1
|
Dancker TA, Elhawy MI, Rittershauß R, Tian Q, Schwarz Y, Hoffmann MDA, Carlein C, Wyatt A, Wahl V, Speyerer D, Kandah A, Boehm U, Prates Roma L, Bruns D, Lipp P, Krasteva-Christ G, Lauterbach MA. Functional Microendoscopy Reveals Calcium Responses of Single Cells in Tracheal Tuft Cells and Kidney Podocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411341. [PMID: 40166809 DOI: 10.1002/smll.202411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Microendoscopy, a crucial technology for minimally invasive investigations of organs, facilitates studies within confined cavities. However, conventional microendoscopy is often limited by probe size and the constraint of using a single excitation wavelength. In response to these constraints, a multichannel microendoscope with a slender profile of only 360 µm is engineered. Functional signals both in situ and in vivo are successfully captured from individual single cells, employing a specially developed software suite for image processing, and exhibiting an effective resolution of 4.6 µm, allowing for the resolution of subcellular neuronal structures. This system enabled the first examination of calcium dynamics in vivo in murine tracheal tuft cells (formerly named brush cells) and in situ in kidney podocytes. Additionally, it recorded ratiometric redox reactions in various biological settings, including intact explanted organs and pancreatic islet cultures. The flexibility and streamlined operation of the microendoscopic technique open new avenues for conducting in vivo research, allowing for studies of tissue and organ function at cellular resolution.
Collapse
Affiliation(s)
- Tobias A Dancker
- Molecular Imaging, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Mohamed Ibrahem Elhawy
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Ramona Rittershauß
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
| | - Qinghai Tian
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
| | - Yvonne Schwarz
- Molecular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Markus D A Hoffmann
- Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Christopher Carlein
- Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 45&46, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Vanessa Wahl
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 45&46, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Daniel Speyerer
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Alaa Kandah
- Molecular Imaging, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 45&46, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Leticia Prates Roma
- Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Dieter Bruns
- Molecular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Peter Lipp
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Marcel A Lauterbach
- Molecular Imaging, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| |
Collapse
|
2
|
Faivre A, Dissard R, Kuo W, Verissimo T, Legouis D, Arnoux G, Heckenmeyer C, Fernandez M, Tihy M, Rajaram RD, Delitsikou V, Le NA, Spingler B, Mueller B, Shulz G, Lindenmeyer M, Cohen C, Rutkowski JM, Moll S, Scholz CC, Kurtcuoglu V, de Seigneux S. Evolution of hypoxia and hypoxia-inducible factor asparaginyl hydroxylase regulation in chronic kidney disease. Nephrol Dial Transplant 2023; 38:2276-2288. [PMID: 37096392 PMCID: PMC10539236 DOI: 10.1093/ndt/gfad075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The roles of hypoxia and hypoxia inducible factor (HIF) during chronic kidney disease (CKD) are much debated. Interventional studies with HIF-α activation in rodents have yielded contradictory results. The HIF pathway is regulated by prolyl and asparaginyl hydroxylases. While prolyl hydroxylase inhibition is a well-known method to stabilize HIF-α, little is known about the effect asparaginyl hydroxylase factor inhibiting HIF (FIH). METHODS We used a model of progressive proteinuric CKD and a model of obstructive nephropathy with unilateral fibrosis. In these models we assessed hypoxia with pimonidazole and vascularization with three-dimensional micro-computed tomography imaging. We analysed a database of 217 CKD biopsies from stage 1 to 5 and we randomly collected 15 CKD biopsies of various severity degrees to assess FIH expression. Finally, we modulated FIH activity in vitro and in vivo using a pharmacologic approach to assess its relevance in CKD. RESULTS In our model of proteinuric CKD, we show that early CKD stages are not characterized by hypoxia or HIF activation. At late CKD stages, some areas of hypoxia are observed, but these are not colocalizing with fibrosis. In mice and in humans, we observed a downregulation of the HIF pathway, together with an increased FIH expression in CKD, according to its severity. Modulating FIH in vitro affects cellular metabolism, as described previously. In vivo, pharmacologic FIH inhibition increases the glomerular filtration rate of control and CKD animals and is associated with decreased development of fibrosis. CONCLUSIONS The causative role of hypoxia and HIF activation in CKD progression is questioned. A pharmacological approach of FIH downregulation seems promising in proteinuric kidney disease.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Romain Dissard
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Willy Kuo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Thomas Verissimo
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Grégoire Arnoux
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Carolyn Heckenmeyer
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Marylise Fernandez
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Matthieu Tihy
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Renuga D Rajaram
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Vasiliki Delitsikou
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Ngoc An Le
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Bert Mueller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Georg Shulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Micro- and Nanotomography Core Facility, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Solange Moll
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Rodgers G, Bikis C, Janz P, Tanner C, Schulz G, Thalmann P, Haas CA, Müller B. 3D X-ray Histology for the Investigation of Temporal Lobe Epilepsy in a Mouse Model. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1730-1745. [PMID: 37584515 DOI: 10.1093/micmic/ozad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
The most common form of epilepsy among adults is mesial temporal lobe epilepsy (mTLE), with seizures often originating in the hippocampus due to abnormal electrical activity. The gold standard for the histopathological analysis of mTLE is histology, which is a two-dimensional technique. To fill this gap, we propose complementary three-dimensional (3D) X-ray histology. Herein, we used synchrotron radiation-based phase-contrast microtomography with 1.6 μm-wide voxels for the post mortem visualization of tissue microstructure in an intrahippocampal-kainate mouse model for mTLE. We demonstrated that the 3D X-ray histology of unstained, unsectioned, paraffin-embedded brain hemispheres can identify hippocampal sclerosis through the loss of pyramidal neurons in the first and third regions of the Cornu ammonis as well as granule cell dispersion within the dentate gyrus. Morphology and density changes during epileptogenesis were quantified by segmentations from a deep convolutional neural network. Compared to control mice, the total dentate gyrus volume doubled and the granular layer volume quadrupled 21 days after injecting kainate. Subsequent sectioning of the same mouse brains allowed for benchmarking 3D X-ray histology against well-established histochemical and immunofluorescence stainings. Thus, 3D X-ray histology is a complementary neuroimaging tool to unlock the third dimension for the cellular-resolution histopathological analysis of mTLE.
Collapse
Affiliation(s)
- Griffin Rodgers
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Christos Bikis
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Integrierte Psychiatrie Winterthur-Zürcher Unterland, 8408 Winterthur, Switzerland
| | - Philipp Janz
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
| | - Christine Tanner
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
- Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Peter Thalmann
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Carola A Haas
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
- Center of Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79114 Freiburg, Germany
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
4
|
Dahl SL, Bapst AM, Khodo SN, Scholz CC, Wenger RH. Fount, fate, features, and function of renal erythropoietin-producing cells. Pflugers Arch 2022; 474:783-797. [PMID: 35750861 PMCID: PMC9338912 DOI: 10.1007/s00424-022-02714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022]
Abstract
Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo mRNA in REP cells is produced in a pronounced "on-off" mode, showing transient transcriptional bursts upon exposure to hypoxia. In contrast to "ordinary" fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights into the regulation of Epo expression in this unique cell type.
Collapse
Affiliation(s)
- Sophie L Dahl
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Andreas M Bapst
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Stellor Nlandu Khodo
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Roland H Wenger
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
5
|
Edwards A, Kurtcuoglu V. Renal blood flow and oxygenation. Pflugers Arch 2022; 474:759-770. [PMID: 35438336 PMCID: PMC9338895 DOI: 10.1007/s00424-022-02690-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Our kidneys receive about one-fifth of the cardiac output at rest and have a low oxygen extraction ratio, but may sustain, under some conditions, hypoxic injuries that might lead to chronic kidney disease. This is due to large regional variations in renal blood flow and oxygenation, which are the prerequisite for some and the consequence of other kidney functions. The concurrent operation of these functions is reliant on a multitude of neuro-hormonal signaling cascades and feedback loops that also include the regulation of renal blood flow and tissue oxygenation. Starting with open questions on regulatory processes and disease mechanisms, we review herein the literature on renal blood flow and oxygenation. We assess the current understanding of renal blood flow regulation, reasons for disparities in oxygen delivery and consumption, and the consequences of disbalance between O2 delivery, consumption, and removal. We further consider methods for measuring and computing blood velocity, flow rate, oxygen partial pressure, and related parameters and point out how limitations of these methods constitute important hurdles in this area of research. We conclude that to obtain an integrated understanding of the relation between renal function and renal blood flow and oxygenation, combined experimental and computational modeling studies will be needed.
Collapse
Affiliation(s)
- Aurelie Edwards
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- National Center of Competence in Research, Kidney.CH, University of Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|