1
|
Lee S, Lee J, Choi S, Kim E, Kwon H, Lee J, Kim SM, Shin H. Biofabrication of 3D adipose tissue via assembly of composite stem cell spheroids containing adipo-inductive dual-signal delivery nanofibers. Biofabrication 2024; 16:035018. [PMID: 38739412 DOI: 10.1088/1758-5090/ad4a67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Reconstruction of large 3D tissues based on assembly of micro-sized multi-cellular spheroids has gained attention in tissue engineering. However, formation of 3D adipose tissue from spheroids has been challenging due to the limited adhesion capability and restricted cell mobility of adipocytes in culture media. In this study, we addressed this problem by developing adipo-inductive nanofibers enabling dual delivery of indomethacin and insulin. These nanofibers were introduced into composite spheroids comprising human adipose-derived stem cells (hADSCs). This approach led to a significant enhancement in the formation of uniform lipid droplets, as evidenced by the significantly increased Oil red O-stained area in spheroids incorporating indomethacin and insulin dual delivery nanofibers (56.9 ± 4.6%) compared to the control (15.6 ± 3.5%) with significantly greater gene expression associated with adipogenesis (C/EBPA, PPARG, FABP4, and adiponectin) of hADSCs. Furthermore, we investigated the influence of culture media on the migration and merging of spheroids and observed significant decrease in migration and merging of spheroids in adipogenic differentiation media. Conversely, the presence of adipo-inductive nanofibers promoted spheroid fusion, allowing the formation of macroscopic 3D adipose tissue in the absence of adipogenic supplements while facilitating homogeneous adipogenesis of hADSCs. The approach described here holds promise for the generation of 3D adipose tissue constructs by scaffold-free assembly of stem cell spheroids with potential applications in clinical and organ models.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeongbok Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Soomi Choi
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunseok Kwon
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Min Kim
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- Major in Sport Science, Collage of Performing Arts and Sport, Hanyang University, Seoul 04763, Republic of Korea
- Center for Artificial Intelligence Muscle, Hanyang University, Seoul 04743, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Yu W, Yao Y, Ye N, Zhao Y, Ye Z, Wei W, Zhang L, Chen J. The myokine CCL5 recruits subcutaneous preadipocytes and promotes intramuscular fat deposition in obese mice. Am J Physiol Cell Physiol 2024; 326:C1320-C1333. [PMID: 38497114 DOI: 10.1152/ajpcell.00591.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.
Collapse
Affiliation(s)
- Wensai Yu
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yao Yao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Nanwei Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yuelei Zhao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Zijian Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Wei Wei
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Lifan Zhang
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Jie Chen
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| |
Collapse
|
3
|
Adipose Tissue Development Relies on Coordinated Extracellular Matrix Remodeling, Angiogenesis, and Adipogenesis. Biomedicines 2022; 10:biomedicines10092227. [PMID: 36140327 PMCID: PMC9496222 DOI: 10.3390/biomedicines10092227] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Despite developing prenatally, the adipose tissue is unique in its ability to undergo drastic growth even after reaching its mature size. This development and subsequent maintenance rely on the proper coordination between the vascular niche and the adipose compartment. In this review, the process of adipose tissue development is broken down to explain (1) the ultrastructural matrix remodeling that is undertaken during simultaneous adipogenesis and angiogenesis, (2) the paracrine crosstalk involved during adipose development, (3) the mechanical regulators involved in adipose growth, and (4) the proteolytic and paracrine oversight for matrix remodeling during adipose development. It is crucial to gain a better understanding of the complex relationships that exist between adipose tissue and the vasculature during tissue development to provide insights into the pathological tissue expansion of obesity and to develop improved soft-tissue reconstruction techniques.
Collapse
|
4
|
Lee SC, Lee YJ, Choi I, Kim M, Sung JS. CXCL16/CXCR6 Axis in Adipocytes Differentiated from Human Adipose Derived Mesenchymal Stem Cells Regulates Macrophage Polarization. Cells 2021; 10:cells10123410. [PMID: 34943917 PMCID: PMC8699853 DOI: 10.3390/cells10123410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Adipocytes interact with adipose tissue macrophages (ATMs) that exist as a form of M2 macrophage in healthy adipose tissue and are polarized into M1 macrophages upon cellular stress. ATMs regulate adipose tissue inflammation by secreting cytokines, adipokines, and chemokines. CXC-motif receptor 6 (CXCR6) is the chemokine receptor and interactions with its specific ligand CXC-motif chemokine ligand 16 (CXCL16) modulate the migratory capacities of human adipose-derived mesenchymal stem cells (hADMSCs). CXCR6 is highly expressed on differentiated adipocytes that are non-migratory cells. To evaluate the underlying mechanisms of CXCR6 in adipocytes, THP-1 human monocytes that can be polarized into M1 or M2 macrophages were co-cultured with adipocytes. As results, expression levels of the M1 polarization-inducing factor were decreased, while those of the M2 polarization-inducing factor were significantly increased in differentiated adipocytes in a co-cultured environment with additional CXCL16 treatment. After CXCL16 treatment, the anti-inflammatory factors, including p38 MAPK ad ERK1/2, were upregulated, while the pro-inflammatory pathway mediated by Akt and NF-κB was downregulated in adipocytes in a co-cultured environment. These results revealed that the CXCL16/CXCR6 axis in adipocytes regulates M1 or M2 polarization and displays an immunosuppressive effect by modulating pro-inflammatory or anti-inflammatory pathways. Our results may provide an insight into a potential target as a regulator of the immune response via the CXCL16/CXCR6 axis in adipocytes.
Collapse
Affiliation(s)
- Seung-Cheol Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Yoo-Jung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Inho Choi
- Department of Pharmaceutical Engineering, Hoseo University, Asan 31499, Korea;
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
5
|
Exploiting the potential of commercial digital holographic microscopy by combining it with 3D matrix cell culture assays. Sci Rep 2020; 10:14680. [PMID: 32895419 PMCID: PMC7477226 DOI: 10.1038/s41598-020-71538-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023] Open
Abstract
3D cell culture assays are becoming increasingly popular due to their higher resemblance to tissue environment. These provide an increased complexity compared to the growth on 2D surface and therefore allow studies of advanced cellular properties such as invasion. We report here on the use of 3D Matrigel cell preparations combined with a particular gentle and informative type of live-cell microscopy: quantitative digital holographic microscopy (DHM), here performed by a commercial software-integrated system, currently mostly used for 2D cell culture preparations. By demonstrating this compatibility, we highlight the possible time-efficient quantitative analysis obtained by using a commercial software-integrated DHM system, also for cells in a more advanced 3D culture environment. Further, we demonstrate two very different examples making use of this advantage by performing quantitative DHM analysis of: (1) wound closure cell monolayer Matrigel invasion assay and (2) Matrigel-trapped single and clumps of suspension cells. For both these, we benefited from the autofocus functionality of digital phase holographic imaging to obtain 3D information for cells migrating in a 3D environment. For the latter, we demonstrate that it is possible to quantitatively measure tumourigenic properties like growth of cell clump (or spheroid) over time, as well as single-cell invasion out of cell clump and into the surrounding extracellular matrix. Overall, our findings highlight several possibilities for 3D digital holographic microscopy applications combined with 3D cell preparations, therein studies of drug response or genetic alterations on invasion capacity as well as on tumour growth and metastasis.
Collapse
|