1
|
Blackford SJ, Ng SS, Segal JM, King AJ, Austin AL, Kent D, Moore J, Sheldon M, Ilic D, Dhawan A, Mitry RR, Rashid ST. Validation of Current Good Manufacturing Practice Compliant Human Pluripotent Stem Cell-Derived Hepatocytes for Cell-Based Therapy. Stem Cells Transl Med 2019; 8:124-137. [PMID: 30456803 PMCID: PMC6344902 DOI: 10.1002/sctm.18-0084] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 09/25/2018] [Indexed: 01/04/2023] Open
Abstract
Recent advancements in the production of hepatocytes from human pluripotent stem cells (hPSC-Heps) afford tremendous possibilities for treatment of patients with liver disease. Validated current good manufacturing practice (cGMP) lines are an essential prerequisite for such applications but have only recently been established. Whether such cGMP lines are capable of hepatic differentiation is not known. To address this knowledge gap, we examined the proficiency of three recently derived cGMP lines (two hiPSC and one hESC) to differentiate into hepatocytes and their suitability for therapy. hPSC-Heps generated using a chemically defined four-step hepatic differentiation protocol uniformly demonstrated highly reproducible phenotypes and functionality. Seeding into a 3D poly(ethylene glycol)-diacrylate fabricated inverted colloid crystal scaffold converted these immature progenitors into more advanced hepatic tissue structures. Hepatic constructs could also be successfully encapsulated into the immune-privileged material alginate and remained viable as well as functional upon transplantation into immune competent mice. This is the first report we are aware of demonstrating cGMP-compliant hPSCs can generate cells with advanced hepatic function potentially suitable for future therapeutic applications. Stem Cells Translational Medicine 2019;8:124&14.
Collapse
Affiliation(s)
- Samuel J.I. Blackford
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Joe M. Segal
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Aileen J.F. King
- Diabetes Research GroupFaculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Amazon L. Austin
- Diabetes Research GroupFaculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Deniz Kent
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Jennifer Moore
- RUCDR Infinite BiologicsRutgers UniversityNew BrunswickNew JerseyUSA
| | - Michael Sheldon
- RUCDR Infinite BiologicsRutgers UniversityNew BrunswickNew JerseyUSA
| | - Dusko Ilic
- Stem Cell Laboratory, Department of Women and Children's HealthFaculty of Life Sciences and Medicine, King's College LondonLondonUnited Kingdom
| | - Anil Dhawan
- Institute for Liver StudiesKing's College Hospital, King's College LondonLondonUnited Kingdom
| | - Ragai R. Mitry
- Institute for Liver StudiesKing's College Hospital, King's College LondonLondonUnited Kingdom
| | - S. Tamir Rashid
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
- Institute for Liver StudiesKing's College Hospital, King's College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Yuan L, Liu HQ, Wu MJ. Human embryonic mesenchymal stem cells participate in differentiation of renal tubular cells in newborn mice. Exp Ther Med 2016; 12:641-648. [PMID: 27446255 PMCID: PMC4950250 DOI: 10.3892/etm.2016.3383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cells are used with increasing success in the treatment of renal tubular injury. However, whether mesenchymal stem cells (MSC) differentiate into renal tubular epithelial cells remains controversial. The aims of the present study were to observe the localization of human embryonic MSCs (hMSCs) in the kidneys of newborn mice, and to investigate hMSC differentiation into tubular epithelium. Primary culture hMSCs were derived from 4–7-week-old embryos and labeled with the cell membrane fluorescent dye PKH-26. The degree of apoptosis, cell growth, differentiation and localization of hMSCs with and without this label were then determined using immunohistochemical methods and flow cytometry. hMSCs and PKH26-labeled hMSCs were revealed to differentiate into chondrocytes and adipocytes, and were demonstrated to have similar proliferative capability. In the two cell types, the antigens CD34 and CD45, indicative of hematopoietic lineages, were not expressed; however, the expression of the mesenchymal markers CD29 and CD90 in MSCs, was significantly increased. During a 4-week culture period, laser confocal microscopy revealed that PKH26-labeled hMSCs in the kidneys of newborn mice gradually dispersed. Two weeks after the injection of the PKH26-labeled cells, the percentage of PKH26-labeled hMSCs localized to the renal tubules was 10±2.1%. In conclusion, PKH26 labeling has no effect on hMSC differentiation, proliferation and mesenchymal cell surface features, and hMSCs injected into the kidneys of newborn mice may transform to renal tubule epithelium.
Collapse
Affiliation(s)
- Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hou-Qi Liu
- Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Min-Juan Wu
- Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
3
|
Krause MN, Sancho-Martinez I, Izpisua Belmonte JC. Understanding the molecular mechanisms of reprogramming. Biochem Biophys Res Commun 2015; 473:693-7. [PMID: 26655812 DOI: 10.1016/j.bbrc.2015.11.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
Abstract
Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called "Pioneer TFs", play an important role during the stochastic phase of iPSC reprogramming [2-6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes.
Collapse
Affiliation(s)
- Marie N Krause
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA, USA; University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg, Germany
| | - Ignacio Sancho-Martinez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA, USA; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA, USA.
| |
Collapse
|
4
|
Abstract
Blindness represents an increasing global problem with significant social and economic impact upon affected patients and society as a whole. In Europe, approximately one in 30 individuals experience sight loss and 75% of those are unemployed, a social burden which is very likely to increase as the population of Europe ages. Diseases affecting the retina account for approximately 26% of blindness globally and 70% of blindness in the United Kingdom. To date, there are no treatments to restore lost retinal cells and improve visual function, highlighting an urgent need for new therapeutic approaches. A pioneering breakthrough has demonstrated the ability to generate synthetic retina from pluripotent stem cells under laboratory conditions, a finding with immense relevance for basic research, in vitro disease modeling, drug discovery, and cell replacement therapies. This review summarizes the current achievements in pluripotent stem cell differentiation toward retinal cells and highlights the steps that need to be completed in order to generate human synthetic retinae with high efficiency and reproducibly from patient-specific pluripotent stem cells.
Collapse
|
5
|
Ex-vivo ocular surface stem cell therapies: current techniques, applications, hurdles and future directions. Expert Rev Mol Med 2013; 15:e4. [DOI: 10.1017/erm.2013.5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered tissue derived from ocular surface stem cells (SCs) are a cutting edge biotechnology for repair and restoration of severely damaged eyes as a result of ocular surface dysfunction because of SC failure. Ex-vivo SC expansion techniques have advanced significantly since the first patients were treated in the late 1990s. The techniques and clinical reports reviewed here highlight the evolution and successes of these techniques, while also revealing gaps in our understanding of ocular surface and SC biology that drives further research and development in this field. Although hurdles still remain before stem-cell-based therapies are more widely available for patients with devastating ocular surface disease, recent discoveries in the field of mesenchymal SCs and the potential of induced pluripotent SCs heralds a promising future for clinicians and our patients.
Collapse
|
6
|
Hannan NRF, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc 2013; 8:430-7. [PMID: 23424751 DOI: 10.1038/nprot.2012.153] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large-scale production of hepatocytes from a variety of genetic backgrounds would be beneficial for drug screening and to provide a source of cells to be used as a substitute for liver transplantation. However, fully functional primary hepatocytes remain difficult to expand in vitro, and circumventing this problem by using an alternative source of cells is desirable. Here we describe a 25-d protocol to direct the differentiation of human pluripotent stem cells into a near-homogenous population of hepatocyte-like cells. As cells progress through this protocol, they express genes in a chronological manner similar to that described during in vivo hepatic development. The protocol relies on culture systems devoid of serum, feeders or complex extracellular matrices, which enable molecular analyses without interference from unknown factors. This approach works efficiently with human embryonic stem cells and human induced pluripotent stem cells and was recently used to model liver diseases in vitro.
Collapse
Affiliation(s)
- Nicholas R F Hannan
- Wellcome Trust–Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
7
|
Hannan NRF, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc 2013; 496:1269-1275. [PMID: 23424751 DOI: 10.1016/j.bbrc.2018.01.186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
Large-scale production of hepatocytes from a variety of genetic backgrounds would be beneficial for drug screening and to provide a source of cells to be used as a substitute for liver transplantation. However, fully functional primary hepatocytes remain difficult to expand in vitro, and circumventing this problem by using an alternative source of cells is desirable. Here we describe a 25-d protocol to direct the differentiation of human pluripotent stem cells into a near-homogenous population of hepatocyte-like cells. As cells progress through this protocol, they express genes in a chronological manner similar to that described during in vivo hepatic development. The protocol relies on culture systems devoid of serum, feeders or complex extracellular matrices, which enable molecular analyses without interference from unknown factors. This approach works efficiently with human embryonic stem cells and human induced pluripotent stem cells and was recently used to model liver diseases in vitro.
Collapse
Affiliation(s)
- Nicholas R F Hannan
- Wellcome Trust–Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
8
|
Sancho-Martinez I, Baek SH, Izpisua Belmonte JC. Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 2013; 14:892-9. [PMID: 22945254 DOI: 10.1038/ncb2567] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lineage conversion has recently attracted increasing attention as a potential alternative to the directed differentiation of pluripotent cells to obtain cells of a given lineage. Different means allowing for cell identity switch have been reported. Lineage conversion relied initially on the discovery of specific transcription factors generally enriched and characteristic of the target cell, and their forced expression in cells of a different fate. This approach has been successful in various cases, from cells of the hematopoietic systems to neurons and cardiomyocytes. Furthermore, recent reports have suggested the possibility of establishing a general lineage conversion approach bypassing pluripotency. This requires a first phase of epigenetic erasure achieved by short overexpression of the factors used to reprogram cells to a pluripotent state (such as a combination of Sox2, Klf4, c-Myc and Oct4), followed by exposure to specific developmental cues. Here we present these different direct conversion methodologies and discuss their potential as alternatives to using induced pluripotent stem cells and differentiation protocols to generate cell populations of a given fate.
Collapse
Affiliation(s)
- Ignacio Sancho-Martinez
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
9
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
10
|
Nicaise C, Bohl D, Pochet R. [Cellular transdifferentiation in amyotrophic lateral sclerosis]. Med Sci (Paris) 2011; 27:799-801. [PMID: 22027411 DOI: 10.1051/medsci/20112710002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Durnaoglu S, Genc S, Genc K. Patient-specific pluripotent stem cells in neurological diseases. Stem Cells Int 2011; 2011:212487. [PMID: 21776279 PMCID: PMC3138107 DOI: 10.4061/2011/212487] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/28/2011] [Accepted: 05/09/2011] [Indexed: 12/29/2022] Open
Abstract
Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs) derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Serpen Durnaoglu
- Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | | | |
Collapse
|
12
|
Stem cell therapeutics--reality versus hype and hope. J Assist Reprod Genet 2010; 28:287-90. [PMID: 21140287 DOI: 10.1007/s10815-010-9520-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022] Open
|
13
|
Abstract
The β-thalassaemias are inherited anaemias that form the most common class of monogenic disorders in the world. Treatment options are limited, with allogeneic haematopoietic stem cell transplantation offering the only hope for lifelong cure. However, this option is not available for many patients as a result of either the lack of compatible donors or the increased risk of transplant-related mortality in subjects with organ damage resulting from accumulated iron. The paucity of alternative treatments for patients that fall into either of these categories has led to the development of a revolutionary treatment strategy based on gene therapy. This approach involves replacing allogeneic stem cell transplantation with the transfer of normal globin genes into patient-derived, autologous haematopoietic stem cells. This highly attractive strategy offers several advantages, including bypassing the need for allogeneic donors and the immunosuppression required to achieve engraftment of the transplanted cells and to eliminate the risk of donor-related graft-versus-host disease. This review discusses the many advances that have been made towards this endeavour as well as the hurdles that must still be overcome before gene therapy for β-thalassaemia, as well as many other gene therapy applications, can be widely applied in the clinic.
Collapse
|