1
|
Rossi M, Khalifeh M, Fiori F, Parpinel M, Serraino D, Pelucchi C, Negri E, Giacosa A, Crispo A, Collatuzzo G, Hannun Y, Luberto C, La Vecchia C, Boffetta P. Dietary choline and sphingomyelin choline moiety intake and risk of colorectal cancer: a case-control study. Eur J Clin Nutr 2023; 77:905-910. [PMID: 37479807 PMCID: PMC11749154 DOI: 10.1038/s41430-023-01298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Phospholipids are possible favorable agents for colorectal cancer (CRC). Choline has been inversely related to CRC risk but findings are inconsistent. We assessed the effect of dietary sphingomyelin (SM) choline moiety and total choline intake on risk of CRC. METHOD This analysis is based on a multicenter case-control study conducted between 1992 and 1996 in Italy. A total of 6107 subjects were enrolled, including 1225 colon cancer cases, 728 rectal cancer cases and 4154 hospital-based controls. We applied data on the composition of foods in terms of SM choline moiety and choline intake on dietary information collected through a validated food-frequency questionnaire. Odds ratio (OR) for energy-adjusted tertiles of SM choline moiety and choline were estimated through logistic regression models adjusted for sex, age, center, education, alcohol consumption, body mass index, family history of CRC, and physical activity. RESULTS Choline was inversely related to CRC risk (OR for the highest versus the lowest tertile: 0.85; 95% confidence interval [CI]: 0.73-0.99), with a significant trend in risk. The OR for an increment of one standard deviation of energy-adjusted choline intake was 0.93 (95% CI: 0.88-0.98). The association was consistent in colon and rectal cancer and also across colon subsites. SM choline moiety was not associated with CRC risk (OR for the highest versus the lowest tertile: 0.96, 95% CI 0.84-1.11). CONCLUSION This study shows an inverse association between choline intake and CRC but not with SM choline moiety.
Collapse
Affiliation(s)
- Marta Rossi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Malak Khalifeh
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Diego Serraino
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, National Cancer Institute IRCCS, 33108, Aviano, Italy
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Eva Negri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900, Monza, Italy
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale dei Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Yusuf Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Schwalbe EC, H L, Lafta F, Barrow TM, Strathdee G. Integration of genome-level data to allow identification of subtype-specific vulnerability genes as novel therapeutic targets. Oncogene 2021; 40:5213-5223. [PMID: 34230614 PMCID: PMC8376645 DOI: 10.1038/s41388-021-01923-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
The identification of cancer-specific vulnerability genes is one of the most promising approaches for developing more effective and less toxic cancer treatments. Cancer genomes exhibit thousands of changes in DNA methylation and gene expression, with the vast majority likely to be passenger changes. We hypothesised that, through integration of genome-wide DNA methylation/expression data, we could exploit this inherent variability to identify cancer subtype-specific vulnerability genes that would represent novel therapeutic targets that could allow cancer-specific cell killing. We developed a bioinformatics pipeline integrating genome-wide DNA methylation/gene expression data to identify candidate subtype-specific vulnerability partner genes for the genetic drivers of individual genetic/molecular subtypes. Using acute lymphoblastic leukaemia as an initial model, 21 candidate subtype-specific vulnerability genes were identified across the five common genetic subtypes, with at least one per subtype. To confirm the approach was applicable across cancer types, we also assessed medulloblastoma, identifying 15 candidate subtype-specific vulnerability genes across three of four established subtypes. Almost all identified genes had not previously been implicated in these diseases. Functional analysis of seven candidate subtype-specific vulnerability genes across the two tumour types confirmed that siRNA-mediated knockdown induced significant inhibition of proliferation/induction of apoptosis, which was specific to the cancer subtype in which the gene was predicted to be specifically lethal. Thus, we present a novel approach that integrates genome-wide DNA methylation/expression data to identify cancer subtype-specific vulnerability genes as novel therapeutic targets. We demonstrate this approach is applicable to multiple cancer types and identifies true functional subtype-specific vulnerability genes with high efficiency.
Collapse
Affiliation(s)
- Edward C Schwalbe
- Biosciences Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
- Department of Applied Sciences, Northumbria University, Newcastle, UK
| | - Lalchungnunga H
- Biosciences Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
| | - Fadhel Lafta
- Biosciences Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Timothy M Barrow
- Biosciences Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Gordon Strathdee
- Biosciences Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK.
| |
Collapse
|
3
|
Integrated analysis of DNA methylation and mRNA expression profiles to identify key genes in head and neck squamous cell carcinoma. Biosci Rep 2021; 40:221746. [PMID: 31894857 PMCID: PMC6981101 DOI: 10.1042/bsr20193349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation has been demonstrated to play significant roles in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). In the present study, methylation microarray dataset (GSE87053) and gene expression microarray dataset (GSE23558) were downloaded from GEO database and analyzed through R language. A total of 255 hypermethylated-downregulated genes and 114 hypomethylated-upregulated genes were finally identified. Functional enrichment analyses were performed and a comprehensive protein–protein interaction (PPI) network was constructed. Subsequently, the top ten hub genes selected by Cytoscape software were subjected to further analyses. It was illustrated that the expression level of CSF2, CTLA4, ETS1, PIK3CD, and CFTR was intimately associated with HNSCC. Survival analysis suggested that CTLA4 and FGFR2 could serve as effective independent prognostic biomarkers for HNSCC patients. Overall, our study lay a groundwork for further investigation into the underlying molecular mechanisms in HNSCC carcinogenesis, providing potential biomarkers and therapeutic targets for HNSCC.
Collapse
|
4
|
Wang Y, Chen PM, Liu RB. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection. World J Gastrointest Oncol 2018; 10:15-22. [PMID: 29375744 PMCID: PMC5767789 DOI: 10.4251/wjgo.v10.i1.15] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required.
Collapse
Affiliation(s)
- Yu Wang
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Pei-Min Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Rong-Bin Liu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
5
|
REC8 is a novel tumor suppressor gene epigenetically robustly targeted by the PI3K pathway in thyroid cancer. Oncotarget 2016; 6:39211-24. [PMID: 26472282 PMCID: PMC4770767 DOI: 10.18632/oncotarget.5391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
The role of the PI3K pathway in human cancer has been well established, but much of its molecular mechanism, particularly the epigenetic aspect, remains to be defined. We hypothesized that aberrant methylation and hence altered expression of certain unknown important genes induced by the genetically activated PI3K pathway signaling is a major epigenetic mechanism in human tumorigenesis. Through a genome-wide search for such genes that were epigenetically controlled by the PI3K pathway in thyroid cancer cells, we found a wide range of genes with broad functions epigenetically targeted by the PI3K pathway. The most prominent among these genes was REC8, classically known as a meiotic-specific gene, which we found to be robustly down-regulated by the PI3K pathway through hypermethylation. REC8 hypermethylation was strongly associated with genetic alterations and activities of the PI3K pathway in thyroid cancer cell lines, thyroid cancer tumors, and some other human cancers; it was also associated with poor clinicopathological outcomes of thyroid cancer, including advanced disease stages and patient mortality. Demethylating the hypermethylated REC8 gene restored its expression in thyroid cancer cells in which the PI3K pathway was genetically over-activated and induced expression of REC8 protein inhibited the proliferation and colony formation of these cells. These findings are consistent with REC8 being a novel major bona fide tumor suppressor gene and a robust epigenetic target of the PI3K pathway. Aberrant inactivation of REC8 through hypermethylation by the PI3K pathway may represent an important mechanism mediating the oncogenic functions of the PI3K pathway.
Collapse
|
6
|
McCarthy D, Pulverer W, Weinhaeusel A, Diago OR, Hogan DJ, Ostertag D, Hanna MM. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples. Epigenomics 2016; 8:747-65. [PMID: 27337298 DOI: 10.2217/epi-2016-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. MATERIALS & METHODS Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. RESULTS MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. CONCLUSION MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
Collapse
Affiliation(s)
- David McCarthy
- Ribomed Biotechnologies Inc., 3469 Kurtz St., San Diego, CA 92110, USA
| | - Walter Pulverer
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria
| | - Andreas Weinhaeusel
- Molecular Diagnostics, Health & Environment Department, Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria
| | - Oscar R Diago
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230; San Diego, CA 92109, USA
| | - Daniel J Hogan
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230; San Diego, CA 92109, USA
| | - Derek Ostertag
- Tocagen Inc., 3030 Bunker Hill Street, Suite 230; San Diego, CA 92109, USA
| | - Michelle M Hanna
- Ribomed Biotechnologies Inc., 3469 Kurtz St., San Diego, CA 92110, USA
| |
Collapse
|
7
|
Zhao H, Yin H, Yang Y. Label-free electrochemical detection of DNA methyltransferase activity via a DNA tetrahedron-structured probe. RSC Adv 2016. [DOI: 10.1039/c6ra01845a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Label-free electrochemical detection of DNA methyltransferase activityviaDNA tetrahedron-structured probe.
Collapse
Affiliation(s)
- Hongyu Zhao
- The Second Hospital of Nanjing
- Affiliated to Medical School of Southeast University
- Nanjing
- China
| | - Hai Yin
- Chinese People's Liberation Army 454 Hospital
- Nanjing
- China
| | - Yongfeng Yang
- The Second Hospital of Nanjing
- Affiliated to Medical School of Southeast University
- Nanjing
- China
| |
Collapse
|
8
|
Mocanu MM, Nagy P, Szöllősi J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules 2015; 20:22578-620. [PMID: 26694341 PMCID: PMC6332464 DOI: 10.3390/molecules201219864] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field.
Collapse
Affiliation(s)
- Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
9
|
Lu MS, Fang YJ, Pan ZZ, Zhong X, Zheng MC, Chen YM, Zhang CX. Choline and betaine intake and colorectal cancer risk in Chinese population: a case-control study. PLoS One 2015; 10:e0118661. [PMID: 25785727 PMCID: PMC4364675 DOI: 10.1371/journal.pone.0118661] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/09/2015] [Indexed: 11/18/2022] Open
Abstract
Background Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population. Methodology/Principal Findings A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval) and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs) and 95% confidence intervals (CIs). Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01) comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake. Conclusions These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer.
Collapse
Affiliation(s)
- Min-Shan Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Jing Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Zhong Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao Zhong
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Mei-Chun Zheng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Ming Chen
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- * E-mail: (CXZ); (YMC)
| | - Cai-Xia Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- * E-mail: (CXZ); (YMC)
| |
Collapse
|
10
|
Abstract
DNA methylation is an epigenetic mark playing an important role in development and disease. Aberrant DNA methylation was identified as an alternative mechanism for gene inactivation complementing deletions and mutations in cancer initiation and progression. However, to accurately compare differences in DNA methylation among various tissue types, adequate quantitative approaches are required. Pyrosequencing(®), as a sequencing-by-synthesis method, allows such quantification with single CpG resolution and the ability for threshold determination. This book chapter provides a detailed protocol for DNA methylation analysis by Pyrosequencing, including information on assay design and practical procedure. Additionally, emphasis is placed on the discussion of strengths and weaknesses of the methodology.
Collapse
|
11
|
Abstract
AbstractMethylation-specific PCR (MSP) is still the method of choice for a single gene methylation study. The proper design of the primer pairs is a prerequisite for obtaining reliable PCR results. Despite numerous protocols describing the rules for MSP primer design, none of them provide a comprehensive approach to the problem. Our aim was to depict a workflow for the primer design that is concise and easy to follow. In order to achieve this goal, adequate tools for promoter sequence retrieval, MSP primer design and subsequent in silico analysis are presented and discussed. Furthermore, a few instructive examples regarding a good versus a poor primer design are provided. Finally, primer design is demonstrated according to the proposed workflow. This article aims to provide researchers, interested in a single gene methylation studies, with useful information regarding successful primer design.
Collapse
|
12
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
13
|
Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014; 21:260-92. [PMID: 24382094 PMCID: PMC4060780 DOI: 10.1089/ars.2013.5489] [Citation(s) in RCA: 484] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/07/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. RECENT ADVANCES The development of high-throughput "omics" technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. CRITICAL ISSUES In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. FUTURE DIRECTIONS Throughout the review, the synergy of combined "omics" technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies.
Collapse
Affiliation(s)
- Julie A Reisz
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
14
|
Fereidunian A, Sadeghalvad M, Oscoie MO, Mostafaie A. Soybean Bowman-Birk protease inhibitor (BBI): identification of the mechanisms of BBI suppressive effect on growth of two adenocarcinoma cell lines: AGS and HT29. Arch Med Res 2014; 45:455-61. [PMID: 25014623 DOI: 10.1016/j.arcmed.2014.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Bowman-Birk protease inhibitor (BBI) has been well known to suppress the emergence and progression of different cancers. In the present study, the mechanisms by which BBI alters cancers have been addressed. To reach this goal, the effects of BBI on proliferation of and VEGF secretion by two cell lines (AGS: gastric adenocarcinoma and HT-29: colorectal adenocarcinoma) and also BBI effect on MMP-2 and 9 synthesis/secretion by AGS cells was evaluated. METHODS ELISA method was used to assess VEGF concentration and gelatin zymography was used to address MMP-2 and 9 production/excretion. RESULTS BBI had powerful inhibitory effect on proliferation and VEGF secretion by both cell lines. In addition, inhibition of MMP-2 and MMP-9 secreted by AGS cells suggests BBI as a potent inhibitor of gastric cancer progression. On the other hand, the results indicated that inhibition of MMP-2, MMP-9 and VEGF secretion is one of the mechanisms of anti-angiogenic effect of BBI. CONCLUSION BBI expresses powerful suppressive effect on tumor progression of two prevalent cancers: gastric adenocarcinoma and colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Amirhossein Fereidunian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Omidi Oscoie
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Yu MH, Huang YC, Chang PL. Rapid screening of the heterogeneity of DNA methylation by single-strand conformation polymorphism and CE-LIF in the presence of electro-osmotic flow. Electrophoresis 2014; 35:2378-85. [DOI: 10.1002/elps.201300502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Meng-Hsuan Yu
- Department of Chemistry; Tunghai University; Taichung Taiwan
| | - Ya-Chi Huang
- Department of Chemistry; Tunghai University; Taichung Taiwan
| | - Po-Ling Chang
- Department of Chemistry; Tunghai University; Taichung Taiwan
| |
Collapse
|
16
|
Lin YZ, Chang PL. Colorimetric determination of DNA methylation based on the strength of the hydrophobic interactions between DNA and gold nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12045-12051. [PMID: 24199674 DOI: 10.1021/am403863w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A simple, novel colorimetric nanosensor for DNA methylation based on the strength of hydrophobic interaction between DNA and gold nanoparticles was proposed. The nanosensing of oligonucleotides with four nitrogen bases was first demonstrated by dividing the bases into two groups (A/T and C/G) using the representative colors that correspond to Watson-Crick base pairing. By treatment of the genomic DNA with sodium bisulfite followed by PCR amplification, the methylation level of nasopharyngeal carcinoma cells treated with 5-aza-2'-deoxycytidine for up to 5 days could be discriminated by naked eye observation. Furthermore, 12 cancer cell lines that demonstrate heterogeneity with respect to DNA methylation could also be distinguished using the nanosensor, even for amplicons as long as 342 bp. These results demonstrate that the proposed colorimetric nanosensor could potentially be useful in epigenetic studies.
Collapse
Affiliation(s)
- Yi-Zhen Lin
- Department of Chemistry, Tunghai University , Taichung 40704, Taiwan
| | | |
Collapse
|
17
|
Abstract
Systemic lupus erythematosus (SLE) is a severe multi-system autoimmune disease, whereas interferon regulatory factor (IRF) 5 belongs to the family of transcription factors that modulate immune system activities. Recently, many lines of investigations suggested that IRF5 gene polymorphisms are closely associated with the disease onset of SLE. Indeed, expressed in B cells, dendritic cells (DCs), monocytes and macrophages, IRF5 could significantly affect these immune cells participating in the pathogenesis of SLE, and numerous studies implied that this transcription factor is mechanistically linked to the disease progression. Here, we comprehensively review the updated evidence indicating the roles of IRF5 in autoimmune lupus. Hopefully, the information obtained will lead to a better understanding of the pathogenesis and development of novel therapeutic strategies for the systemic autoimmune disease.
Collapse
|
18
|
Ying J, Rahbar MH, Hallman DM, Hernandez LM, Spitz MR, Forman MR, Gorlova OY. Associations between dietary intake of choline and betaine and lung cancer risk. PLoS One 2013; 8:e54561. [PMID: 23383301 PMCID: PMC3562321 DOI: 10.1371/journal.pone.0054561] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/13/2012] [Indexed: 12/02/2022] Open
Abstract
Evidence from human and animal research indicates that choline metabolic pathways may be activated during a variety of diseases, including cancer. We report results of a case-control study of 2821 lung cancer cases and 2923 controls that assessed associations of choline and betaine dietary intakes with lung cancer. Using multivariable logistic regression analyses, we report a significant association between higher betaine intake and lower lung cancer risk that varied by smoking status. Specifically, no significant association was observed between betaine intake and lung cancer among never-smokers. However, higher betaine intake was significantly associated with reduced lung cancer risk among smokers, and the protective effect was more evident among current than former smokers: for former and current smokers, the ORs (95% CI) of lung cancer for individuals with highest as compared to lowest quartiles of intake were 0.70(0.55–0.88) and 0.51(0.39–0.66) respectively. Significant linear trend of higher betaine intake and lower lung cancer risk was observed among both former (ptrend = 0.002) and current (ptrend<0.0001) smokers. A similar protective effect was also observed with choline intake both in overall analysis as well as among current smokers, with p-values for chi-square tests being 0.001 and 0.004 respectively, but the effect was less evident, as no linear trend was observed. Our results suggest that choline and betaine intake, especially higher betaine intake, may be protective against lung cancer through mitigating the adverse effect of smoking.
Collapse
Affiliation(s)
- Jun Ying
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wong KY, Huang X, Chim CS. DNA methylation of microRNA genes in multiple myeloma. Carcinogenesis 2012; 33:1629-38. [DOI: 10.1093/carcin/bgs212] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Ernberg I, Karimi M, Ekström TJ. Epigenetic mechanisms as targets and companions of viral assaults. Ann N Y Acad Sci 2012; 1230:E29-36. [DOI: 10.1111/j.1749-6632.2011.06357.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Chen HC, Chang YS, Chen SJ, Chang PL. Determination of the heterogeneity of DNA methylation by combined bisulfite restriction analysis and capillary electrophoresis with laser-induced fluorescence. J Chromatogr A 2012; 1230:123-9. [DOI: 10.1016/j.chroma.2012.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|
22
|
Pacholska-Bogalska J, Myga-Nowak M, Ciepłuch K, Józefiak A, Kwaśniewska A, Goździcka-Józefiak A. Analysis of the coding sequence and expression of the coiled-coil α-helical rod protein 1 gene in normal and neoplastic epithelial cervical cells. Int J Mol Med 2012; 29:669-76. [PMID: 22218424 PMCID: PMC3577136 DOI: 10.3892/ijmm.2012.877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/02/2011] [Indexed: 12/17/2022] Open
Abstract
The role of the CCHCR1 (coiled-coil α-helical rod protein 1) protein in the cell is poorly understood. It is thought to be engaged in processes such as proliferation and differentiation of epithelial cells, tissue-specific gene transcription and steroidogenesis. It is supposed to participate in keratinocyte transformation. It has also been found that this protein interacts with the E2 protein of human papilloma virus type 16 (HPV16). The oncogenic HPV forms, such as HPV16, are known to be necessary but not sufficient agents in the development of cervical carcinoma. In the present study, the CCHCR1 gene coding sequence and its expression was analyzed in normal, precancerous and cervical cancer cells. Changes in the non-coding region were found in 20.3% of the examined probes from women with cervical cancer or precancerous lesions and in 16.67% of the control probes. Most of the detected changes were single nucleotide polymorphisms (SNPs). Changes in the coding region were found in 22.8% of the probes with cervical cancer and in 16.67% of the control probes and all of them were SNPs. The level of CCHCR1 transcripts was determined using the real-time PCR method and the highest gene expression was detected in the H-SIL group and slightly decreased in the cervical carcinoma cells, compared with the control probes. It suggests that CCHCR1 could have a role in the process of cervical epithelial cell transformation, but this suggestion must be confirmed experimentally.
Collapse
Affiliation(s)
- Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Epigenetic alterations contribute significantly to the development and progression of prostate cancer, the most prevalent malignant tumor in males of Western industrialized countries. Here, we review recent research on DNA methylation alterations in this cancer type. Hypermethylation of several genes including GSTP1 is well known to occur in a consistent and apparently coordinate fashion during the transition from intraepithelial neoplasia to frank carcinoma. These hypermethylation events have shown promise as biomarkers for detection of prostate carcinoma. Many other individual genes have been shown to undergo hypermethylation, which is typically associated with diminished expression. These investigations indicate additional candidates for biomarkers; in particular, hypermethylation events associated with progression can be employed to identify more aggressive cases. In addition, some of genes silenced by aberrant methylation in prostate have been shown to exhibit properties of tumor suppressors, revealing insights into mechanisms of carcinogenesis. Whereas most studies in the past have used candidate gene approaches, new techniques allowing genome-wide screening for altered methylation are increasingly employed in prostate cancer research and have already yielded encouraging results.
Collapse
Affiliation(s)
- Wolfgang Goering
- Department of Urology, Heinrich Heine University, Duesseldorf, Germany
| | | | | |
Collapse
|
24
|
Choong MK, Tsafnat G. Genetic and epigenetic biomarkers of colorectal cancer. Clin Gastroenterol Hepatol 2012; 10:9-15. [PMID: 21635968 DOI: 10.1016/j.cgh.2011.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/23/2011] [Accepted: 04/18/2011] [Indexed: 02/07/2023]
Abstract
Cancer is a heterogeneous disease caused, in part, by genetic and epigenetic alterations. These changes have been explored in studies of the pathogenesis of colorectal cancer (CRC) and have led to the identification of many biomarkers of disease progression. However, the number of biomarkers that have been incorporated into clinical practice is surprisingly small. We review the genetic and epigenetic mechanisms of colorectal cancer and discuss molecular markers recommended for use in early detection, screening, diagnosis, determination of prognosis, and prediction of treatment outcomes. We also review important areas for future research.
Collapse
Affiliation(s)
- Miew Keen Choong
- Centre for Health Informatics, Australian Institute of Health Innovation, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
25
|
Hou P, Liu D, Xing M. Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endocr Relat Cancer 2011; 18:687-97. [PMID: 21937738 PMCID: PMC3346957 DOI: 10.1530/erc-11-0212] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The BRAF V600E mutation plays an important role in the tumorigenesis of papillary thyroid cancer (PTC). To explore an epigenetic mechanism involved in this process, we performed a genome-wide DNA methylation analysis using a methylated CpG island amplification (MCA)/CpG island microarray system to examine gene methylation alterations after shRNA knockdown of BRAF V600E in thyroid cancer cells. Our results revealed numerous methylation targets of BRAF V600E mutation with a large cohort of hyper- or hypo-methylated genes in thyroid cancer cells, which are known to have important metabolic and cellular functions. As hypomethylation of numerous genes by BRAF V600E was particularly a striking finding, we took a further step to examine the selected 59 genes that became hypermethylated in both cell lines upon BRAF V600E knockdown and found them to be mostly correspondingly under-expressed (i.e. they were normally maintained hypomethylated and over-expressed by BRAF V600E in thyroid cancer cells). We confirmed the methylation status of selected genes revealed on MCA/CpG microarray analysis by performing methylation-specific PCR. To provide proof of concept that some of the genes uncovered here may play a direct oncogenic role, we selected six of them to perform shRNA knockdown and examined its effect on cellular functions. Our results demonstrated that the HMGB2 gene played a role in PTC cell proliferation and the FDG1 gene in cell invasion. Thus, this study uncovered a prominent epigenetic mechanism through which BRAF V600E can promote PTC tumorigenesis by altering the methylation and hence the expression of numerous important genes.
Collapse
Affiliation(s)
- Peng Hou
- Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
26
|
Eberle FC, Rodriguez-Canales J, Wei L, Hanson JC, Killian JK, Sun HW, Adams LG, Hewitt SM, Wilson WH, Pittaluga S, Meltzer PS, Staudt LM, Emmert-Buck MR, Jaffe ES. Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin's lymphoma and primary mediastinal large B-cell lymphoma. Haematologica 2011; 96:558-66. [PMID: 21454882 DOI: 10.3324/haematol.2010.033167] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mediastinal gray zone lymphoma is a newly recognized entity with transitional morphological and immunophenotypic features between the nodular sclerosis subtype of Hodgkin's lymphoma and primary mediastinal large B-cell lymphoma. Diagnostic criteria for mediastinal gray zone lymphoma are still challenging, and the optimal therapy is as yet undetermined. Epigenetic changes have been implicated in the loss of the B-cell program in classical Hodgkin's lymphoma, and might provide a basis for the immunophenotypic alterations seen in mediastinal gray zone lymphoma. DESIGN AND METHODS We performed a large-scale DNA methylation analysis of microdissected tumor cells to investigate the biological underpinnings of mediastinal gray zone lymphoma and its association with the related entities classical Hodgkin's lymphoma and primary mediastinal large B-cell lymphoma, making comparisons with the presumptively less related diffuse large B-cell lymphoma. RESULTS Principal component analysis demonstrated that mediastinal gray zone lymphoma has a distinct epigenetic profile intermediate between classical Hodgkin's lymphoma and primary mediastinal large B-cell lymphoma but remarkably different from that of diffuse large B-cell lymphoma. Analysis of common hypo- and hypermethylated CpG targets in mediastinal gray zone lymphoma, classical Hodgkin's lymphoma, primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma was performed and confirmed the findings of the principal component analysis. Based on the epigenetic profiles we were able to establish class prediction models utilizing genes such as HOXA5, MMP9, EPHA7 and DAPK1 which could distinguish between mediastinal gray zone lymphoma, classical Hodgkin's lymphoma and primary mediastinal large B-cell lymphoma with a final combined prediction of 100%. CONCLUSIONS Our data confirm a close relationship between mediastinal gray zone lymphoma and both classical Hodgkin's lymphoma and primary mediastinal large B-cell lymphoma. However, important differences were observed as well, allowing a clear distinction from both parent entities. Thus, mediastinal gray zone lymphoma cannot be assigned to either classical Hodgkin's lymphoma or primary mediastinal large B-cell lymphoma, validating the decision to create an intermediate category in the World Health Organization classification.
Collapse
Affiliation(s)
- Franziska C Eberle
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
DNA methylation in thoracic neoplasms. Cancer Lett 2010; 301:7-16. [PMID: 21087818 DOI: 10.1016/j.canlet.2010.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 12/31/2022]
Abstract
Thoracic neoplasms, which include lung cancers, esophageal carcinoma, and thymic epithelial tumors, are the leading causes of tumor-related death and a major health concern worldwide. The development of neoplasms is a multistep process involving both genetic and epigenetic alterations. A growing body of research provides evidence that aberrant DNA methylation, including DNA hypermethylation in promoter regions, global DNA hypomethylation and the overexpression of DNA methyltransferases, plays an important role in tumorigenesis. In this review, we summarize published observations of methylation pattern disruptions in thoracic tumors, and discuss how these abnormalities contribute to the development of cancers. We review recent findings showing that suppressing the activity of the DNA methylating enzymes DNMTs can have potent anti-cancer effects, and discuss the possibility of developing novel therapies for thoracic tumors based on DNMT inhibition.
Collapse
|