1
|
Mohamedien D, Mokhtar DM, Abdellah N, Awad M, Albano M, Sayed RKA. Ovary of Zebrafish during Spawning Season: Ultrastructure and Immunohistochemical Profiles of Sox9 and Myostatin. Animals (Basel) 2023; 13:3362. [PMID: 37958117 PMCID: PMC10649070 DOI: 10.3390/ani13213362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
This study sought to examine the ovarian cellular and stromal components of the zebrafish (Danio rerio) throughout the spawning season using light and electron microscopic tools. The ovaries of zebrafish showed oocytes in all stages of follicular development and degeneration (atresia). Six stages of oogenesis were demonstrated: oogonia, early oocytes, late oocytes, vacuolated follicles, the yolk globule stage (vitellogenesis), and mature follicles. The SOX9 protein was expressed in the ooplasm of the primary and previtellogenic oocytes and the theca cell layer of the mature follicles. Myostatin was expressed in the granulosa and theca cells. Many stem cells in the ovarian stroma expressed myostatin and SOX9. During the spawning season, the EM results indicated that the zona radiata increased in thickness and was crossed perpendicularly by pore canals that contained processes from both oocytes and zona granulosa. The granulosa cells contained many mitochondria, rER, sER, and vesicles. Meanwhile, the thecal layer consisted of fibroblast-like cells. Atretic follicles could be demonstrated that involved both oocytes and their follicular walls. Several types of cells were distinguished in the ovarian stroma, including mast cells, telocytes, lymphocytes, fibroblasts, endocrine cells, macrophages, adipocytes, dendritic cells, and steroidogenic (stromal) cells. The ovary of the zebrafish serves as a model to investigate follicular development.
Collapse
Affiliation(s)
- Dalia Mohamedien
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt; (D.M.); (M.A.)
| | - Doaa M. Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, Assiut 11829, Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| | - Mahmoud Awad
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt; (D.M.); (M.A.)
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell’Annunziata, 98168 Messina, Italy
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
2
|
Hussein MM, Sayed RKA, Mokhtar DM. Structural and immunohistochemical analysis of the cellular compositions of the liver of molly fish (Poecilia sphenops), focusing on its immune role. ZOOLOGICAL LETTERS 2023; 9:1. [PMID: 36604695 PMCID: PMC9814241 DOI: 10.1186/s40851-022-00200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The liver of fish is considered an ideal model for studying the collaboration between environmental agents and the health state of the fish, where it gives good indications about aquatic ecosystem status. Therefore, this study presented immune roles for the liver in molly fish (Poecilia sphenops), using immunohistochemistry and transmission electron microscopy (TEM). The hepatocytes' sinusoidal structures of molly fish livers had taken two different forms; cord-like and tubular, while the biliary tract system showed two different types: isolated and biliary venous tract. The TEM showed that the hepatocytes possessed well-developed cytoplasmic organelles and numerous glycogen and lipid droplets of different sizes. Kupffer cells, Ito cells, aggregation of intrahepatic macrophages and melanomacrophages were also recognized. Melanomacrophages contained numerous phagosomes, many lysosomes, cytoplasmic vacuoles, and melanin pigments. Hepatocytes and Kupffer cells expressed immunoreactivity to APG5, indicating that these cells were involved in the process of autophagy. Telocytes (TCs) were also recognized in the liver of molly fish, and they shared the same morphological characteristics as those in mammals. However, TCs expressed strong immunoreactivity to APG5, TGF-β, and Nrf2, suggesting their possible role in cellular differentiation and regeneration, in addition to phagocytosis and autophagy. Both IL-1β and NF-KB showed immunoreactivity in the hepatocytes and in inflammatory cells (including intrahepatic macrophages and melanomacrophage center). Nrf2 and SOX9 showed immunoreactivity in hepatocytes, stem cells, and macrophages. The present study showed the spatial distribution of hepatic vascular-biliary tracts in molly fish. The liver of molly fish has unique functions in phagocytosis, autophagy, and cell regeneration. The expression of APG5 in hepatocytes, Kupffer cells, melanomacrophages, and telocytes supports the role of the liver in lymphocyte development and proliferation. The expression of TGF-β and NF-κB in hepatocytes, Kupffer cells, telocytes, and macrophages suggests the role of the liver in regulation of cell proliferation and immune response suppression. The expression of IL-1β and Sox9 in macrophages and melanomacrophages suggests the role of the liver in regulation of both innate and adaptive immunity, cell proliferation and apoptosis, in addition to stem cell maintenance.
Collapse
Affiliation(s)
- Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, 82524, Sohag, Egypt.
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| |
Collapse
|
3
|
Cyt-C Mediated Mitochondrial Pathway Plays an Important Role in Oocyte Apoptosis in Ricefield Eel (Monopterus albus). Int J Mol Sci 2022; 23:ijms231810555. [PMID: 36142467 PMCID: PMC9503458 DOI: 10.3390/ijms231810555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis plays a key role in the effective removal of excessive and defective germ cells, which is essential for sequential hermaphroditism and sex change in vertebrates. The ricefield eel, Monopterus albus is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. Previous studies have demonstrated that apoptosis is involved in sex change in M. albus. However, the apoptotic signaling pathway is unclear. In the current study, we explored the underlying mechanism of apoptosis during gonadal development and focused on the role of the mitochondrial apoptosis signaling pathway in sex change in M. albus. Flow cytometry was performed to detect apoptosis in gonads at five sexual stages and ovary tissues exposed to hydrogen peroxide (H2O2) in vitro. Then the expression patterns of key genes and proteins in the mitochondrial pathway, death receptor pathway and endoplasmic reticulum (ER) pathway were examined. The results showed that the apoptosis rate was significantly increased in the early intersexual stage and then decreased with the natural sex change from female to male. Quantitative real-time PCR revealed that bax, tnfr1, and calpain were mainly expressed in the five stages. ELISA demonstrated that the relative content of cytochrome-c (cyt-c) in the mitochondrial pathway was significantly higher than that of caspase8 and caspase12, with a peak in the early intersexual stage, while the levels of caspase8 and caspase12 peaked in the late intersexual stage. Interestingly, the Pearson’s coefficient between cyt-c and the apoptosis rate was 0.705, which suggests that these factors are closely related during the gonadal development of M. albus. Furthermore, the cyt-c signal was found to be increased in the intersexual stage by immunohistochemistry. After incubation with H2O2, the mRNA expression of mitochondrial pathway molecules such as bax, apaf-1, and caspase3 increased in ovary tissues. In conclusion, the present results suggest that the mitochondrial apoptotic pathway may play a more important role than the other apoptotic pathways in sex change in M. albus.
Collapse
|
4
|
Mokhtar DM, Hussein MM, Sayed RKA. Novel Identification and Microscopy of the Intestinal Bulb of Molly Fish ( Poecilia sphenops) with a Focus on Its Role in Immunity. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-13. [PMID: 35686429 DOI: 10.1017/s1431927622012089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The intestinal bulb is a simple dilatation in the anterior part of the intestine of agastric fish. This study was conducted on 18 adult specimens of molly fish (Poecilia sphenops) and demonstrated the presence of an intestinal bulb. The intestinal epithelium was composed of enterocytes covered with microvilli, many mucous goblet cells, and enteroendocrine cells. Numerous intraepithelial lymphocytes, neutrophils, plasma cells, dendritic cells, stem cells, rodlet cells, and macrophages were identified in the epithelial layer. Interestingly, this study recorded the process of autophagy and formation of autophagosomes, multivesicular bodies, and dense bodies. The intestinal epithelium extended into the intestinal gland that consisted of simple columnar epithelium, mucous cells, stem cells, enteroendocrine cells, and basal cells. These glands opened to the lumen of the bulb and were surrounded by a network of telocytes. Moreover, immunohistochemistry revealed that the intestinal epithelium expressed APG5, myostatin, TGF-β, IL-1β, NF-κB, Nrf2, and SOX9. Leukocytes in the lamina propria-submucosa expressed APG5. The inflammatory cells in the connective tissue showed strong immunoreactivity to myostatin and TGF-β. The smooth muscular layer also expressed myostatin. Both IL-1β and NF-κB showed immunoreactivity in macrophages in the lamina propria-submucosa. Stem cells expressed Sox-9 and telocytes expressed NF-κB and SOX9; while astrocytes in the tunica muscularis expressed GFAP. The high frequency of immune cells in the intestinal bulb suggested an immune role of this organ. This is the first study demonstrating the absence of the stomach and its replacement with an intestinal bulb in molly fish, and consequently, this species could be reclassified as agastric fish according to this study.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut 71526, Egypt
| | - Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut 71526, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Alesci A, Pergolizzi S, Capillo G, Lo Cascio P, Lauriano ER. Rodlet cells in kidney of goldfish (Carassius auratus, Linnaeus 1758): A light and confocal microscopy study. Acta Histochem 2022; 124:151876. [PMID: 35303512 DOI: 10.1016/j.acthis.2022.151876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023]
Abstract
Rodlet cells (RCs) have always been an enigma for scientists. RCs have been given a variety of activities over the years, including ion transport, osmoregulation, and sensory function. These cells, presumably as members of the granulocyte line, are present only in teleosts and play a role in the innate immune response. RCs are migratory cells found in a variety of organs, including skin, vascular, digestive, uropoietic, reproductive, and respiratory systems, and present distinct physical properties that make them easily recognizable in tissues and organs. The development of RCs can be divided into four stages: granular, transitional, mature, and ruptured, having different morphological characteristics. Our study aims to characterize the different stages of these cells by histomorphological and histochemical techniques. Furthermore, we characterized these cells at all stages with peroxidase and fluorescence immunohistochemical techniques using different antibodies: S100, tubulin, α-SMA, piscidin, and for the first time TLR-2. From our results, the immunoreactivity of these cells to the antibodies performed may confirm that RCs play a role in fish defense mechanisms, helping to expand the state of the art on immunology and immune cells of teleosts.
Collapse
|
6
|
Klein M, Csöbönyeiová M, Danišovič Ľ, Lapides L, Varga I. Telocytes in the Female Reproductive System: Up-to-Date Knowledge, Challenges and Possible Clinical Applications. Life (Basel) 2022; 12:267. [PMID: 35207554 PMCID: PMC8874826 DOI: 10.3390/life12020267] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
From their initial description in 2005 to this day, telocytes (TCs) have been described in the ovary, uterine tubes, uterus, vagina, mammary gland, and placenta. Their morphological features, immunophenotype, physiological functions, and roles in disease have been thoroughly documented in both animal models and human subjects. TCs, with their extremely long cytoplasmic processes called telopodes, play a pivotal role in the morphological and functional interconnection of all the components of the interstitial compartment, but also with constituents of the parenchyma. Although there is no specific immunohistochemical marker for their identification, the most cited are CD 117, CD 34, platelet-derived growth factor receptor (PDGFR), vimentin, and specific markers typical for the female reproductive system (FRS)-estrogen and progesterone receptors (ER and PR). This immunophenotype provides important clues to their physiological roles. Their main functions include the regulation of hormone-dependent processes, intercellular signaling, immune surveillance, microenvironmental maintenance, and the nursing of stem cells. In a situation where TCs are functionally or morphologically decimated, many disease entities may develop, including premature ovarian failure, endometriosis, ectopic pregnancy, infertility, preeclampsia, or even breast cancer. The common denominator of many of these conditions is that their etiopathogenesis is either partially known or completely obscure. Even though the exact role of TCs in these conditions is yet to be revealed, multiple lines of research indicate that their future clinical application may enrich diagnostic-therapeutic strategies of countless conditions. TCs are also heavily debated in terms of their possible use in regenerative medicine and tissue engineering. Some of the concepts related to TC research are strongly substantiated by experimental data, while others are highly speculative. Only future research endeavors will clearly distinguish dead-end lines of research from genuine contributions to the field.
Collapse
Affiliation(s)
- Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Mária Csöbönyeiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Lenka Lapides
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
- ISCARE, Reproduction Clinic, Gynaecology & Urology, 821 09 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| |
Collapse
|
7
|
Sayyaf Dezfuli B, Pironi F, Maynard B, Simoni E, Bosi G. Rodlet cells, fish immune cells and a sentinel of parasitic harm in teleost organs. FISH & SHELLFISH IMMUNOLOGY 2022; 121:516-534. [PMID: 35123696 DOI: 10.1016/j.fsi.2021.09.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Rodlet cells (RCs) are the enigmatic and distinctive pear-shaped cells had found in many tissues of marine and freshwater teleosts. They have a distinctive fibrous capsule or the cell cortex that envelopes conspicuous inclusions called rodlets, basally situated nucleus, and poorly developed mitochondria. The contraction of the cell cortex results in the expulsion of the cell contents through an apical opening. One hundred and thirty years since rodlet cells were first reported, many questions remain about their origin and a function. This review will present new evidence regarding the relationship between RCs and metazoan parasites, and a protozoan infecting organs of different fish species, and update the state of knowledge about the origin, structure and the function of these intriguing fish cells.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Barbara Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Edi Simoni
- Department of Neurosciences, University of Padua, St. Giuseppe Orus, 2/B, 35128, Padua, Italy.
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, University of Milan, St. of University 6, 26900, Lodi, Italy.
| |
Collapse
|
8
|
Medina A, Magro A, Paullada-Salmerón JA, Varela JL. An autofluorescence-based survey of late follicular atresia in ovaries of a teleost fish (Thunnus thynnus). JOURNAL OF FISH BIOLOGY 2021; 99:765-772. [PMID: 33861470 DOI: 10.1111/jfb.14756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 05/21/2023]
Abstract
In this study, the authors examined late atretic follicles in the ovaries of Atlantic bluefin tuna, Thunnus thynnus (Linnaeus 1758), at different times of the year using transmitted light and epifluorescence microscopy. Atresia (degeneration and resorption of developing ovarian follicles) is a natural process involved in fecundity downregulation in teleosts and is substantially enhanced in stressful conditions. Early (α and β) atretic stages of yolked oocytes have a relatively short duration in seasonally reproducing species, whereas later (γ and δ) atretic follicles (LAF) persist for longer time in the ovary, serving as a sign of previous vitellogenic activity. LAF can thus be used as reliable markers of maturity during non-reproductive periods. Lipofuscin granules accumulate in the cytoplasm of LAF cells as a result of lysosomal digestion of oocyte components. Taking advantage of the well-known autofluorescent properties of lipofuscins, LAF may be identified in unstained histological sections under fluorescence microscopy using appropriate excitation and emission wavelengths. The authors explore in this study the applicability of fluorescence microscopy to provide a fast and effective method to assess late atresia in fishes. This method may be particularly useful to determine sexual maturity in individuals sampled long after the spawning season, where LAF are difficult to detect in standard histological sections. Furthermore, LAF autofluorescence provides a rapid way to quantify late atresia in fishes using image analysis.
Collapse
Affiliation(s)
- Antonio Medina
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | - Ana Magro
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | | | - José Luis Varela
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| |
Collapse
|
9
|
Mokhtar DM, Abdelhafez EA. An overview of the structural and functional aspects of immune cells in teleosts. Histol Histopathol 2021; 36:399-414. [PMID: 33415722 DOI: 10.14670/hh-18-302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immune system of fish consists of two main components, innate and adaptive immunities. Innate immunity is non-specific and acts as the primary line of protection against pathogen invasion, while adaptive immunity is more specific to a certain pathogen/following adaptation. The adaptive immune system consists of the humoral and cellular components. Cytotoxic T-lymphocyte cells are the major component of the cellular immunity that frequently kills viral-, bacterial- or parasitic-infected cells. According to the anatomical location, the mucosal-associated lymphoid tissue (MALT) in teleost fish subdivides into gut-associated lymphoid tissue (GALT), gill-associated lymphoid tissue (GIALT), and skin-associated lymphoid tissue (SALT). The MALTs contain various leukocytes; including, but not limited to, lymphocytes (T and B cells), plasma cells, macrophages, and granulocytes. Macrophages are multifunctional cells that are mainly involved in the immune response, including; phagocytosis and degradation of foreign antigens, tissue remodeling, and production of cytokines, chemokines and growth factors. An interesting feature of teleost macrophages is their ability to form melanomacrophage centers (MMC) in the hemopoietic tissues. Dendritic cells, rodlet cells, mast cells, eosinophilic granular cells (ECGs), telocytes, osteoclasts, club cells, as well as, barrier cells have been recorded in many fish species and have many immunological roles. This paper aims to summarize the current knowledge of the immune cells present in fish tissues serving as anatomical and physiological barriers against external hazards. Increased knowledge of fish immune systems will facilitate the development of novel vaccination strategies in fish.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Enas A Abdelhafez
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Mokhtar DM. The structural and ultrastructural organization of the cellular constituents of the trunk kidney of grass carp (Ctenopharyngodon idella). Microsc Res Tech 2020; 84:537-547. [PMID: 32986903 DOI: 10.1002/jemt.23610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The trunk kidney of grass carp mainly consisted of renal tubules with a few interstitial hematopoietic tissues. The component structure of fish nephron markedly varies between different species of fish. The nephron of grass carp consisted of morphologically distinct segments; renal corpuscles, neck segment, proximal, intermediate, distal, and collecting tubules. The glomerulus of renal corpuscles mainly composed of mesangial cells and well-developed podocytes that extended their processes to the endothelium of glomerular capillaries forming the filtration barrier. The podocytes expressed both α-SMA and the transforming growth factor gene, TGF-β. The proximal convoluted tubules (PCTs) expressed α-SMA iNOS2, and TGF-β. The cytoplasm of PCT was rich in mitochondria and rER, in addition to the presence of well-developed basolateral tubular system and apical brush borders. Collecting tubules distributed throughout the kidney and lined by principal and flask cells. The interstitial hemopoietic tissues contained iNOS2 -positive polymorphic granulocytes, CD3-positive T lymphocytes, rodlet cells, dendritic cells, macrophages, melanomacrophage centers, and telocytes. This study described for the first time the cellular components of the nephron and its associated hemopoietic tissues that can act as a basis for studying the structural changes that may occur in the kidney of grass carp during water salinitiy, environmental, or experimental conditions.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|