1
|
Xiao Y, Zhang J, Guan Y, Wang M, Liu D, Xiong S, Li J, Yu X. Research progress on Sertoli cell secretion during spermatogenesis. Front Endocrinol (Lausanne) 2025; 15:1456410. [PMID: 39882265 PMCID: PMC11775901 DOI: 10.3389/fendo.2024.1456410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 01/31/2025] Open
Abstract
Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs. These cells secrete a diverse array of proteins and cytokines that interact with various targets, working in concert with mechanisms in the spermatogenesis pathway and contributing to each stage, from spermatogonial cell division to the maturation of spermatozoa. Hence, the secretory products of SCs are pivotal in fostering germ cell development and directing the appropriate maturation of sperm. This study is dedicated to investigating the varied secretions of SCs, outlining their critical functions throughout distinct phases of spermatogenesis, thus elucidating the substantial influence of SC secretion on male fertility. Furthermore, it offers valuable perspectives on reproductive disorders stemming from irregular spermatogenesis in clinical contexts.
Collapse
|
2
|
Zheng T, Fok EKL. The Biology and Regulation of Spermatogonial Stem Cells in the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:333-354. [PMID: 40301263 DOI: 10.1007/978-3-031-82990-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Spermatogenesis, the process responsible for the daily production of millions of sperm, originates from spermatogonial stem cells (SSCs). Dysregulation of spermatogenesis is a major contributing factor to male infertility. Additionally, cryopreservation of SSCs followed by transplantation is a viable approach to restore spermatogenesis after sterilizing treatments such as chemotherapy and radiotherapy for cancer treatment. Therefore, investigating the biology and regulatory mechanisms involved in maintaining SSCs will provide valuable insights into the etiology of male fertility disorders and inform clinical strategies for fertility preservation and restoration. In this chapter, we will review the origin of SSCs, their biological and functional properties, and the various types of cells that contribute to the SSC niche. Additionally, we will discuss the regulation of SSC self-renewal and differentiation by niche factors, cell-cell and cell-extracellular matrix interactions, intrinsic gene regulation, and emerging intercellular communication mechanisms.
Collapse
Affiliation(s)
- Tingting Zheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR, China.
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR, China.
| |
Collapse
|
3
|
Yin Y, Ahmed N, Hassan MF, Guo K, Shakir Y, Zang J, Lyu J. Effect of Nano-selenium on Biological Mechanism of Goblet Cells of the Small Intestine Within Laying Hen. Biol Trace Elem Res 2024; 202:1699-1710. [PMID: 37454307 DOI: 10.1007/s12011-023-03770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.
Collapse
Affiliation(s)
- Yongxiang Yin
- Department of Pathology, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China
| | - Nisar Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Mohammad Farooque Hassan
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Kai Guo
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Jia Zang
- Department of Laboratory Medicine, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China.
| | - Jue Lyu
- Department of Laboratory Medicine, Wuxi No.2 Peoples Hospital, Jiangnan University Medical Center, Jiangsu, 214002, China.
| |
Collapse
|
4
|
Qu M, Liu X, Wang X, Li Z, Zhou L, Li H. Palmitoylation of vacuole membrane protein 1 promotes small extracellular vesicle secretion via interaction with ALIX and influences intercellular communication. Cell Commun Signal 2024; 22:150. [PMID: 38403678 PMCID: PMC10895845 DOI: 10.1186/s12964-024-01529-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Small extracellular vesicles (EVs), exemplified by exosomes, mediate intercellular communication by transporting proteins, mRNAs, and miRNAs. Post-translational modifications are involved in controlling small EV secretion process. However, whether palmitoylation regulates small EV secretion, remains largely unexplored. METHODS Vacuole Membrane Protein 1 (VMP1) was testified to be S-palmitoylated by Palmitoylation assays. VMP1 mutant plasmids were constructed to screen out the exact palmitoylation sites. Small EVs were isolated, identified and compared between wild-type VMP1 or mutant VMP1 transfected cells. Electron microscope and immunofluorescence were used to detect multivesicular body (MVB) number and morphology change when VMP1 was mutated. Immunoprecipitation and Mass spectrum were adopted to identify the protein that interacted with palmitoylated VMP1, while knock down experiment was used to explore the function of targeted protein ALIX. Taking human Sertoli cells (SCs) and human spermatogonial stem cell like cells (SSCLCs) as a model of intercellular communication, SSCLC maintenance was detected by flow cytometry and qPCR at 12 days of differentiation. In vivo, mouse model was established by intraperitoneal injection with palmitoylation inhibitor, 2-bromopalmitate (2BP) for 3 months. RESULTS VMP1 was identified to be palmitoylated at cysteine 263,278 by ZDHHC3. Specifically, palmitoylation of VMP1 regulated its subcellular location and enhanced the amount of small EV secretion. Mutation of VMP1 palmitoylation sites interfered with the morphology and biogenesis of MVBs through suppressing intraluminal vesicle formation. Furthermore, inhibition of VMP1 palmitoylation impeded small EV secretion by affecting the interaction of VMP1 with ALIX, an accessory protein of the ESCRT machinery. Taking SCs and SSCLCs as a model of intercellular communication, we discovered VMP1 palmitoylation in SCs was vital to the growth status of SSCLCs in a co-culture system. Inhibition of VMP1 palmitoylation caused low self-maintenance, increased apoptosis, and decreased proliferation rate of SSCLCs. In vivo, intraperitoneal injection of 2BP inhibited VMP1 palmitoylation and exosomal marker expression in mouse testes, which were closely associated with the level of spermatogenic cell apoptosis and proliferation. CONCLUSIONS Our study revealed a novel mechanism for small EV secretion regulated by VMP1 palmitoylation in Sertoli cells, and demonstrated its pivotal role in intercellular communication and SSC niche.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital), 47 Youyi Road, Shenzhen, 518000, Guangdong, China.
| | - Xinyu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiaotong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Honggang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- Wuhan Huake Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|
5
|
Ali W, Chen Y, Hassan MF, Wang T, Khatyan U, Sun J, Liu Z, Zou H. Osmoregulatory and immunological role of new canceled cells: Mitochondrial rich cells and its future perspective: A concise review. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:99-106. [PMID: 37905465 DOI: 10.1002/jez.2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Mitochondrial-rich cells (MRCs) are one of the most significant canceled type of epithelial cells. Morphologically these cells are totally different from other epithelial cells. These cells primarily implicated in sea-water and fresh-water adaptation, and acid-base regulation. However, in this review paper, we explored some of the most intriguing biological and immune-related functional developmental networks of MRCs. The main pinpoint, MRCs perform a dynamic osmoregulatory and immunological functional role in the gut and male reproductive system. The Na+/K+_ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are key acidifying proteins of MRCs for the ion-transporting function for intestinal homeostasis and maintenance of acidifying the luminal microenvironment in the male reproductive system. Further more importantly, MRCs play a novel immunological role through the exocrine secretion of nano-scale exosomes and multivesicular bodies (MVBs) pathway, which is very essential for sperm maturation, motility, acrosome reaction, and male sex hormones, and these an essential events to produce male gametes with optimal fertilizing ability. This effort is expected to promote the novel immunological role of MRCs, which might be essential for nano-scale exosome secretion.
Collapse
Affiliation(s)
- Waseem Ali
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Chen
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Mohammad Farooque Hassan
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Tao Wang
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Uzma Khatyan
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Sun
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Zongping Liu
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Hui Zou
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Jiang X, Wu S, Hu C. A narrative review of the role of exosomes and caveolin-1 in liver diseases and cancer. Int Immunopharmacol 2023; 120:110284. [PMID: 37196562 DOI: 10.1016/j.intimp.2023.110284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Exosomes are nanoscale (40-100 nm) vesicles secreted by different types of cells and have attracted extensive interest in recent years because of their unique role in disease development. It can carry related goods, such as lipids, proteins, and nucleic acids, to mediate intercellular communication. This review summarizes exosome biogenesis, release, uptake, and their role in mediating the development of liver diseases and cancer, such as viral hepatitis, drug-induced liver injury, alcohol-related liver disease, non-alcoholic fatty liver disease, hepatocellular carcinoma, and other tumors. Meanwhile, a fossa structural protein, caveolin-1(CAV-1), has also been proposed to be involved in the development of various diseases, especially liver diseases and tumors. In this review, we discuss the role of CAV-1 in liver diseases and different tumor stages (inhibition of early growth and promotion of late metastasis) and the underlying mechanisms by which CAV-1 regulates the process. In addition, CAV-1 has also been found to be a secreted protein that can be released directly through the exosome pathway or change the cargo composition of the exosomes, thus contributing to enhancing the metastasis and invasion of cancer cells during the late stage of tumor development. In conclusion, the role of CAV-1 and exosomes in disease development and the association between them remains to be one challenging uncharted area.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
7
|
Ali W, Deng K, Bian Y, Liu Z, Zou H. Spectacular role of epididymis and bio-active cargo of nano-scale exosome in sperm maturation: A review. Biomed Pharmacother 2023; 164:114889. [PMID: 37209627 DOI: 10.1016/j.biopha.2023.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
The epididymis is responsible for post-testicular sperm maturation as it provides a favorable environment for spermatozoa to gain the ability for movement and fertilization. The recent evidence has shown that, the spermatozoa are vulnerable to dynamic variations driven by various cellular exposure mechanisms mediated by epididymosomes. Exosomes provide new insight into a mechanism of intercellular communication because they provide direct evidence for the transfer of several important bio-active cargo elements (proteins, lipid, DNA, mRNA, microRNA, circular RNA, long noncoding RNA) between epididymis and spermatozoa. In broad sense, proteomic analysis of exosomes from epididymis indicates number of proteins that are involved in sperm motility, acrosomal reaction, prevent pre-mature sperm capacitation and male infertility. Pinpointing, how reproductive disorders are associated with bio-active cargo elements of nano-scale exosome in the male reproductive tract. Therefore, the current review presents evidence regarding the distinctive characteristics and functions of nano-scale exosome in the male reproductive tract in both pathological and physiological developments, and argue that these vesicles serve as an important regulator of male reproduction, fertility, and disease susceptibility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
8
|
Ali W, Bian Y, Ali H, Sun J, Zhu J, Ma Y, Liu Z, Zou H. Cadmium-induced impairment of spermatozoa development by reducing exosomal-MVBs secretion: a novel pathway. Aging (Albany NY) 2023; 15:204675. [PMID: 37220720 DOI: 10.18632/aging.204675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/15/2023] [Indexed: 05/25/2023]
Abstract
Cadmium is a heavy environmental pollutant that presents a high risk to male-fertility and targets the different cellular and steroidogenic supporting germ cells networks during spermatogenesis. However, the mechanism accounting for its toxicity in multivesicular bodies (MVBs) biogenesis, and exosomal secretion associated with spermatozoa remains obscure. In the current study, the light and electron microscopy revealed that, the Sertoli cells perform a dynamic role with secretion of well-developed early endosomes (Ee) and MVBs pathway associated with spermatozoa during spermatogenesis. In addition, some apical blebs containing nano-scale exosomes located on the cell surface and after fragmentation nano-scale exosomes were directly linked with spermatozoa in the luminal compartment of seminiferous tubules, indicating normal spermatogenesis. Controversially, the cadmium treated group showed limited and deformed spermatozoa with damaging acromion process and mid-peace, and the cytoplasmic vacuolization of spermatids. After cadmium treatment, there is very limited biogenesis of MVBs inside the cytoplasm of Sertoli cells, and no obvious secretions of nano-scale exosomes interacted with spermatozoa. Interestingly, the cadmium treated group demonstrated relatively higher formation of autophagosomes and autolysosome, and the autophagosomes were enveloped by MVBs that later formed the amphisome which degraded by lysosomes, indicating the hypo-spermatogenesis. Moreover, cadmium declined the exosomal protein cluster of differentiation (CD63) and increased the autophagy-related proteins microtubule-associated light chain (LC3), sequestosome 1 (P62) and lysosomal-associated membrane protein 2 (LAMP2) expression level were confirmed by Western blotting. These results provide rich information regarding how cadmium is capable of triggering impaired spermatozoa development during spermatogenesis by reduction of MVBs pathway through high activation of autophagic pathway. This study explores the toxicant effect of cadmium on nano-scale exosomes secretion interacting with spermatozoa.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Hina Ali
- University of Health Sciences, Lahore 54651, Punjab, Pakistan
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| |
Collapse
|
9
|
Ma Y, Ma QW, Sun Y, Chen XF. The emerging role of extracellular vesicles in the testis. Hum Reprod 2023; 38:334-351. [PMID: 36728671 DOI: 10.1093/humrep/dead015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Indexed: 02/03/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane-bounded particles, released by all cells and capable of transporting bioactive cargoes, proteins, lipids, and nucleic acids, to regulate a variety of biological functions. Seminal plasma is enriched in EVs, and extensive evidence has revealed the role of EVs (e.g. prostasomes and epididymosomes) in the male genital tract. Recently, EVs released from testicular cells have been isolated and identified, and some new insights have been generated on their role in maintaining normal spermatogenesis and steroidogenesis in the testis. In the seminiferous tubules, Sertoli cell-derived EVs can promote the differentiation of spermatogonial stem cells (SSCs), and EVs secreted from undifferentiated A spermatogonia can inhibit the proliferation of SSCs. In the testicular interstitium, EVs have been identified in endothelial cells, macrophages, telocytes, and Leydig cells, although their roles are still elusive. Testicular EVs can also pass through the blood-testis barrier and mediate inter-compartment communication between the seminiferous tubules and the interstitium. Immature Sertoli cell-derived EVs can promote survival and suppress the steroidogenesis of Leydig cells. Exosomes isolated from macrophages can protect spermatogonia from radiation-induced injury. In addition to their role in intercellular communication, testicular EVs may also participate in the removal of aberrant proteins and the delivery of antigens for immune tolerance. EVs released from testicular cells can be detected in seminal plasma, which makes them potential biomarkers reflecting testicular function and disease status. The testicular EVs in seminal plasma may also affect the female reproductive tract to facilitate conception and may even affect early embryogenesis through modulating sperm RNA. EVs represent a new type of intercellular messenger in the testis. A detailed understanding of the role of testicular EV may contribute to the discovery of new mechanisms causing male infertility and enable the development of new diagnostic and therapeutic strategies for the treatment of infertile men.
Collapse
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qin-Wen Ma
- Shanghai Xinzhu Middle School, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
10
|
Smith TI, Russell AE. Extracellular vesicles in reproduction and pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:292-317. [PMID: 39697491 PMCID: PMC11648528 DOI: 10.20517/evcna.2022.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.
Collapse
Affiliation(s)
- Tahlia I. Smith
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- These authors contributed equally
| | - Ashley E. Russell
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- Magee Womens Research Institute - Allied Member, Pittsburgh, PA 15213, USA
- These authors contributed equally
| |
Collapse
|
11
|
Ma Y, Zhou Y, Zou SS, Sun Y, Chen XF. OUP accepted manuscript. Mol Hum Reprod 2022; 28:6516534. [PMID: 35088858 DOI: 10.1093/molehr/gaac002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yan Zhou
- Department of Central Lab, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
12
|
Chen Q, Holt WV. Extracellular vesicles in the male reproductive tract of the softshell turtle. Reprod Fertil Dev 2021; 33:519-529. [PMID: 33715768 DOI: 10.1071/rd20214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles that originate from the endosomal system or are shed from the plasma membrane respectively. As mediators of cell communication, EVs are present in biological fluids and are involved in many physiological and pathological processes. The role of EVs has been extensively investigated in the mammalian male reproductive tract, but the characteristics and identification of EVs in reptiles are still largely unknown. In this review we focus our attention on EVs and their distribution in the male reproductive tract of the Chinese softshell turtle Pelodiscus sinensis , mainly discussing the potential roles of EVs in intercellular communication during different phases of the reproductive process. In softshell turtles, Sertoli-germ cell communication via multivesicular bodies can serve as a source of EVs during spermatogenesis, and these EVs interact with epithelia of the ductuli efferentes and the principal cells of the epididymal epithelium. These EVs are involved in sperm maturation, transport and storage. EVs are also shed by telocytes, which contact and exchange information with other, as well as distant interstitial cells. Overall, EVs play an indispensable role in the normal reproductive function of P. sinensis and can be used as an excellent biomarker for understanding male fertility.
Collapse
Affiliation(s)
- Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; and Corresponding author
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
13
|
Tamessar CT, Trigg NA, Nixon B, Skerrett-Byrne DA, Sharkey DJ, Robertson SA, Bromfield EG, Schjenken JE. Roles of male reproductive tract extracellular vesicles in reproduction. Am J Reprod Immunol 2020; 85:e13338. [PMID: 32885533 DOI: 10.1111/aji.13338] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted cell-derived membrane structures present in all organisms across animal, bacterial, and plant phyla. These vesicles play important roles in cell-cell communication in many processes integral to health and disease. Recent studies demonstrate that EVs and their cargo have influential and conserved roles in male reproduction. While EVs have been isolated from virtually all specialized tissues comprising the male reproductive tract, they are best characterized in the epididymis (epididymosomes) and seminal fluid (seminal fluid extracellular vesicles or prostasomes). Broadly speaking, EVs promote reproductive success through supporting sperm development and function, as well as influencing the physiology of female reproductive tract cells after mating. In this review, we present current knowledge on the composition and function of male reproductive tract EV populations in both normal physiology and pathology, and argue that their functions identify them as critical regulators of fertility and fecundity.
Collapse
Affiliation(s)
- Cottrell T Tamessar
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David J Sharkey
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Jankovičová J, Neuerová Z, Sečová P, Bartóková M, Bubeníčková F, Komrsková K, Postlerová P, Antalíková J. Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos. Med Microbiol Immunol 2020; 209:407-425. [PMID: 32424440 DOI: 10.1007/s00430-020-00676-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
It is known that tetraspanin proteins are involved in many physiological somatic cell mechanisms. Additionally, research has indicated they also have a role in various infectious diseases and cancers. This review focuses on the molecular interactions underlying the tetraspanin web formation in gametes. Primarily, tetraspanins act in the reproductive tract as organizers of membrane complexes, which include the proteins involved in the contact and association of sperm and oocyte membranes. In addition, recent data shows that tetraspanins are likely to be involved in these processes in a complex way. In mammalian fertilization, an important role is attributed to CD molecules belonging to the tetraspanin superfamily, particularly CD9, CD81, CD151, and also CD63; mostly as part of extracellular vesicles, the significance of which and their potential in reproduction is being intensively investigated. In this article, we reviewed the existing knowledge regarding the expression of tetraspanins CD9, CD81, CD151, and CD63 in mammalian spermatozoa, oocytes, and embryos and their involvement in reproductive processes, including pathological events.
Collapse
Affiliation(s)
- Jana Jankovičová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zdeňka Neuerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Petra Sečová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Bartóková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kateřina Komrsková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavla Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|