1
|
Kitagawa Y, Maloney SK, Pool KR, Webster D, Ohkura S, Blache D, Ding L. Behavioural and physiological responses to stressors in sheep with temperament classified by genotype or phenotype. Sci Rep 2024; 14:8147. [PMID: 38584170 PMCID: PMC10999442 DOI: 10.1038/s41598-024-58959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
The single nucleotide polymorphism (SNP) rs107856856, located in the tryptophan hydroxylase-2 gene, is associated with the behavioural phenotype for sheep temperament measured at weaning. Here, we tested the association between that SNP and physiological and behavioural responses to stressors in adult sheep. Two groups of adult sheep, one with genotype A/A (calm genotype) and the other with G/G (nervous genotype) in rs107856856, were selected from 160 sheep and were exposed, twice, to an open-field arena and an isolation box test (IBT). During each repeat, the behaviour and physiological responses (cortisol, prolactin, dehydroepiandrosterone [DHEA], brain derived neurotrophic factor [BDNF], characteristics of the response of body temperature, and oxidative stress) were measured. The behavioural and physiological responses of the sheep were compared between genotypes and also between groups classified on their phenotype as assessed by their initial isolation box score ("low responders" and "high responders"). The SNP rs107856856 had some effects on the behavioural phenotype (IBT score) but no effects on the physiological response to stress (cortisol, prolactin, DHEA, BDNF, oxidative stress or changes in body temperature) in the adult sheep, probably because the sheep were exposed, and therefore had adapted, to human contact during their life.
Collapse
Affiliation(s)
- Yuri Kitagawa
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, Japan
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Shane K Maloney
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kelsey R Pool
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Dane Webster
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, Japan
| | - Dominique Blache
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Luoyang Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
2
|
Behren LE, König S, May K. Genomic Selection for Dairy Cattle Behaviour Considering Novel Traits in a Changing Technical Production Environment. Genes (Basel) 2023; 14:1933. [PMID: 37895282 PMCID: PMC10606080 DOI: 10.3390/genes14101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cow behaviour is a major factor influencing dairy herd profitability and is an indicator of animal welfare and disease. Behaviour is a complex network of behavioural patterns in response to environmental and social stimuli and human handling. Advances in agricultural technology have led to changes in dairy cow husbandry systems worldwide. Increasing herd sizes, less time availability to take care of the animals and modern technology such as automatic milking systems (AMSs) imply limited human-cow interactions. On the other hand, cow behaviour responses to the technical environment (cow-AMS interactions) simultaneously improve production efficiency and welfare and contribute to simplified "cow handling" and reduced labour time. Automatic milking systems generate objective behaviour traits linked to workability, milkability and health, which can be implemented into genomic selection tools. However, there is insufficient understanding of the genetic mechanisms influencing cow learning and social behaviour, in turn affecting herd management, productivity and welfare. Moreover, physiological and molecular biomarkers such as heart rate, neurotransmitters and hormones might be useful indicators and predictors of cow behaviour. This review gives an overview of published behaviour studies in dairy cows in the context of genetics and genomics and discusses possibilities for breeding approaches to achieve desired behaviour in a technical production environment.
Collapse
Affiliation(s)
- Larissa Elisabeth Behren
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Giessen, Germany
| |
Collapse
|
3
|
Holtby AR, Hall TJ, McGivney BA, Han H, Murphy KJ, MacHugh DE, Katz LM, Hill EW. Integrative genomics analysis highlights functionally relevant genes for equine behaviour. Anim Genet 2023. [DOI: 10.1111/age.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
|
4
|
Titterington FM, Knox R, Morrison SJ, Shirali M. Behavioural Traits in Bos taurus Cattle, Their Heritability, Potential Genetic Markers, and Associations with Production Traits. Animals (Basel) 2022; 12:2602. [PMID: 36230342 PMCID: PMC9559500 DOI: 10.3390/ani12192602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
People who work with cattle are at severe risk of serious injury due to the size and strength of the cattle. This risk can be minimised by breeding less dangerous cattle, which have a more favourable reaction to humans. This study provides a systematic review of literature pertaining to cattle genetics relating to behaviour. The review protocol was developed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) framework, with Population, Exposure and Outcome components identified as Bovine, Genetics and Behaviour respectively. Forty-nine studies were identified in the sifting and assigned non-exclusively to groups of heritability (22), genomic associations (13) and production traits related to behaviour (24). Behavioural traits were clustered into the following groups: "temperament, disposition and/ or docility", "aggression", "chute score", "flight speed", "milking temperament", "non-restrained methods" and "restrained methods". Fourteen papers reported high accuracy (Standard Error ≤ 0.05) estimates of heritability, the majority (n = 12) of these studies measured over 1000 animals. The heritability estimates were found to vary between studies. Gene associations with behavioural traits were found on all chromosomes except for chromosome 13, with associated SNPs reported on all chromosomes except 5, 13, 17, 18 and 23. Generally, it was found that correlations between behaviour and production traits were low or negligible. These studies suggest that additive improvement of behavioural traits in cattle is possible and would not negatively impact performance. However, the variation between studies demonstrates that the genetic relationships are population specific. Thus, to assess the heritability, genetic associations with production and genomic areas of interest for behavioural traits, a large-scale study of the population of interest would be required.
Collapse
Affiliation(s)
| | - Rachel Knox
- AgriSearch, Innovation Centre, Large Park, Hillsborough BT26 6DR, UK
| | | | - Masoud Shirali
- Agri-Food and Biosciences Institute, Large Park, Hillsborough BT26 6DR, UK
| |
Collapse
|
5
|
Alvarenga AB, Oliveira HR, Miller SP, Silva FF, Brito LF. Genetic Modeling and Genomic Analyses of Yearling Temperament in American Angus Cattle and Its Relationship With Productive Efficiency and Resilience Traits. Front Genet 2022; 13:794625. [PMID: 35444687 PMCID: PMC9014094 DOI: 10.3389/fgene.2022.794625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cattle temperament has been considered by farmers as a key breeding goal due to its relevance for cattlemen's safety, animal welfare, resilience, and longevity and its association with many economically important traits (e.g., production and meat quality). The definition of proper statistical models, accurate variance component estimates, and knowledge on the genetic background of the indicator trait evaluated are of great importance for accurately predicting the genetic merit of breeding animals. Therefore, 266,029 American Angus cattle with yearling temperament records (1-6 score) were used to evaluate statistical models and estimate variance components; investigate the association of sex and farm management with temperament; assess the weighted correlation of estimated breeding values for temperament and productive, reproductive efficiency and resilience traits; and perform a weighted single-step genome-wide association analysis using 69,559 animals genotyped for 54,609 single-nucleotide polymorphisms. Sex and extrinsic factors were significantly associated with temperament, including conception type, age of dam, birth season, and additional animal-human interactions. Similar results were observed among models including only the direct additive genetic effect and when adding other maternal effects. Estimated heritability of temperament was equal to 0.39 on the liability scale. Favorable genetic correlations were observed between temperament and other relevant traits, including growth, feed efficiency, meat quality, and reproductive traits. The highest approximated genetic correlations were observed between temperament and growth traits (weaning weight, 0.28; yearling weight, 0.28). Altogether, we identified 11 genomic regions, located across nine chromosomes including BTAX, explaining 3.33% of the total additive genetic variance. The candidate genes identified were enriched in pathways related to vision, which could be associated with reception of stimulus and/or cognitive abilities. This study encompasses large and diverse phenotypic, genomic, and pedigree datasets of US Angus cattle. Yearling temperament is a highly heritable and polygenic trait that can be improved through genetic selection. Direct selection for temperament is not expected to result in unfavorable responses on other relevant traits due to the favorable or low genetic correlations observed. In summary, this study contributes to a better understanding of the impact of maternal effects, extrinsic factors, and various genomic regions associated with yearling temperament in North American Angus cattle.
Collapse
Affiliation(s)
- Amanda B Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Stephen P Miller
- American Angus Association, Angus Genetics Inc., St Joseph, MO, United States
| | - Fabyano F Silva
- Department of Animal Sciences, Federal University of Vicosa, Viçosa, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Alvarenga AB, Oliveira HR, Chen SY, Miller SP, Marchant-Forde JN, Grigoletto L, Brito LF. A Systematic Review of Genomic Regions and Candidate Genes Underlying Behavioral Traits in Farmed Mammals and Their Link with Human Disorders. Animals (Basel) 2021; 11:ani11030715. [PMID: 33800722 PMCID: PMC7999279 DOI: 10.3390/ani11030715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary This study is a comprehensive review of genomic regions associated with animal behavior in farmed mammals (beef and dairy cattle, pigs, and sheep) which contributes to a better understanding of the biological mechanisms influencing the target indicator trait and to gene expression studies by suggesting genes likely controlling the trait, and it will be useful in optimizing genomic predictions of breeding values incorporating biological information. Behavioral mechanisms are complex traits, genetically controlled by multiple genes spread across the whole genome. The majority of the genes identified in cattle, pigs, and sheep in association with a plethora of behavioral measurements (e.g., temperament, terrain use, milking speed, tail biting, and sucking reflex) are likely controlling stimuli reception (e.g., olfactory), internal recognition of stimuli (e.g., neuroactive ligand–receptor interaction), and body response to a stimulus (e.g., blood pressure, fatty acidy metabolism, hormone signaling, and inflammatory pathways). Six genes were commonly identified between cattle and pigs. About half of the genes for behavior identified in farmed mammals were also identified in humans for behavioral, mental, and neuronal disorders. Our findings indicate that the majority of the genes identified are likely controlling animal behavioral outcomes because their biological functions as well as potentially differing allele frequencies between two breed groups (subjectively) clustered based on their temperament characteristics. Abstract The main objectives of this study were to perform a systematic review of genomic regions associated with various behavioral traits in the main farmed mammals and identify key candidate genes and potential causal mutations by contrasting the frequency of polymorphisms in cattle breeds with divergent behavioral traits (based on a subjective clustering approach). A total of 687 (cattle), 1391 (pigs), and 148 (sheep) genomic regions associated with 37 (cattle), 55 (pigs), and 22 (sheep) behavioral traits were identified in the literature. In total, 383, 317, and 15 genes overlap with genomic regions identified for cattle, pigs, and sheep, respectively. Six common genes (e.g., NR3C2, PITPNM3, RERG, SPNS3, U6, and ZFAT) were found for cattle and pigs. A combined gene-set of 634 human genes was produced through identified homologous genes. A total of 313 out of 634 genes have previously been associated with behavioral, mental, and neurologic disorders (e.g., anxiety and schizophrenia) in humans. Additionally, a total of 491 candidate genes had at least one statistically significant polymorphism (p-value < 0.05). Out of those, 110 genes were defined as having polymorphic regions differing in greater than 50% of exon regions. Therefore, conserved genomic regions controlling behavior were found across farmed mammal species and humans.
Collapse
Affiliation(s)
- Amanda B. Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 625014, China
| | | | - Jeremy N. Marchant-Forde
- Livestock Behavior Research Unit, United States Department of Agriculture—Agricultural Research Service (USDA–ARS), West Lafayette, IN 47907, USA;
| | - Lais Grigoletto
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 05508, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Correspondence:
| |
Collapse
|
7
|
Chen SY, Oliveira HR, Schenkel FS, Pedrosa VB, Melka MG, Brito LF. Using imputed whole-genome sequence variants to uncover candidate mutations and genes affecting milking speed and temperament in Holstein cattle. J Dairy Sci 2020; 103:10383-10398. [PMID: 32952011 DOI: 10.3168/jds.2020-18897] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Milking speed (MS) and temperament (MT) are 2 workability traits of great importance in dairy cattle production and breeding. This is mainly due to an increased intensification of the worldwide production systems and greater adoption of precision technologies with less human-cattle interaction. Both MS and MT are heritable traits and thus, genomic selection is a promising tool to expedite their genetic progress. However, the genetic architecture and biological mechanisms underlying the phenotypic expression of these traits remain underexplored. In this study, we investigated the association of >5.7 million imputed whole-genome sequence variants with MT and MS in 4,381 and 4,219 North American Holstein cattle, respectively. The statistical analyses were performed using a mixed linear model fitting a polygenic effect. We detected 40 and 35 significant SNPs independently associated with MT and MS, respectively, which were distributed across 26 chromosomes. Eight candidate genes (GRIN3A, KCNJ3, BOSTAUV1R417, BOSTAUV1R419, MAP2K5, KCTD3, GAP43, and LSAMP) were suggested to play an important role in MT as they are involved in biologically relevant pathways, such as glutamatergic synapse, vomeronasal receptor and oxytocin signaling. Within their coding and upstream sequences, we used an independent data set to further detect or validate significantly differentiated SNP between cattle breeds with known differences in MT. There were fewer candidate genes potentially implicated in MS, but immunity-related genes (e.g., BOLA-NC1 and LOC512672), also identified in other populations, were validated in this study. The significant SNP and novel candidate genes identified contribute to a better understanding of the biological mechanisms underlying both traits in dairy cattle. This information will also be useful for the optimization of prediction of genomic breeding values by giving greater weights to SNP located in the genomic regions identified.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Melkaye G Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, 54022
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907.
| |
Collapse
|
8
|
Costilla R, Kemper KE, Byrne EM, Porto-Neto LR, Carvalheiro R, Purfield DC, Doyle JL, Berry DP, Moore SS, Wray NR, Hayes BJ. Genetic control of temperament traits across species: association of autism spectrum disorder risk genes with cattle temperament. Genet Sel Evol 2020; 52:51. [PMID: 32842956 PMCID: PMC7448488 DOI: 10.1186/s12711-020-00569-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/07/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Temperament traits are of high importance across species. In humans, temperament or personality traits correlate with psychological traits and psychiatric disorders. In cattle, they impact animal welfare, product quality and human safety, and are therefore of direct commercial importance. We hypothesized that genetic factors that contribute to variation in temperament among individuals within a species will be shared between humans and cattle. Using imputed whole-genome sequence data from 9223 beef cattle from three cohorts, a series of genome-wide association studies was undertaken on cattle flight time, a temperament phenotype measured as the time taken for an animal to cover a short-fixed distance after release from an enclosure. We also investigated the association of cattle temperament with polymorphisms in bovine orthologs of risk genes for neuroticism, schizophrenia, autism spectrum disorders (ASD), and developmental delay disorders in humans. RESULTS Variants with the strongest associations were located in the bovine orthologous region that is involved in several behavioural and cognitive disorders in humans. These variants were also partially validated in independent cattle cohorts. Genes in these regions (BARHL2, NDN, SNRPN, MAGEL2, ABCA12, KIFAP3, TOPAZ1, FZD3, UBE3A, and GABRA5) were enriched for the GO term neuron migration and were differentially expressed in brain and pituitary tissues in humans. Moreover, variants within 100 kb of ASD susceptibility genes were associated with cattle temperament and explained 6.5% of the total additive genetic variance in the largest cattle cohort. The ASD genes with the most significant associations were GABRB3 and CUL3. Using the same 100 kb window, a weak association was found with polymorphisms in schizophrenia risk genes and no association with polymorphisms in neuroticism and developmental delay disorders risk genes. CONCLUSIONS Our analysis showed that genes identified in a meta-analysis of cattle temperament contribute to neuron development functions and are differentially expressed in human brain tissues. Furthermore, some ASD susceptibility genes are associated with cattle temperament. These findings provide evidence that genetic control of temperament might be shared between humans and cattle and highlight the potential for future analyses to leverage results between species.
Collapse
Affiliation(s)
- Roy Costilla
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Kathryn E. Kemper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Enda M. Byrne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Brisbane, Australia
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, Sao Paulo State University, Sao Paolo, Brazil
| | | | - Jennifer L. Doyle
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Donagh P. Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ben J. Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
dos Santos FC, Peixoto MGCD, Fonseca PADS, Pires MDFÁ, Ventura RV, Rosse IDC, Bruneli FAT, Machado MA, Carvalho MRS. Identification of Candidate Genes for Reactivity in Guzerat (Bos indicus) Cattle: A Genome-Wide Association Study. PLoS One 2017; 12:e0169163. [PMID: 28125592 PMCID: PMC5268462 DOI: 10.1371/journal.pone.0169163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/13/2016] [Indexed: 01/24/2023] Open
Abstract
Temperament is fundamental to animal production due to its direct influence on the animal-herdsman relationship. When compared to calm animals, the aggressive, anxious or fearful ones exhibit less weight gain, lower reproductive efficiency, decreased milk production and higher herd maintenance costs, all of which contribute to reduced profits. However, temperament is a trait that is complex and difficult to assess. Recently, a new quantitative system, REATEST®, for assessing reactivity, a phenotype of temperament, was developed. Herein, we describe the results of a Genome-wide association study for reactivity, assessed using REATEST® with a sample of 754 females from five dual-purpose (milk and meat production) Guzerat (Bos indicus) herds. Genotyping was performed using a 50k SNP chip and a two-step mixed model approach (Grammar-Gamma) with a one-by-one marker regression was used to identify QTLs. QTLs for reactivity were identified on chromosomes BTA1, BTA5, BTA14, and BTA25. Five intronic and two intergenic markers were significantly associated with reactivity. POU1F1, DRD3, VWA3A, ZBTB20, EPHA6, SNRPF and NTN4 were identified as candidate genes. Previous QTL reports for temperament traits, covering areas surrounding the SNPs/genes identified here, further corroborate these associations. The seven genes identified in the present study explain 20.5% of reactivity variance and give a better understanding of temperament biology.
Collapse
Affiliation(s)
| | | | | | | | - Ricardo Vieira Ventura
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, Canada
- Beef Improvement Opportunities, Guelph, Canada
| | - Izinara da Cruz. Rosse
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
10
|
Association of SNPs in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows. J Appl Genet 2016; 58:363-371. [PMID: 27987181 DOI: 10.1007/s13353-016-0383-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/26/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Cattle temperament is a complex trait, and molecular studies aimed at defining this trait are scarce. We used an interaction networks approach to identify new genes (interacting genes) and to estimate their effects and those of 19 dopamine- and serotonin-related genes on the temperament traits of Charolais cattle. The genes proopiomelanocortin (POMC), neuropeptide Y (NPY), solute carrier family 18, member 2 (SLC18A2) and FBJ murine osteosarcoma viral oncogene homologue (FOSFBJ) were identified as new candidates. Their potential to be associated with temperament was estimated according to their reported biological activities, which included interactions with neural activity, receptor function, targeting or synthesis of neurotransmitters and association with behaviour. Pen score (PS) and exit velocity (EV) measures were determined from 412 Charolais cows to calculate their temperament score (TS). Based on the TS, calm (n = 55; TS, 1.09 ± 0.33) and temperamental (n = 58; TS, 2.27 ± 0.639) cows were selected and genotyped using a 248 single-nucleotide variation (SNV) panel. Of the 248 variations in the panel, only 151 were confirmed to be polymorphic (single-nucleotide polymorphisms; SNPs) in the tested population. Single-marker association analyses between genotypes and temperament measures (EV, PS and/or TS) indicated significant associations of six SNPs from four candidate genes. The markers rs109576799 and rs43696138, located in the DRD3 and HTR2A genes, respectively, were significantly associated with both EV and TS traits. Four markers, rs110365063 and rs137756569 from the POMC gene and rs110365063 and rs135155082 located in SLC18A2 and DRD2, respectively, were associated with PS. The variant rs110365063 located in bovine SLC18A2 causes a change in the amino acid sequence from Ala to Thr. Further studies are needed to confirm the association of genetic profile with cattle temperament; however, our study represents important progress in understanding the regulation of cattle temperament by different genes with divergent functions.
Collapse
|
11
|
Valente TS, Baldi F, Sant’Anna AC, Albuquerque LG, Paranhos da Costa MJR. Genome-Wide Association Study between Single Nucleotide Polymorphisms and Flight Speed in Nellore Cattle. PLoS One 2016; 11:e0156956. [PMID: 27300296 PMCID: PMC4907449 DOI: 10.1371/journal.pone.0156956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
Introduction Cattle temperament is an important factor that affects the profitability of beef cattle enterprises, due to its relationship with productivity traits, animal welfare and labor safety. Temperament is a complex phenotype often assessed by measuring a series of behavioral traits, which result from the effects of multiple environmental and genetic factors, and their interactions. The aims of this study were to perform a genome-wide association study and detect genomic regions, potential candidate genes and their biological mechanisms underlying temperament, measured by flight speed (FS) test in Nellore cattle. Materials and Methods The genome-wide association study (GWAS) was performed using a single-step procedure (ssGBLUP) which combined simultaneously all 16,600 phenotypes from genotyped and non-genotyped animals, full pedigree information of 162,645 animals and 1,384 genotyped animals in one step. The animals were genotyped with High Density Bovine SNP BeadChip which contains 777,962 SNP markers. After quality control (QC) a total of 455,374 SNPs remained. Results Heritability estimated for FS was 0.21 ± 0.02. Consecutive SNPs explaining 1% or more of the total additive genetic variance were considered as windows associated with FS. Nine candidate regions located on eight different Bos taurus chromosomes (BTA) (1 at 73 Mb, 2 at 65 Mb, 5 at 22 Mb and 119 Mb, 9 at 98 Mb, 11 at 67 Mb, 15 at 16 Mb, 17 at 63 Kb, and 26 at 47 Mb) were identified. The candidate genes identified in these regions were NCKAP5 (BTA2), PARK2 (BTA9), ANTXR1 (BTA11), GUCY1A2 (BTA15), CPE (BTA17) and DOCK1 (BTA26). Among these genes PARK2, GUCY1A2, CPE and DOCK1 are related to dopaminergic system, memory formation, biosynthesis of peptide hormone and neurotransmitter and brain development, respectively. Conclusions Our findings allowed us to identify nine genomic regions (SNP windows) associated with beef cattle temperament, measured by FS test. Within these windows, six promising candidate genes and their biological functions were identified. These results may contribute to a better comprehension into the genetic control of temperament expression in Nellore cattle.
Collapse
Affiliation(s)
- Tiago Silva Valente
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Fernando Baldi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Aline Cristina Sant’Anna
- Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, Juiz de Fora, MG 36.036-900, Brazil
| | - Lucia Galvão Albuquerque
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Mateus José Rodrigues Paranhos da Costa
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
- * E-mail:
| |
Collapse
|
12
|
Staiger EA, Albright JD, Brooks SA. Genome‐wide association mapping of heritable temperament variation in the
T
ennessee
W
alking
H
orse. GENES BRAIN AND BEHAVIOR 2016; 15:514-26. [DOI: 10.1111/gbb.12290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/26/2022]
Affiliation(s)
- E. A. Staiger
- Department of Animal Science Cornell University Ithaca NY
| | - J. D. Albright
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine University of Tennessee Knoxville TN
| | - S. A. Brooks
- Department of Animal Science University of Florida Gainesville FL USA
| |
Collapse
|
13
|
Friedrich J, Brand B, Ponsuksili S, Graunke KL, Langbein J, Knaust J, Kühn C, Schwerin M. Detection of genetic variants affecting cattle behaviour and their impact on milk production: a genome-wide association study. Anim Genet 2015; 47:12-8. [PMID: 26515756 DOI: 10.1111/age.12371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 01/13/2023]
Abstract
Behaviour traits of cattle have been reported to affect important production traits, such as meat quality and milk performance as well as reproduction and health. Genetic predisposition is, together with environmental stimuli, undoubtedly involved in the development of behaviour phenotypes. Underlying molecular mechanisms affecting behaviour in general and behaviour and productions traits in particular still have to be studied in detail. Therefore, we performed a genome-wide association study in an F2 Charolais × German Holstein cross-breed population to identify genetic variants that affect behaviour-related traits assessed in an open-field and novel-object test and analysed their putative impact on milk performance. Of 37,201 tested single nucleotide polymorphism (SNPs), four showed a genome-wide and 37 a chromosome-wide significant association with behaviour traits assessed in both tests. Nine of the SNPs that were associated with behaviour traits likewise showed a nominal significant association with milk performance traits. On chromosomes 14 and 29, six SNPs were identified to be associated with exploratory behaviour and inactivity during the novel-object test as well as with milk yield traits. Least squares means for behaviour and milk performance traits for these SNPs revealed that genotypes associated with higher inactivity and less exploratory behaviour promote higher milk yields. Whether these results are due to molecular mechanisms simultaneously affecting behaviour and milk performance or due to a behaviour predisposition, which causes indirect effects on milk performance by influencing individual reactivity, needs further investigation.
Collapse
Affiliation(s)
- Juliane Friedrich
- Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, 18059, Germany
| | - Bodo Brand
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Katharina L Graunke
- Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, 18059, Germany
| | - Jan Langbein
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Jacqueline Knaust
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Christa Kühn
- Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, 18059, Germany.,Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Manfred Schwerin
- Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, 18059, Germany.,Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| |
Collapse
|
14
|
Associations between temperament and gene polymorphisms in the brain dopaminergic system and the adrenal gland of sheep. Physiol Behav 2015; 153:19-27. [PMID: 26498700 DOI: 10.1016/j.physbeh.2015.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022]
Abstract
Sheep of calm or nervous temperament differ in their physiological (cortisol secretion) and behavioural (motor activity) responses to stressors, perhaps due to variation in genes that regulate glucocorticoid synthesis or brain dopamine activity. Using ewes that had been selected over 20 generations for nervous (n=58) or calm (n=59) temperament, we confirmed the presence of a polymorphism in a gene specifically involved in cortisol production (CYP17), and identified polymorphisms in three genes specifically associated with personality and behavioural traits: dopamine receptors 2 and 4 (DRD2, DRD4), and monoamine oxidase A (MAOA). The calm and nervous lines differed in their frequencies of CYP17 SNP628 (single nucleotide A-G mutation at position 628) and DRD2 SNP939 (single nucleotide T-C mutation at position 939), but not for other SNPs detected in DRD2 or MAOA. In a second experiment, we then genotyped a large, non-selected flock of ewes for DRD2 SNP939 and CYP17 SNP628. Responses to the 'arena' and 'isolation box' challenges were associated with the DRD2 SNP939 genotype and the response to ACTH challenge was associated with the CYP17 SNP628 genotype. We conclude that, for sheep, a combination of the DRD2 SNP939 C allele and the CYP17 SNP628 A/A genotype could be used as a genetic marker for nervous temperament, and that a combination of DRD2 SNP939 T/T and CYP17 SNP628 G/G could be used as a genetic marker for calm temperament.
Collapse
|
15
|
Friedrich J, Brand B, Schwerin M. Genetics of cattle temperament and its impact on livestock production and breeding – a review. Arch Anim Breed 2015. [DOI: 10.5194/aab-58-13-2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Cattle temperament, which describes individual behaviour differences with regard to a stressor or environmental challenge, is known for its impact on working safety, adaptability to new housing conditions, animal productivity and for evaluation of animal welfare. However, successful use of temperament in animal breeding and husbandry to improve keeping conditions in general or animal welfare in particular, requires the availability of informative and reproducible phenotypes and knowledge about the genetic modulation of these traits. However, the knowledge about genetic influences on cattle temperament is still limited. In this review, an outline is given for the interdependence between production systems and temperament as well as for the phenotyping of cattle temperament based on both behaviour tests and observations of behaviour under production conditions. In addition, the use of temperament as a selection criterion is discussed.
Collapse
|
16
|
Haskell MJ, Simm G, Turner SP. Genetic selection for temperament traits in dairy and beef cattle. Front Genet 2014; 5:368. [PMID: 25374582 PMCID: PMC4204639 DOI: 10.3389/fgene.2014.00368] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022] Open
Abstract
Animal temperament can be defined as a response to environmental or social stimuli. There are a number of temperament traits in cattle that contribute to their welfare, including their response to handling or milking, response to challenge such as human approach or intervention at calving, and response to conspecifics. In a number of these areas, the genetic basis of the trait has been studied. Heritabilities have been estimated and in some cases quantitative trait loci (QTL) have been identified. The variation is sometimes considerable and moderate heritabilities have been found for the major handling temperament traits, making them amenable to selection. Studies have also investigated the correlations between temperament and other traits, such as productivity and meat quality. Despite this, there are relatively few examples of temperament traits being used in selection programmes. Most often, animals are screened for aggression or excessive fear during handling or milking, with extreme animals being culled, or EBVs for temperament are estimated, but these traits are not commonly included routinely in selection indices, despite there being economic, welfare and human safety drivers for their. There may be a number of constraints and barriers. For some traits and breeds, there may be difficulties in collecting behavioral data on sufficiently large populations of animals to estimate genetic parameters. Most selection indices require estimates of economic values, and it is often difficult to assign an economic value to a temperament trait. The effects of selection primarily for productivity traits on temperament and welfare are discussed. Future opportunities include automated data collection methods and the wider use of genomic information in selection.
Collapse
Affiliation(s)
- Marie J. Haskell
- Animal and Veterinary Sciences Group, Scotland's Rural CollegeEdinburgh, UK
| | | | | |
Collapse
|
17
|
|
18
|
Poissant J, Réale D, Martin J, Festa-Bianchet M, Coltman D. A quantitative trait locus analysis of personality in wild bighorn sheep. Ecol Evol 2013; 3:474-81. [PMID: 23531519 PMCID: PMC3605838 DOI: 10.1002/ece3.468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/13/2022] Open
Abstract
Personality, the presence of persistent behav105ioral differences among individuals over time or contexts, potentially has important ecological and evolutionary consequences. However, a lack of knowledge about its genetic architecture limits our ability to understand its origin, evolution, and maintenance. Here, we report on a genome-wide quantitative trait locus (QTL) analysis for two personality traits, docility and boldness, in free-living female bighorn sheep from Ram Mountain, Alberta, Canada. Our variance component linkage analysis based on 238 microsatellite loci genotyped in 310 pedigreed individuals identified suggestive docility and boldness QTL on sheep chromosome 2 and 6, respectively. A lack of QTL overlap indicated that genetic covariance between traits was not modulated by pleiotropic effects at a major locus and may instead result from linkage disequilibrium or pleiotropic effects at QTL of small effects. To our knowledge, this study represents the first attempt to dissect the genetic architecture of personality in a free-living wildlife population, an important step toward understanding the link between molecular genetic variation in personality and fitness and the evolutionary processes maintaining this variation.
Collapse
Affiliation(s)
- J Poissant
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK
| | | | | | | | | |
Collapse
|