
Newton VL, Bradley RS, Seroul P, Cherel M, Griffiths CEM, Rawlings AV, Voegeli R, Watson REB, Sherratt MJ. Novel approaches to characterize age-related remodelling of the dermal-epidermal junction in 2D, 3D andin vivo. Skin Res Technol 2016; 23:131-148. [DOI: 10.1111/srt.12312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- V. L. Newton
- Centre for Dermatology Research; Institute of Inflammation & Repair; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
- The Dermatology Centre; Salford Royal NHS Foundation Trust; Salford UK
| | - R. S. Bradley
- School of Materials; The University of Manchester; Manchester UK
| | | | | | - C. E. M. Griffiths
- Centre for Dermatology Research; Institute of Inflammation & Repair; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
- The Dermatology Centre; Salford Royal NHS Foundation Trust; Salford UK
| | | | - R. Voegeli
- DSM Nutritional Products Ltd; Kaiseraugst Switzerland
| | - R. E. B. Watson
- Centre for Dermatology Research; Institute of Inflammation & Repair; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
- The Dermatology Centre; Salford Royal NHS Foundation Trust; Salford UK
| | - M. J. Sherratt
- Centre for Tissue Injury and Repair; Institute of Inflammation & Repair; Manchester Academic Health Science Centre; The University of Manchester; Manchester UK
| |
Collapse
|
18
|
Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. The dynamic anatomy and patterning of skin. Exp Dermatol 2015; 25:92-8. [PMID: 26284579 DOI: 10.1111/exd.12832] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 12/14/2022]
Abstract
The skin is often viewed as a static barrier that protects the body from the outside world. Emphasis on studying the skin's architecture and biomechanics in the context of restoring skin movement and function is often ignored. It is fundamentally important that if skin is to be modelled or developed, we do not only focus on the biology of skin but also aim to understand its mechanical properties and structure in living dynamic tissue. In this review, we describe the architecture of skin and patterning seen in skin as viewed from a surgical perspective and highlight aspects of the microanatomy that have never fully been realized and provide evidence or concepts that support the importance of studying living skin's dynamic behaviour. We highlight how the structure of the skin has evolved to allow the body dynamic form and function, and how injury, disease or ageing results in a dramatic changes to the microarchitecture and changes physical characteristics of skin. Therefore, appreciating the dynamic microanatomy of skin from the deep fascia through to the skin surface is vitally important from a dermatological and surgical perspective. This focus provides an alternative perspective and approach to addressing skin pathologies and skin ageing.
Collapse
Affiliation(s)
- Richard Wong
- Plastic Surgery Research, Centre of Dermatology, University of Manchester, Manchester, UK
| | - Stefan Geyer
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Jean-Claude Guimberteau
- De la Main et Plastique Reconstructice, Institut Aquitain de la Main Bordeaux, Pessac, France
| | - Jason K Wong
- Plastic Surgery Research, Centre of Dermatology, University of Manchester, Manchester, UK
| |
Collapse
|